Ferromagnetic Order in 2D Layers of Transition Metal Dichlorides
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
PID2022-140845OB-C65
Ministerio de Ciencia, Innovación y Universidades
PID2022-140845OB-C61
Ministerio de Ciencia, Innovación y Universidades
PID2022-138750NB-C22
Ministerio de Ciencia, Innovación y Universidades
TED2021-132388B-C43
Ministerio de Ciencia, Innovación y Universidades
TED2021-130292B-C42
Ministerio de Ciencia, Innovación y Universidades
PID2020-114252GB-I00
Ministerio de Ciencia, Innovación y Universidades
PRE2020-093355
Ministerio de Ciencia, Innovación y Universidades
CEX2020-001038-M
Ministerio de Ciencia, Innovación y Universidades
PID2019-107338RB-C61
Ministerio de Ciencia e Innovación
PID2019-107338RB-C63
Ministerio de Ciencia e Innovación
IT1591-22
Eusko Jaurlaritza
I-LINK C20002
Consejo Superior de Investigaciones Científicas
20-13692X
Grantová Agentura České Republiky
LM2023051
Ministerstvo Školství, Mládeže a Tělovýchovy
2023-QUAN-000028-01
Diputación Foral de Gipuzkoa
PubMed
38665115
DOI
10.1002/adma.202402723
Knihovny.cz E-zdroje
- Klíčová slova
- 2D material, XMCD, ferromagnetism, nickelocene, transition metal halides, van der waals material,
- Publikační typ
- časopisecké články MeSH
Magnetism in two dimensions is traditionally considered an exotic phase mediated by spin fluctuations, but far from collinearly ordered in the ground state. Recently, 2D magnetic states have been discovered in layered van der Waals compounds. Their robust and tunable magnetic state by material composition, combined with reduced dimensionality, foresee a strong potential as a key element in magnetic devices. Here, a class of 2D magnets based on metallic chlorides is presented. The magnetic order survives on top of a metallic substrate, even down to the monolayer limit, and can be switched from perpendicular to in-plane by substituting the metal ion from iron to nickel. Using functionalized STM tips as magnetic sensors, local exchange fields are identified, even in the absence of an external magnetic field. Since the compounds are processable by molecular beam epitaxy techniques, they provide a platform with large potential for incorporation into current device technologies.
ALBA Cerdanyola del Vallès Barcelona 08290 Spain
Centro de Física de Materiales CSIC UPV EHU Donostia San Sebastián 20018 Spain
CIC nanoGUNE BRTA Donostia San Sebastián 20018 Spain
Donostia International Physics Center Donostia San Sebastián 20018 Spain
Ikerbasque Basque Foundation for Science Bilbao 48013 Spain
Institute of Physics Czech Academy of Sciences Cukrovarnická 10 Prague 16200 Czech Republic
Paul Scherrer Institut Forschungsstrasse 111 Villigen CH 5232 Switzerland
Zobrazit více v PubMed
M. McGuire, Crystals 2017, 7, 121.
K. Mak, J. Shan, D. Ralph, Nat. Rev. Phys. 2019, 1, 646.
C. Gong, L. Li, H. Li, Z. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q. Qui, R. J. Cava, S. G. Louie, J. Xia, X. Zhang, Nature 2017, 546, 265.
M. Bonilla, S. Kolekar, Y. Ma, H. C. Diaz, V. Kalappattil, R. Das, T. Eggers, H. R. Gutierrez, M.‐H. Phan, M. Batzill, Nat. Nanotechnol. 2018, 13, 289.
B. Huang, G. Clark, E. Navarro‐Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. J. Herrero, X. Xu, Nature 2017, 546, 270.
Z. Zhang, J. Shang, C. Jiang, A. Rasmita, W. Gao, T. Yu, Nano Lett. 2019, 19, 3138.
Q. Song, C. A. Occhialini, E. Ergeçen, B. Ilyas, D. Amoroso, P. Barone, J. Kapeghian, K. Watanabe, T. Taniguchi, A. S. Botana, S. Picozzi, N. Gedik, R. Comin, Nature 2022, 602, 601.
D. Bikaljević, C. González‐Orellana, M. Peña‐Díaz, D. Steiner, J. Dreiser, P. Gargiani, M. Foerster, M. Niño, L. Aballe, S. Ruiz‐Gomez, N. Friedrich, J. Hieulle, L. Jingcheng, M. Ilyn, C. Rogero, J. Pascual, ACS Nano 2021, 15, 14985.
M. Amini, A. O. Fumega, H. González‐Herrero, V. Vaňo, S. Kezilebieke, J. L. Lado, P. Liljeroth 2023, arXiv:2309.11217, arXiv:2309.11217 [cond‐mat].
W. A. Z. P. e. a. Liu, H., Nat. Commun. 2023, 14, 3690.
M. Kan, J. Zhou, Q. Sun, Y. Kawazoe, P. Jena, J. Phys. Chem. Lett. 2013, 4, 3382.
N. Samarth, Nature 2017, 546, 216.
N. D. Mermin, H. Wagner, Phys. Rev. Lett. 1966, 17, 1133.
S. Jenkins, U. Rózsa, L.and Atxitia, R. Evans, K. Novoselov, E. Santos, Nat. Commun. 2022, 13, 6917.
V. V. Kulish, W. Huang, J. Mater. Chem. C 2017, 5, 8734.
A. Bedoya‐Pinto, J.‐R. Ji, A. K. Pandeya, P. Gargiani, M. Valvidares, P. Sessi, J. M. Taylor, F. Radu, K. Chang, S. S. P. Parkin, Science 2021, 374, 616.
X. Zhou, B. Brzostowski, A. Durajski, M. Liu, J. Xiang, T. Jiang, Z. Wang, S. Chen, P. Li, Z. Zhong, A. Drzewiński, M. Jarosik, R. Szcześniak, T. Lai, D. Guo, D. Zhong, J. Phys. Chem. C 2020, 124, 9416.
M. K. Wilkinson, J. W. Cable, E. O. Wollan, W. C. Koehler, Phys. Rev. 1959, 113, 497.
M. E. Lines, Phys. Rev. 1963, 131, 546.
E. Stryjewski, N. Giordano, Adv. Phys. 1977, 26, 487.
N. Krane, C. Lotze, K. J. Franke, Surf. Sci. 2018, 678, 136.
P. Dreher, W. Wan, A. Chikina, M. Bianchi, H. Guo, R. Harsh, S. Mañas‐Valero, E. Coronado, A. J. Martínez‐Galera, P. Hofmann, J. A. Miwa, M. M. Ugeda, ACS Nano 2021, 15, 19430.
M. Dendzik, M. Michiardi, C. Sanders, M. Bianchi, J. A. Miwa, S. S. Grønborg, J. V. Lauritsen, A. Bruix, B. Hammer, P. Hofmann, Phys. Rev. B 2015, 92, 245442.
M. Mushtaq, Y. Zhou, X. Xiang, Phys. Rev. B 2017, 7, 22541.
E. Toruna, H. Sahin, S. Singhb, F. Peeters, Appl. Phys. Lett. 2015, 106, 192404.
A. S. Botana, M. R. Norman, Phys. Rev. Mater. 2019, 3, 044001.
A. S. Botana, M. R. Norman, Phys. Rev. Mater. 2019, 3, 044001.
D. Lu, L. Liu, Y. Ma, K. Yang, H. Wu, J. Mater. Chem. C 2022, 10, 8009.
S. Cai, F. Yang, C. Gao, Nanoscale 2020, 12, 16041.
S. E. Hadjadj, C. González‐Orellana, J. Lawrence, D. Bikaljević, M. Peña‐Díaz, P. Gargiani, L. Aballe, J. Naumann, M. Niño, M. Foerster, S. Ruiz‐Gómez, S. Thakur, I. Kumberg, J. Taylor, J. Hayes, J. Torres, C. Luo, F. Radu, D. G. de Oteyza, W. Kuch, J. I. Pascual, C. Rogero, M. Ilyn, Chem. Mater 2023, 35, 9847.
J. B. Goodenough, Phys. Rev. 1968, 171, 466.
K. Katsumata, H. A. Katori, S. Kimura, Y. Narumi, M. Hagiwara, K. Kindo, Phys. Rev. B 2010, 82, 104402.
G. Serrano, L. Poggini, G. Cucinotta, A. L. Sorrentino, N. Giaconi, B. Cortigiani, D. Longo, E. Otero, P. Sainctavit, A. Caneschi, M. Mannini, R. Sessoli, Nat. Comm. 2022, 13, 2041.
E. Goering, A. Fuss, W. Weber, J. Will, G. Schütz, J. Appl. Phys. 2000, 88, 5920.
M. Ormaza, N. Bachellier, M. N. Faraggi, B. Verlhac, P. Abufager, P. Ohresser, L. Joly, M. Romeo, F. Scheurer, M.‐L. Bocquet, N. Lorente, L. Limot, Nano Lett. 2017, 17, 1877.
G. Czap, P. J. Wagner, F. Xue, L. Gu, J. Li, J. Yao, R. Wu, W. Ho, Science 2019, 364, 670.
C. Wäckerlin, A. Cahlík, J. Goikoetxea, O. Stetsovych, D. Medvedeva, J. Redondo, M. Švec, B. Delley, M. Ondráček, A. Pinar, M. Blanco‐Rey, J. Kolorenč, A. Arnau, P. Jelínek, ACS Nano 2022, 16, 16402.
B. Verlhac, N. Bachellier, L. Garnier, M. Ormaza, P. Abufager, R. Robles, M.‐L. Bocquet, M. Ternes, N. Lorente, L. Limot, Science 2019, 366, 623.
C. Piamonteze, U. Flechsig, S. Rusponi, J. Dreiser, J. Heidler, M. Schmidt, R. Wetter, M. Calvi, T. Schmidt, H. Pruchova, J. Krempasky, C. Quitmann, H. Brune, F. Nolting, J. Synchrotron Radiat. 2012, 19, 661.