Strong In-plane Magnetic Anisotropy in Semiconducting Monolayer CoCl2
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40447557
PubMed Central
PMC12164524
DOI
10.1021/acsnano.5c02175
Knihovny.cz E-zdroje
- Klíčová slova
- 2D ferromagnetic materials, in-plane magnetism, magnetic thin films, monolayer CoCl2, transition-metal dihalides, van der Waals semiconductors,
- Publikační typ
- časopisecké články MeSH
Transition-metal dihalides (TMDH) are emerging as a highly promising class of 2D magnetic materials due to their simplicity, stability, and compatibility with nanofabrication techniques. In this work, we explore the structural, electronic, and magnetic properties of monolayer CoCl2 grown epitaxially on Au(111) using a multitechnique approach. Our results reveal that epitaxial CoCl2 exhibits ferromagnetic order below 24 K with strong in-plane magnetic anisotropy, setting it apart from other TMDH materials. Additionally, we identify in-gap states arising from the CoCl2-Au(111) interface, which provide insights into its electronic behavior. These findings position CoCl2 as a versatile 2D material for spintronic applications and nanoscale devices, bridging the gap between fundamental research and real-world technological solutions.
Centro de Física de Materiales 20018 Donostia San Sebastián Spain
CIC nanoGUNE BRTA 20018 Donostia San Sebastian Spain
Departamento de Física de la Materia Condensada Universidad de Zaragoza E 50009 Zaragoza Spain
Instituto de Nanociencia y Materiales de Aragón CSIC Universidad de Zaragoza 50009 Zaragoza Spain
Laboratorio de Microscopias Avanzadas Universidad de Zaragoza E 50018 Zaragoza Spain
Zobrazit více v PubMed
Sethulakshmi N., Mishra A., Ajayan P., Kawazoe Y., Roy A. K., Singh A. K., Tiwary C. S.. Magnetism in two-dimensional materials beyond graphene. Mater. Today. 2019;27:107–122. doi: 10.1016/j.mattod.2019.03.015. DOI
Khan K., Tareen A. K., Aslam M., Zhang Y., Wang R., Ouyang Z., Gou Z., Zhang H.. Recent advances in two-dimensional materials and their nanocomposites in sustainable energy conversion applications. Nanoscale. 2019;11:21622–21678. doi: 10.1039/C9NR05919A. PubMed DOI
Radisavljevic B., Radenovic A., Brivio J., Giacometti V., Kis A.. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011;6:147–150. doi: 10.1038/nnano.2010.279. PubMed DOI
Huang B., Clark G., Navarro-Moratalla E., Klein D. R., Cheng R., Seyler K. L., Zhong D., Schmidgall E., McGuire M. A., Cobden D. H., Yao W., Xiao D., Jarillo-Herrero P., Xu X.. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature. 2017;546:270–273. doi: 10.1038/nature22391. PubMed DOI
Li H., Ruan S., Zeng Y.. Intrinsic Van Der Waals Magnetic Materials from Bulk to the 2D Limit: New Frontiers of Spintronics. Adv. Mater. 2019;31:1900065. doi: 10.1002/adma.201900065. PubMed DOI
Liu Y., Weiss N. O., Duan X., Cheng H.-C., Huang Y., Duan X.. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016;1:16042. doi: 10.1038/natrevmats.2016.42. DOI
Sulpizio J. A., Ilani S., Irvin P., Levy J.. Nanoscale Phenomena in Oxide Heterostructures. Annu. Rev. Mater. Res. 2014;44:117–149. doi: 10.1146/annurev-matsci-070813-113437. DOI
Novoselov K. S., Mishchenko A., Carvalho A., Castro Neto A. H.. 2D materials and van der Waals heterostructures. Science. 2016;353:eaac9439. doi: 10.1126/science.aac9439. PubMed DOI
Hou Y., Kim J., Wu R.. Magnetizing topological surface states of Bi2Se3 with a CrI3 monolayer. Sci. Adv. 2019;5:eaaw1874. doi: 10.1126/sciadv.aaw1874. PubMed DOI PMC
McGuire M.. Crystal and Magnetic Structures in Layered, Transition Metal Dihalides and Trihalides. Crystals. 2017;7:121. doi: 10.3390/cryst7050121. DOI
Nguyen T. P. T., Yamauchi K.. Goodenough–Kanamori–Anderson Rules in 2D Magnet: A Chemical Trend in M Cl2 with M = V, Mn, and Ni. J. Phys. Soc. Jpn. 2024;93:034710. doi: 10.7566/JPSJ.93.034710. DOI
Wu D., Han X., Wu C., Song Y., Li J., Wan Y., Wu X., Tian X.. Two-Dimensional Transition Metal Boron Cluster Compounds (MBnenes) with Strain-Independent Room-Temperature Magnetism. J. Phys. Chem. Lett. 2024;15:1070–1078. doi: 10.1021/acs.jpclett.3c02786. PubMed DOI
Wu D., Zhuo Z., Lv H., Wu X.. Two-Dimensional Cr2X3S3 (X = Br, I) Janus Semiconductor with Intrinsic Room-Temperature Magnetism. J. Phys. Chem. Lett. 2021;12:2905–2911. doi: 10.1021/acs.jpclett.1c00454. PubMed DOI
Gibertini M., Koperski M., Morpurgo A. F., Novoselov K. S.. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 2019;14:408–419. doi: 10.1038/s41565-019-0438-6. PubMed DOI
Gong C., Li L., Li Z., Ji H., Stern A., Xia Y., Cao T., Bao W., Wang C., Wang Y., Qiu Z. Q., Cava R. J., Louie S. G., Xia J., Zhang X.. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature. 2017;546:265–269. doi: 10.1038/nature22060. PubMed DOI
Hadjadj S. E., González-Orellana C., Lawrence J.. et al. Epitaxial Monolayers of the Magnetic 2D Semiconductor FeBr2 Grown on Au(111) Chem. Mater. 2023;35:9847–9856. doi: 10.1021/acs.chemmater.3c00978. DOI
Bikaljević D., González-Orellana C., Peña-Díaz M.. et al. Noncollinear Magnetic Order in Two-Dimensional NiBr2 Films Grown on Au(111) ACS Nano. 2021;15:14985–14995. doi: 10.1021/acsnano.1c05221. PubMed DOI PMC
Cai S., Yang F., Gao C.. FeCl2 monolayer on HOPG: art of growth and momentum filtering effect. Nanoscale. 2020;12:16041–16045. doi: 10.1039/D0NR03128C. PubMed DOI
Aguirre A., Pinar Solé A., Soler Polo D.. et al. Ferromagnetic Order in 2D Layers of Transition Metal Dichlorides. Adv. Mater. 2024;36:2402723. doi: 10.1002/adma.202402723. PubMed DOI
Wang Q. H., Kalantar-Zadeh K., Kis A., Coleman J. N., Strano M. S.. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012;7:699–712. doi: 10.1038/nnano.2012.193. PubMed DOI
Wang Q. H., Bedoya-Pinto A., Blei M.. et al. The Magnetic Genome of Two-Dimensional van der Waals Materials. ACS Nano. 2022;16:6960–7079. doi: 10.1021/acsnano.1c09150. PubMed DOI PMC
Xue Y., Liu H., Zhang Y., Lin S., Lau S. P.. van der Waals epitaxial growth and high-temperature ferrimagnetism in ultrathin crystalline magnetite (Fe3O4) nanosheets. J. Mater. Chem. C. 2022;10:7058–7065. doi: 10.1039/D2TC01007K. DOI
Park J.-H., Kapur P., Saraswat K. C., Peng H.. A very low temperature single crystal germanium growth process on insulating substrate using Ni-induced lateral crystallization for three-dimensional integrated circuits. Appl. Phys. Lett. 2007;91:143107. doi: 10.1063/1.2793183. DOI
Wang M.-C., Chang C.-R.. Goodenough-Kanamori-Anderson Rules in CrI3/MoTe2/CrI3 Van der Waals Heterostructure. J. Electrochem. Soc. 2022;169:053507. doi: 10.1149/1945-7111/ac7006. DOI
Barreda-Argüeso J. A., Nataf L., Aguado F., Hernández I., González J., Otero-de-la Roza A., Luaña V., Jia Y., Jin C., Kim B., Kim K., Min B. I., Heribert W., Jephcoat A. P., Rodríguez F.. Pressure-induced spin transition and site-selective metallization in CoCl2 . Sci. Rep. 2019;9:5448. doi: 10.1038/s41598-019-41337-4. PubMed DOI PMC
Zhang L., Dong J., Ding F.. Strategies, Status, and Challenges in Wafer Scale Single Crystalline Two-Dimensional Materials Synthesis. Chem. Rev. 2021;121:6321–6372. doi: 10.1021/acs.chemrev.0c01191. PubMed DOI
Hernández-Rodríguez I., García J. M., Martín-Gago J. A., de Andrés P. L., Méndez J.. Graphene growth on Pt(111) and Au(111) using a MBE carbon solid-source. Diamond Relat. Mater. 2015;57:58–62. doi: 10.1016/j.diamond.2015.03.004. DOI
Materials Project 2024. http://www.materialsproject.org.
Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data; Moulder, J. F. ; Chastain, J. , Eds.; Perkin-Elmer Corporation, 1992.
Torun E., Sahin H., Singh S. K., Peeters F. M.. Stable half-metallic monolayers of FeCl2 . Appl. Phys. Lett. 2015;106:192404. doi: 10.1063/1.4921096. DOI
Botana A. S., Norman M. R.. Electronic structure and magnetism of transition metal dihalides: Bulk to monolayer. Phys. Rev. Mater. 2019;3:044001. doi: 10.1103/PhysRevMaterials.3.044001. DOI
Liu H., Wang A., Zhang P., Ma C., Chen C., Liu Z., Zhang Y.-Q., Feng B., Cheng P., Zhao J., Chen L., Wu K.. Atomic-scale manipulation of single-polaron in a two-dimensional semiconductor. Nat. Commun. 2023;14:3690. doi: 10.1038/s41467-023-39361-0. PubMed DOI PMC
Prayitno T. B., Budi E., Fahdiran R.. Influence of LDA+U on band dispersion in monolayer MCl2 (M: Fe, Co) J. Phys.: Conf. Ser. 2021;2019:012074. doi: 10.1088/1742-6596/2019/1/012074. DOI
Schouteden K., Lievens P., Van Haesendonck C.. Fourier-transform scanning tunneling microscopy investigation of the energy versus wave vector dispersion of electrons at the Au(111) surface. Phys. Rev. B. 2009;79:195409. doi: 10.1103/PhysRevB.79.195409. DOI
Hasegawa Y., Avouris P.. Direct observation of standing wave formation at surface steps using scanning tunneling spectroscopy. Phys. Rev. Lett. 1993;71:1071–1074. doi: 10.1103/PhysRevLett.71.1071. PubMed DOI
Skomski, R. ; Manchanda, P. ; Kashyap, A. . Handbook of Magnetism and Magnetic Materials; Coey, J. M. D. ; Parkin, S. S. , Eds.; Springer International Publishing: Cham, 2021; pp 103–185.
McGuire M. A., Dixit H., Cooper V. R., Sales B. C.. Coupling of Crystal Structure and Magnetism in the Layered, Ferromagnetic Insulator CrI3. Chem. Mater. 2015;27:612–620. doi: 10.1021/cm504242t. DOI
Hansen W. N.. Some Magnetic Properties of the Chromium (III) Halides at 4.2 K. J. Appl. Phys. 1959;30:S304–S305. doi: 10.1063/1.2185944. DOI
Lin G. T., Zhuang H. L., Luo X., Liu B. J., Chen F. C., Yan J., Sun Y., Zhou J., Lu W. J., Tong P., Sheng Z. G., Qu Z., Song W. H., Zhu X. B., Sun Y. P.. Tricritical behavior of the two-dimensional intrinsically ferromagnetic semiconductor CrGeTe 3. Phys. Rev. B. 2017;95:245212. doi: 10.1103/PhysRevB.95.245212. DOI
Atkins, P. Shriver and Atkins’ Inorganic Chemistry; OUP: Oxford, 2010; pp 473–487.
Dodecon 4x OMBE Source 2024. https://dodecon.de/4xOMBE.html.
Sigma-Aldrich . Cobalt(II) Chloride 2024. https://www.sigmaaldrich.com/ES/es/product/aldrich/449776.
Ohresser P., Otero E., Choueikani F., Stanescu S., Deschamps F., Ibis L., Moreno T., Polack F., Lagarde B., Marteau F., Scheurer F., Joly L., Kappler J.-P., Muller B., Sainctavit P.. Polarization characterization on the DEIMOS beamline using dichroism measurements. J. Phys.: Conf. Ser. 2013;425:212007. doi: 10.1088/1742-6596/425/21/212007. DOI
Ohresser P., Otero E., Choueikani F.. et al. DEIMOS: A beamline dedicated to dichroism measurements in the 350–2500 eV energy range. Rev. Sci. Instrum. 2014;85:013106. doi: 10.1063/1.4861191. PubMed DOI
Baek S.-J., Park A., Ahn Y.-J., Choo J.. Baseline correction using asymmetrically reweighted penalized least squares smoothing. Analyst. 2015;140:250–257. doi: 10.1039/C4AN01061B. PubMed DOI
Torbrügge S., Schaff O., Rychen J.. Application of the KolibriSensor to combined atomic-resolution scanning tunneling microscopy and noncontact atomic-force microscopy imaging. J. Vac. Sci. Technol. B. 2010;28:C4E12–C4E20. doi: 10.1116/1.3430544. DOI