A novel pathogenic SLC12A5 missense variant in epilepsy of infancy with migrating focal seizures causes impaired KCC2 chloride extrusion

. 2024 ; 17 () : 1372662. [epub] 20240410

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38660387

The potassium-chloride co-transporter 2, KCC2, is a neuron-specific ion transporter that plays a multifunctional role in neuronal development. In mature neurons, KCC2 maintains a low enough intracellular chloride concentration essential for inhibitory neurotransmission. During recent years, pathogenic variants in the KCC2 encoding gene SLC12A5 affecting the functionality or expression of the transporter protein have been described in several patients with epilepsy of infancy with migrating focal seizures (EIMFS), a devastating early-onset developmental and epileptic encephalopathy. In this study, we identified a novel recessively inherited SLC12A5 c.692G>A, p. (R231H) variant in a patient diagnosed with severe and drug-resistant EIMFS and profound intellectual disability. The functionality of the variant was assessed in vitro by means of gramicidin-perforated patch-clamp experiments and ammonium flux assay, both of which indicated a significant reduction in chloride extrusion. Based on surface immunolabeling, the variant showed a reduction in membrane expression. These findings implicate pathogenicity of the SLC12A5 variant that leads to impaired inhibitory neurotransmission, increasing probability for hyperexcitability and epileptogenesis.

Zobrazit více v PubMed

Achilles K., Okabe A., Ikeda M., Shimizu-Okabe C., Yamada J., Fukuda A., et al. . (2007). Kinetic properties of Cl- uptake mediated by Na +-dependent K+-2Cl− cotransport in immature rat neocortical neurons. J. Neurosci. 27, 8616–8627. 10.1523/JNEUROSCI.5041-06.2007 PubMed DOI PMC

Adzhubei I. A., Schmidt S., Peshkin L., Ramensky V. E., Gerasimova A., Bork P., et al. . (2010). A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249. 10.1038/nmeth0410-248 PubMed DOI PMC

Awad P. N., Amegandjin C. A., Szczurkowska J., Carriço J. N., Fernandes do Nascimento A. S., Baho E., et al. . (2018). KCC2 regulates dendritic spine formation in a brain-region specific and BDNF dependent manner. Cereb. Cortex 28, 4049–4062. 10.1093/cercor/bhy198 PubMed DOI PMC

Ben-Ari Y. (2002). Excitatory actions of GABA during development: the nature of the nurture. Nat. Rev. Neurosci. 3, 728–739. 10.1038/nrn920 PubMed DOI

Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., et al. . (2000). The protein data bank. Nucleic Acids Res. 28, 235–242. 10.1093/nar/28.1.235 PubMed DOI PMC

Boffi J. C., Knabbe J., Kaiser M., Kuner T. (2018). KCC2-dependent steady-state intracellular chloride concentration and pH in cortical layer 2/3 neurons of anesthetized and awake mice. Front. Cell. Neurosci. 12:7. 10.3389/fncel.2018.00007 PubMed DOI PMC

Chang K. T., Guo J., di Ronza A., Sardiello M. (2018). Aminode: identification of evolutionary constraints in the human proteome. Sci. Rep. 8:1357. 10.1038/s41598-018-19744-w PubMed DOI PMC

Chen J., Wang H., Deng C., Fei M. (2023). SLC12A5 as a novel potential biomarker of glioblastoma multiforme. Mol. Biol. Rep. 50:4285–4299. 10.1007/s11033-023-08371-y PubMed DOI

Chi X., Li X., Chen Y., Zhang Y., Su Q., Zhou Q., et al. . (2021). Cryo-EM structures of the full-length human KCC2 and KCC3 cation-chloride cotransporters. Cell Res. 31, 482–484. 10.1038/s41422-020-00437-x PubMed DOI PMC

Choi Y., Chan A. P. (2015). PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31, 2745–2747. 10.1093/bioinformatics/btv195 PubMed DOI PMC

Deidda G., Parrini M., Naskar S., Bozarth I. F., Contestabile A., Cancedda L., et al. . (2015). Reversing excitatory GABAAR signaling restores synaptic plasticity and memory in a mouse model of Down syndrome. Nat. Med. 21, 318–326. 10.1038/nm.3827 PubMed DOI

Dumon C., Diabira D., Chudotvorova I., Bader F., Sahin S., Zhang J., et al. . (2018). The adipocyte hormone leptin sets the emergence of hippocampal inhibition in mice. Elife 7:e36726. 10.7554/eLife.36726.021 PubMed DOI PMC

Fiumelli H., Briner A., Puskarjov M., Blaesse P., Belem B. J. T., Dayer A. G., et al. . (2013). An ion transport-independent role for the cation-chloride cotransporter KCC2 in dendritic spinogenesis in vivo. Cereb. Cortex 23, 378–388. 10.1093/cercor/bhs027 PubMed DOI

Friedel P., Kahle K., Zhang J., Hertz N., Pisella L., Buhler E., et al. . (2015). WNK1-regulated inhibitory phosphorylation of the KCC2 cotransporter maintains the depolarizing action of GABA in immature neurons. Sci. Signal. 8:ra65. 10.1126/scisignal.aaa0354 PubMed DOI

Friedel P., Ludwig A., Pellegrino C., Agez M., Jawhari A., Rivera C., et al. . (2017). A novel view on the role of intracellular tails in surface delivery of the potassium-chloride cotransporter KCC2. Eneuro 4:ENEURO.0055-17.2017. 10.1523/ENEURO.0055-17.2017 PubMed DOI PMC

Gillen C. M., Forbush III B. (1999). Functional interaction of the K-Cl cotransporter (KCC1) with the Na-K-Cl cotransporter in HEK-293 cells. Am. J. Physiol.-Cell Physiol. 276, C328–C336. 10.1152/ajpcell.1999.276.2.C328 PubMed DOI

Golden R. J., Chen B., Li T., Braun J., Manjunath H., Chen X., et al. . (2017). An Argonaute phosphorylation cycle promotes microRNA-mediated silencing. Nature 542, 197–202. 10.1038/nature21025 PubMed DOI PMC

Hartmann A.-M., Nothwang H. G. (2022). NKCC1 and KCC2: structural insights into phospho-regulation. Front. Mol. Neurosci. 15:964488. 10.3389/fnmol.2022.964488 PubMed DOI PMC

Hershfinkel M., Kandler K., Knoch M. E., Dagan-Rabin M., Aras M. A., Abramovitch-Dahan C., et al. . (2009). Intracellular zinc inhibits KCC2 transporter activity. Nat. Neurosci. 12, 725–727. 10.1038/nn.2316 PubMed DOI PMC

Horn Z., Ringstedt T., Blaesse P., Kaila K., Herlenius E. (2010). Premature expression of KCC2 in embryonic mice perturbs neural development by an ion transport-independent mechanism. Eur. J. Neurosci. 31, 2142–2155. 10.1111/j.1460-9568.2010.07258.x PubMed DOI

Hübner C. A., Stein V., Hermans-Borgmeyer I., Meyer T., Ballanyi K., Jentsch T. J., et al. . (2001). Disruption of KCC2 reveals an essential role of K-Cl cotransport already in early synaptic inhibition. Neuron 30, 515–524. 10.1016/S0896-6273(01)00297-5 PubMed DOI

Ioannidis N. M., Rothstein J. H., Pejaver V., Middha S., McDonnel S. K., Baheti S., et al. . (2016). REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am. J. Hum. Genet. 99, 877–885. 10.1016/j.ajhg.2016.08.016 PubMed DOI PMC

Järvelä V., Immonen E.-V. (2024). Gramicidin-perforated patch-clamp recordings related to KCC2 variant p. (Arg231His). IDA. Version 1. 10.23729/2231c341-4e16-4576-8dd9-930ec98147c4 DOI

Järvelä V., Immonen E.-V., Hamze M., Medina I. (2024a). Ammonium flux analysis of KCC2 missense variant p. (Arg231His). IDA. Version 1. 10.23729/e7fa4fad-c947-49f5-8343-49681c7b5ff4 DOI

Järvelä V., Immonen E.-V., Hamze M., Medina I. (2024b). Results of surface immunolabeling of KCC2 missense variant p. (Arg231His). IDA. Version 2. 10.23729/41614c78-1e44-45ea-bd95-5831fa7a3d57 DOI

Kahle K., Merner N., Friedel P., Silayeva L., Liang B., Khanna A., et al. . (2014). Genetically encoded impairment of neuronal KCC2 cotransporter function in human idiopathic generalized epilepsy. EMBO Rep. 15:201438840. 10.15252/embr.201438840 PubMed DOI PMC

Kahle K. T., Deeb T. Z., Puskarjov M., Silayeva L., Liang B., Kaila K., et al. . (2013). Modulation of neuronal activity by phosphorylation of the K–Cl cotransporter KCC2. Trends Neurosci. 36, 726–737. 10.1016/j.tins.2013.08.006 PubMed DOI PMC

Kasyanov A. M., Safiulina V. F., Voronin L. L., Cherubini E. (2004). GABA-mediated giant depolarizing potentials as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus. Proc. Nat. Acad. Sci. 101, 3967–3972. 10.1073/pnas.0305974101 PubMed DOI PMC

Kitayama T. (2018). The role of K+-Cl—cotransporter-2 in neuropathic pain. Neurochem. Res. 43, 110–115. 10.1007/s11064-017-2344-3 PubMed DOI

Kok M., Hartnett-Scott K., Happe C. L., MacDonald M. L., Aizenman E., Brodsky J. L., et al. . (2024). The expression system influences stability, maturation efficiency, and oligometric properties of the potassium-chloride co-transporter KCC2. Neurochem. Int. 174:105696. 10.1016/j.neuint.2024.105695 PubMed DOI PMC

Li H., Khirug S., Cai C., Ludwig A., Blaesse P., Kolikova J., et al. . (2007). KCC2 interacts with the dendritic cytoskeleton to promote spine development. Neuron 56, 1019–1033. 10.1016/j.neuron.2007.10.039 PubMed DOI

Markkanen M., Karhunen T., Llano O., Ludwig A., Rivera C., Uvarov P., et al. . (2014). Distribution of neuronal KCC2a and KCC2b isoforms in mouse CNS. J. Comp. Neurol. 522, 1897–1914. 10.1002/cne.23510 PubMed DOI

Mavrovic M., Uvarov P., Delpire E., Vutskits L., Kaila K., Puskarjov M., et al. . (2020). Loss of non-canonical KCC2 functions promotes developmental apoptosis of cortical projection neurons. EMBO Rep. 21:e48880. 10.15252/embr.201948880 PubMed DOI PMC

McMoneagle E., Zhou J., Zhang S., Huang W., Josiah S. S., Ding K., et al. . (2023). Neuronal K+-Cl- cotransporter KCC2 as a promising drug target for epilepsy treatment. Acta Pharmacol. Sin. 45, 1–22. 10.1038/s41401-023-01149-9 PubMed DOI PMC

Medina I., Pisella L. I. (2020). “Chapter 2 - Methods for investigating the activities of neuronal chloride transporters,” in Neuronal Chloride Transporters in Health and Disease, ed. X. Tang (Cambridge, MA: Academic Press), 21–41. 10.1016/B978-0-12-815318-5.00002-9 DOI

Merner N. D., Chandler M. R., Bourassa C., Liang B., Khanna A. R., Dion P., et al. . (2015). Regulatory domain or CpG site variation in SLC12A5, encoding the chloride transporter KCC2, in human autism and schizophrenia. Front. Cell. Neurosci. 9:386. 10.3389/fncel.2015.00386 PubMed DOI PMC

Miesenböck G., De Angelis D. A., Rothman J. E. (1998). Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195. 10.1038/28190 PubMed DOI

Moore Y. E., Deeb T. Z., Chadchankar H., Brandon N. J., Moss S. J. (2018). Potentiating KCC2 activity is sufficient to limit the onset and severity of seizures. Proc. Nat. Acad. Sci. 115, 10166–10171. 10.1073/pnas.1810134115 PubMed DOI PMC

Payne J. A. (1997). Functional characterization of the neuronal-specific K-Cl cotransporter: implications for [K+]oregulation. Am. J. Physiol.-Cell Physiol. 273, C1516–C1525. 10.1152/ajpcell.1997.273.5.C1516 PubMed DOI

Payne J. A., Rivera C., Voipio J., Kaila K. (2003). Cation–chloride co-transporters in neuronal communication, development and trauma. Trends Neurosci. 26, 199–206. 10.1016/S0166-2236(03)00068-7 PubMed DOI

Petrovski S., Wang Q., Heinzen E. L., Allen A. S., Goldstein D. B. (2013). Genic intolerance to functional variation and the interpretation of personal genomes. PLoS Genet. 9:e1003709. 10.1371/annotation/32c8d343-9e1d-46c6-bfd4-b0cd3fb7a97e PubMed DOI PMC

Plotkin M. D., Snyder E. Y., Hebert S. C., Delpire E. (1997). Expression of the Na-K-2Cl cotransporter is developmentally regulated in postnatal rat brains: a possible mechanism underlying GABA's excitatory role in immature brain. J. Neurobiol. 33, 781–795. 10.1002/(SICI)1097-4695(19971120)33:6<781::AID-NEU6>3.0.CO;2-5 PubMed DOI

Prael III F. J., Kim K., Du Y., Spitznagel B. D., Sulikowski G. A., Delpire E., et al. . (2022). Discovery of small molecule KCC2 potentiators which attenuate in vitro seizure-like activity in cultured neurons. Front. Cell Dev. Biol. 10:912812. 10.3389/fcell.2022.912812 PubMed DOI PMC

Puskarjov M., Seja P., Heron S. E., Williams T. C., Ahmad F., Iona X., et al. . (2014). A variant of KCC2 from patients with febrile seizures impairs neuronal Cl– extrusion and dendritic spine formation. EMBO Rep. 15, 723–729. 10.1002/embr.201438749 PubMed DOI PMC

Rentzsch P., Witten D., Cooper G. M., Shendure J., Kircher M. (2019). CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 47, D886–D894. 10.1093/nar/gky1016 PubMed DOI PMC

Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J., et al. . (2015). Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424. 10.1038/gim.2015.30 PubMed DOI PMC

Rivera C., Voipio J., Payne J. A., Ruusuvuori E., Lahtinen H., Lamsa K., et al. . (1999). The K+/Cl– co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397, 251–255. 10.1038/16697 PubMed DOI

Saito T., Ishii A., Sugai K., Sasaki M., Hirose S. (2017). A de novo missense mutation in SLC12A5 found in a compound heterozygote patient with epilepsy of infancy with migrating focal seizures. Clin. Genet. 92, 654–658. 10.1111/cge.13049 PubMed DOI

Saitsu H., Watanabe M., Akita T., Ohba C., Sugai K., Ong W. P., et al. . (2016). Impaired neuronal KCC2 function by biallelic SLC12A5 mutations in migrating focal seizures and severe developmental delay. Sci. Rep. 6:30072. 10.1038/srep30072 PubMed DOI PMC

Schwarz J. M., Cooper D. N., Schuelke M., Seelow D. (2014). MutationTaster2: mutation prediction for the deep-sequencing age. Nat. Methods 11, 361–362. 10.1038/nmeth.2890 PubMed DOI

Sedmak G., Jovanov-Milošević N., Puskarjov M., Ulamec M., Krušlin B., Kaila K., et al. . (2016). Developmental expression patterns of KCC2 and functionally associated molecules in the human brain. Cereb. Cortex 26, 4574–4589. 10.1093/cercor/bhv218 PubMed DOI

Sehnal D., Bittrich S., Deshpande M., Svobodová R., Berka K., Bazgier V., et al. . (2021). Mol* Viewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res. 49, W431–W437. 10.1093/nar/gkab314 PubMed DOI PMC

Sievers F., Higgins D. G. (2018). Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 27, 135–145. 10.1002/pro.3290 PubMed DOI PMC

Sim N.-L., Kumar P., Hu J., Henikoff S., Schneider G., Ng P. C., et al. . (2012). SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 40, W452–W457. 10.1093/nar/gks539 PubMed DOI PMC

Stein V., Hermans-Borgmeyer I., Jentsch T. J., Hübner C. A. (2004). Expression of the KCl cotransporter KCC2 parallels neuronal maturation and the emergence of low intracellular chloride. J. Comp. Neurol. 468, 57–64. 10.1002/cne.10983 PubMed DOI

Stödberg T., McTague A., Ruiz A. J., Hirata H., Zhen J., Long P., et al. . (2015). Mutations in SLC12A5 in epilepsy of infancy with migrating focal seizures. Nat. Commun. 6:8038. 10.1038/ncomms9038 PubMed DOI PMC

Sulis Sato S., Artoni P., Landi S., Cozzolino O., Parra R., Pracucci E., et al. . (2017). Simultaneous two-photon imaging of intracellular chloride concentration and pH in mouse pyramidal neurons in vivo. Proc. Nat. Acad. Sci. 114, E8770–E8779. 10.1073/pnas.1702861114 PubMed DOI PMC

Suzuki S., Kawakami K., Nakamura F., Nishimura S., Yagi K., Seino M., et al. . (1994). Bromide, in the therapeutic concentration, enhances GABA-activated currents in cultured neurons of rat cerebral cortex. Epilepsy Res. 19, 89–97. 10.1016/0920-1211(94)90019-1 PubMed DOI

Trujillano D., Oprea G.-E., Schmitz Y., Bertoli-Avella A. M., Abou Jamra R., Rolfs A., et al. . (2017). A comprehensive global genotype–phenotype database for rare diseases. Mol. Genet. Genomic Med. 5, 66–75. 10.1002/mgg3.262 PubMed DOI PMC

Tyzio R., Minlebaev M., Rheims S., Ivanov A., Jorquera I., Holmes G. L., et al. . (2008). Postnatal changes in somatic γ-aminobutyric acid signalling in the rat hippocampus. Eur. J. Neurosci. 27, 2515–2528. 10.1111/j.1460-9568.2008.06234.x PubMed DOI

Tyzio R., Nardou R., Ferrari D. C., Tsintsadze T., Shahrokhi A., Eftekhari S., et al. . (2014). Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring. Science 343, 675–679. 10.1126/science.1247190 PubMed DOI

Uvarov P., Ludwig A., Markkanen M., Soini S., Hübner C., Rivera C., et al. . (2009). Coexpression and Heteromerization of two neuronal K-Cl cotransporter isoforms in neonatal brain. J. Biol. Chem. 284, 13696–13704. 10.1074/jbc.M807366200 PubMed DOI PMC

Vanhatalo S., Matias Palva J., Andersson S., Rivera C., Voipio J., Kaila K., et al. . (2005). Slow endogenous activity transients and developmental expression of K +-Cl- cotransporter 2 in the immature human cortex. Eur. J. Neurosci. 22, 2799–2804. 10.1111/j.1460-9568.2005.04459.x PubMed DOI

Wei W., Akerman C., Newey S., Pan J., Clinch N., Jacob Y., et al. . (2011). The potassium-chloride cotransporter 2 promotes cervical cancer cell migration and invasion by an ion transport-independent mechanism. J. Physiol. 589(Pt 22), 5349–5359. 10.1113/jphysiol.2011.214635 PubMed DOI PMC

Xie Y., Chang S., Zhao C., Wang F., Liu S., Wang J., et al. . (2020). Structures and an activation mechanism of human potassium-chloride cotransporters. Sci. Adv. 6:eabc5883. 10.1126/sciadv.abc5883 PubMed DOI PMC

Zhao B., Wong A. Y. C., Murshid A., Bowie D., Presley J. F., Bedford F. K., et al. . (2008). Identification of a novel di-leucine motif mediating K+/Cl– cotransporter KCC2 constitutive endocytosis. Cell. Signal. 20, 1769–1779. 10.1016/j.cellsig.2008.06.011 PubMed DOI

Zuberi S. M., Wirrell E., Yozawitz E., Wilmshurst J. M., Specchio N., Riney K., et al. . (2022). ILAE classification and definition of epilepsy syndromes with onset in neonates and infants: position statement by the ILAE Task Force on Nosology and Definitions. Epilepsia 63, 1349–1397. 10.1111/epi.17239 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...