DIMet: an open-source tool for differential analysis of targeted isotope-labeled metabolomics data

. 2024 May 02 ; 40 (5) : .

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38656970

Grantová podpora
Institut National du Cancer

MOTIVATION: Many diseases, such as cancer, are characterized by an alteration of cellular metabolism allowing cells to adapt to changes in the microenvironment. Stable isotope-resolved metabolomics (SIRM) and downstream data analyses are widely used techniques for unraveling cells' metabolic activity to understand the altered functioning of metabolic pathways in the diseased state. While a number of bioinformatic solutions exist for the differential analysis of SIRM data, there is currently no available resource providing a comprehensive toolbox. RESULTS: In this work, we present DIMet, a one-stop comprehensive tool for differential analysis of targeted tracer data. DIMet accepts metabolite total abundances, isotopologue contributions, and isotopic mean enrichment, and supports differential comparison (pairwise and multi-group), time-series analyses, and labeling profile comparison. Moreover, it integrates transcriptomics and targeted metabolomics data through network-based metabolograms. We illustrate the use of DIMet in real SIRM datasets obtained from Glioblastoma P3 cell-line samples. DIMet is open-source, and is readily available for routine downstream analysis of isotope-labeled targeted metabolomics data, as it can be used both in the command line interface or as a complete toolkit in the public Galaxy Europe and Workfow4Metabolomics web platforms. AVAILABILITY AND IMPLEMENTATION: DIMet is freely available at https://github.com/cbib/DIMet, and through https://usegalaxy.eu and https://workflow4metabolomics.usegalaxy.fr. All the datasets are available at Zenodo https://zenodo.org/records/10925786.

Zobrazit více v PubMed

Agrawal S, Kumar S, Sehgal R. et al. El-MAVEN: a fast, robust, and user-friendly mass spectrometry data processing engine for metabolomics. In: D’Alessandro A (ed.), High-Throughput Metabolomics, Methods in Molecular Biology. New York: Springer, 2019, 301–21. PubMed

Balcells C, Foguet C, Tarragó-Celada J. et al. Tracing metabolic fluxes using mass spectrometry: stable isotope-resolved metabolomics in health and disease. TrAC Trends Anal Chem 2019;120:115371.

Benjamini Y, Hochberg Y.. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodological) 1995;57:289–300.

Bruntz RC, Lane AN, Higashi RM. et al. Exploring cancer metabolism using stable isotope-resolved metabolomics (SIRM). J Biol Chem 2017;292:11601–9. PubMed PMC

Buescher JM, Antoniewicz MR, Boros LG. et al. A roadmap for interpreting 13 C metabolite labeling patterns from cells. Curr Opin Biotechnol 2015;34:189–201. PubMed PMC

De Craemer S, Driesen K, Ghesquière B. et al. TraVis pies: a guide for stable isotope metabolomics interpretation using an intuitive visualization. Metabolites 2022;12:593. PubMed PMC

Giacomoni F, Le Corguillé G, Monsoor M. et al. Workflow4Metabolomics: a collaborative research infrastructure for computational metabolomics. Bioinformatics 2015;31:1493–5. PubMed PMC

Guitton Y, Tremblay-Franco M, Le Corguillé G. et al. Create, run, share, publish, and reference your LC–MS, FIA–MS, GC–MS, and NMR data analysis workflows with the Workflow4Metabolomics 3.0 galaxy online infrastructure for metabolomics. Int J Biochem Cell Biol 2017;93:89–101. PubMed

Guyon J, Fernandez-Moncada I, Larrieu CM. et al. Lactate dehydrogenases promote glioblastoma growth and invasion via a metabolic symbiosis. EMBO Mol Med 2022;14:e15343. PubMed PMC

Hakimi AA, Reznik E, Lee C-H. et al. An integrated metabolic atlas of clear cell renal cell carcinoma. Cancer Cell 2016;29:104–16. PubMed PMC

Jang C, Chen L, Rabinowitz JD. et al. Metabolomics and isotope tracing. Cell 2018;173:822–37. PubMed PMC

Jeong H, Yu Y, Johansson HJ. et al. Correcting for naturally occurring mass isotopologue abundances in stable-isotope tracing experiments with PolyMID. Metabolites 2021;11:310. PubMed PMC

Kiefer P, Schmitt U, Müller JEN. et al. DynaMet: a fully automated pipeline for dynamic LC–MS data. Anal Chem 2015;87:9679–86. PubMed

Krämer L, Jäger C, Trezzi J-P. et al. Quantification of stable isotope traces close to natural enrichment in human plasma metabolites using gas chromatography–mass spectrometry. Metabolites 2018;8:15. PubMed PMC

Lorkiewicz PK, Gibb AA, Rood BR. et al. Integration of flux measurements and pharmacological controls to optimize stable isotope-resolved metabolomics workflows and interpretation. Sci Rep 2019;9:13705. PubMed PMC

Lugar DJ, Sriram G.. Isotope-assisted metabolic flux analysis as an equality-constrained nonlinear program for improved scalability and robustness. PLoS Comput Biol 2022;18:e1009831. PubMed PMC

Méndez-Lucas A, Lin W, Driscoll PC. et al. Identifying strategies to target the metabolic flexibility of tumours. Nat Metab 2020;2:335–50. PubMed PMC

Millard P, Delépine B, Guionnet M. et al. IsoCor: isotope correction for high-resolution MS labeling experiments. Bioinformatics 2019;35:4484–7. PubMed

Millard P, Schmitt U, Kiefer P. et al. ScalaFlux: a scalable approach to quantify fluxes in metabolic subnetworks. PLoS Comput Biol 2020;16:e1007799. PubMed PMC

Millard P, Enjalbert B, Uttenweiler-Joseph S. et al. Control and regulation of acetate overflow in Escherichia coli. Elife 2021;10:e63661. PubMed PMC

Pang Z, Chong J, Zhou G. et al. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res 2021;49:W388–96. PubMed PMC

Seabold S, Perktold J. Statsmodels: econometric and statistical modeling with Python. In: Proceedings of the 9th Python in Science Conference 2010;7:92–95.

Shi X, Xi B, Jasbi P. et al. Comprehensive isotopic targeted mass spectrometry: reliable metabolic flux analysis with broad coverage. Anal Chem 2020;92:11728–38. PubMed PMC

Yuan J, Doucette CD, Fowler WU. et al. Metabolomics‐driven quantitative analysis of ammonia assimilation in E. coli. Mol Syst Biol 2009;5:302. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...