MicroRNA molecules as predictive biomarkers of adaptive responses to strength training and physical inactivity in haemodialysis patients

. 2020 Sep 24 ; 10 (1) : 15597. [epub] 20200924

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32973233
Odkazy

PubMed 32973233
PubMed Central PMC7519115
DOI 10.1038/s41598-020-72542-1
PII: 10.1038/s41598-020-72542-1
Knihovny.cz E-zdroje

The miRNA-206 and miRNA-23a play an important role in muscle tissue hypertrophy, regeneration and atrophy. Both of these miRNAs have been highlighted as promising adaptation predictors; however, the available evidence on associations is inconclusive. Therefore, our aim was to assess the expression levels of these two miRNAs as predictors of change in muscle function during strength training and physical inactivity among dialysed patients. For this purpose, 46 haemodialysis patients were monitored for 12-weeks of either intradialytic strength training (EXG, n = 20) or physical inactivity during dialysis (CON, n = 26). In both groups of patients, we assessed the baseline expression levels of miRNA-23a and miRNA-206 and the isometric force generated during hip flexion (HF) contraction before and after the 12-week period. Among the EXG group, the expression of miRNA-206 predicted the change in HF (R2 = 0.63, p = 0.0005) much more strongly than the expression of miRNA-23a (R2 = 0.21, p = 0.027). Interestingly, baseline miRNA-23a (R2 = 0.30, p = 0.006) predicted the change in HF much more than miRNA-206 (p = ns) among the CON group. Our study indicates that the baseline expression of miRNA-206 could predict the response to strength training, while miRNA-23a could serve as a potential predictive marker of functional changes during physical inactivity in dialysis patients.

Zobrazit více v PubMed

Giglio J, et al. Association of sarcopenia with nutritional parameters, quality of life, hospitalization, and mortality rates of elderly patients on hemodialysis. J. Ren. Nutr. 2018;28:197–207. doi: 10.1053/j.jrn.2017.12.003. PubMed DOI

Matsuzawa R, et al. Relationship between lower extremity muscle strength and all-cause mortality in Japanese patients undergoing dialysis. Phys. Ther. 2014;94:947–956. doi: 10.2522/ptj.20130270. PubMed DOI

Oller GA, et al. Functional independence in patients with chronic kidney disease being treated with haemodialysis. Rev. Lat. Am. Enfermagem. 2012;20:1033–1040. doi: 10.1590/s0104-11692012000600004. PubMed DOI

Wang AY, et al. Muscle strength, mobility, quality of life and falls in patients on maintenance haemodialysis: a prospective study. Nephrology (Carlton) 2017;22:220–227. doi: 10.1111/nep.12749. PubMed DOI

Vogt BP, Borges MCC, Goés CR, Caramori JCT. Handgrip strength is an independent predictor of all-cause mortality in maintenance dialysis patients. Clin. Nutr. 2016;35:1429–1433. doi: 10.1016/j.clnu.2016.03.020. PubMed DOI

Johansen KL, et al. Muscle atrophy in patients receiving hemodialysis: effects on muscle strength, muscle quality, and physical function. Kidney Int. 2003;63:291–297. doi: 10.1046/j.1523-1755.2003.00704.x. PubMed DOI

John SG, Sigrist MK, Taal MW, McIntyre CW. Natural history of skeletal muscle mass changes in chronic kidney disease stage 4 and 5 patients: an observational study. PLoS ONE. 2013;8:e65372. doi: 10.1371/journal.pone.0065372. PubMed DOI PMC

Molsted, S., Bjørkman, A. S. D. & Lundstrøm, L. H. Effects of strength training to patients undergoing dialysis: a systematic review. Dan Med J.66, A5526, PMID: 30573007 (2019). PubMed

Valenzuela PL, et al. Intradialytic exercise: one size doesn't fit all. Front. Physiol. 2018;9:844. doi: 10.3389/fphys.2018.00844. PubMed DOI PMC

Fang HY, Burrows BT, King AC, Wilund KR. A Comparison of intradialytic versus out-of-clinic exercise training programs for hemodialysis patients. Blood Purif. 2019;18:1–7. doi: 10.1159/000503772. PubMed DOI

Valadi H, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007;9:654–659. doi: 10.1038/ncb1596. PubMed DOI

Sohel MH. Extracellular/Circulating MicroRNAs: Release mechanisms, functions and challenges. Achiev. Life Sci. 2016;10:175–186. doi: 10.1016/j.als.2016.11.007. DOI

Horak M, Novak J, Bienertova-Vasku J. Muscle-specific microRNAs in skeletal muscle development. Dev. Biol. 2016;410:1–13. doi: 10.1016/j.ydbio.2015.12.013. PubMed DOI

Wang J, et al. Effects of microRNAs on skeletal muscle development. Gene. 2018;20:107–113. doi: 10.1016/j.gene.2018.05.039. PubMed DOI

Novak J, Vinklarek J, Bienertova-Vasku J, Slaby O. MicroRNAs involved in skeletal muscle development and their roles in rhabdomyosarcoma pathogenesis. Pediatr. Blood Cancer. 2013;60:1739–1746. doi: 10.1002/pbc.24664. PubMed DOI

Aoi W, Sakuma K. Does regulation of skeletal muscle function involve circulating microRNAs? Front. Physiol. 2014;17:39. doi: 10.3389/fphys.2014.00039. PubMed DOI PMC

Siracusa J, Koulmann N, Banzet S. Circulating myomiRs: a new class of biomarkers to monitor skeletal muscle in physiology and medicine. J. Cachexia. Sarcopenia Muscle. 2018;9:20–27. doi: 10.1002/jcsm.12227. PubMed DOI PMC

Cui S, et al. Time-course responses of circulating microRNAs to three resistance training protocols in healthy young men. Sci. Rep. 2017;7:2203. doi: 10.1038/s41598-017-02294-y. PubMed DOI PMC

Johnson AN, Mokalled MH, Valera JM, Poss KD, Olson EN. Post-transcriptional regulation of myotube elongation and myogenesis by Hoi Polloi. Development. 2013;140:3645–3656. doi: 10.1242/dev.095596. PubMed DOI PMC

Liu N, et al. MicroRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice. J. Clin. Invest. 2012;122:2054–2065. doi: 10.1172/JCI62656. PubMed DOI PMC

Allen DL, et al. Effects of spaceflight on murine skeletal muscle gene expression. J. Appl. Physiol. 2009;106:582–595. doi: 10.1152/japplphysiol.90780.2008. PubMed DOI PMC

Novak J, Kruzliak P, Bienertova-Vasku J, Slaby O, Novak M. MicroRNA-206: a promising theranostic marker. Theranostics. 2014;4:119–133. doi: 10.7150/thno.7552. PubMed DOI PMC

Wang XH, Mitch WE. Mechanisms of muscle wasting in chronic kidney disease. Nat. Rev. Nephrol. 2014;10:504–516. doi: 10.1038/nrneph.2014.112. PubMed DOI PMC

Zhang B, et al. MicroRNA-23a curbs necrosis during early T cell activation by enforcing intracellular reactive oxygen species equilibrium. Immunity. 2016;44:568–581. doi: 10.1016/j.immuni.2016.01.007. PubMed DOI PMC

Russell AP, et al. Disruption of skeletal muscle mitochondrial network genes and miRNAs in amyotrophic lateral sclerosis. Neurobiol. Dis. 2013;49:107–117. doi: 10.1016/j.nbd.2012.08.015. PubMed DOI

Mak RH, Cheung WW. MicroRNA as novel exercise mimetic for muscle wasting in CKD. J. Am. Soc. Nephrol. 2017;28:2557–2559. doi: 10.1681/ASN.2017060631. PubMed DOI PMC

Ortiz A, Sanchez-Nino MD. Sarcopenia in CKD: a roadmap from basic pathogenetic mechanisms to clinical trials. Clin. Kidney J. 2019;12:110–112. doi: 10.1093/ckj/sfz001. PubMed DOI PMC

Dahlmans D, et al. Evaluation of muscle microRNA expression in relation to human peripheral insulin sensitivity: a cross-sectional study in metabolically distinct subject groups. Front. Physiol. 2017;8:711. doi: 10.3389/fphys.2017.00711. PubMed DOI PMC

Yan B, Zhu CD, Guo JT, Zhao LH, Zhao JL. miR-206 regulates the growth of the teleost tilapia (Oreochromis niloticus) through the modulation of IGF-1 gene expression. J. Exp. Biol. 2013;216:1265–1269. doi: 10.1242/jeb.079590. PubMed DOI

Chen JF, et al. microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J. Cell. Biol. 2010;190:867–879. doi: 10.1083/jcb.200911036. PubMed DOI PMC

Dey BK, Gagan J, Dutta A. miR-206 and -486 induce myoblast differentiation by down-regulating Pax7. Mol. Cell Biol. 2011;31:203–214. doi: 10.1128/MCB.01009-10. PubMed DOI PMC

Goljanek-Whysall K, et al. MicroRNA regulation of the paired-box transcription factor Pax3 confers robustness to developmental timing of myogenesis. Proc. Natl. Acad. Sci. U. S. A. 2011;108:11936–11941. doi: 10.1073/pnas.1105362108. PubMed DOI PMC

Hirai H, et al. MyoD regulates apoptosis of myoblasts through microRNA-mediated down-regulation of Pax3. J. Cell. Biol. 2010;191:347–365. doi: 10.1083/jcb.201006025. PubMed DOI PMC

Wada S, et al. Translational suppression of atrophic regulators by microRNA-23a integrates resistance to skeletal muscle atrophy. J. Biol. Chem. 2011;286:38456–38465. doi: 10.1074/jbc.M111.271270. PubMed DOI PMC

Lin Z, et al. miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. Proc. Natl. Acad. Sci. U. S. A. 2009;106:12103–12108. doi: 10.1073/pnas.0811371106. PubMed DOI PMC

Hudson MB, et al. miR-23a is decreased during muscle atrophy by a mechanism that includes calcineurin signaling and exosome-mediated export. Am. J. Physiol. Cell Physiol. 2014;306:C551–C558. doi: 10.1152/ajpcell.00266.2013. PubMed DOI PMC

Bodine SC, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001;294:1704–1708. doi: 10.1126/science.1065874. PubMed DOI

Eddins MJ, et al. Targeting the ubiquitin E3 ligase MuRF1 to inhibit muscle atrophy. Cell Biochem. Biophys. 2011;60:113–118. doi: 10.1007/s12013-011-9175-7. PubMed DOI

Clavel S, et al. Atrophy-related ubiquitin ligases, atrogin-1 and MuRF1 are up-regulated in aged rat Tibialis Anterior muscle. Mech. Ageing Dev. 2006;127:794–801. doi: 10.1016/j.mad.2006.07.005. PubMed DOI

Wang B, et al. microRNA-23a and microRNA-27a mimic exercise by ameliorating CKD-induced muscle atrophy. J. Am. Soc. Nephrol. 2017;28:2631–2640. doi: 10.1681/ASN.2016111213. PubMed DOI PMC

Margolis LM, Lessard SJ, Ezzyat Y, Fielding RA, Rivas DA. Circulating microRNA are predictive of aging and acute adaptive response to resistance exercise in men. J. Gerontol. A Biol. Sci. Med. Sci. 2017;72:1319–1326. doi: 10.1093/gerona/glw243. PubMed DOI PMC

Zelko A, et al. The effects of intradialytic resistance training on muscle strength, psychological well-being, clinical outcomes and circulatory micro-ribonucleic acid profiles in haemodialysis patients: Protocol for a quasi-experimental study. Medicine (Baltimore) 2019;98:e15570. doi: 10.1097/MD.0000000000015570. PubMed DOI PMC

Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J. Chronic Dis. 1987;40:373–383. doi: 10.1016/0021-9681(87)90171-8. PubMed DOI

Borg GA. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982;14:377–381. PubMed

Roberts TC, Coenen-Stass AM, Wood MJ. Assessment of RT-qPCR normalization strategies for accurate quantification of extracellular microRNAs in murine serum. PLoS ONE. 2014;9:e89237. doi: 10.1371/journal.pone.0089237. PubMed DOI PMC

Farina NH, et al. Standardizing analysis of circulating microRNA: clinical and biological relevance. J. Cell. Biochem. 2014;115:805–811. doi: 10.1002/jcb.24745. PubMed DOI PMC

Gevaert AB, et al. MicroRNA profiling in plasma samples using qPCR arrays: recommendations for correct analysis and interpretation. PLoS ONE. 2018;13:e0193173. doi: 10.1371/journal.pone.0193173. PubMed DOI PMC

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Arocho A, Chen B, Ladanyi M, Pan Q. Validation of the 2-DeltaDeltaCt calculation as an alternate method of data analysis for quantitative PCR of BCR-ABL P210 transcripts. Diagn. Mol. Pathol. 2006;15:56–61. doi: 10.1097/00019606-200603000-00009. PubMed DOI

Armstrong T, Bull F. Development of the World Health Organization Global Physical Activity Questionnaire (GPAQ) J. Public Health. 2006;14:66–70. doi: 10.1007/s10389-006-0024-x. DOI

Thivel D, et al. Physical activity, inactivity, and sedentary behaviors: definitions and implications in occupational health. Front. Public Health. 2018;6:288. doi: 10.3389/fpubh.2018.00288. PubMed DOI PMC

WHO. Global recommendations on physical activity for health. Geneva: World Health Organization. 2010. https://www.who.int/dietphysicalactivity/global-PA-recs-2010.pdf. PubMed

Cheema B, et al. Progressive exercise for anabolism in kidney disease (PEAK): a randomized, controlled trial of resistance training during hemodialysis. J. Am. Soc. Nephrol. 2007;18:1594–1601. doi: 10.1681/ASN.2006121329. PubMed DOI

Kirkman DL, et al. Anabolic exercise in haemodialysis patients: a randomised controlled pilot study. J. Cachexia Sarcopenia Muscle. 2014;5:199–207. doi: 10.1007/s13539-014-0140-3. PubMed DOI PMC

Molsted S, Harrison AP, Eidemak I, Andersen JL. The effects of high-load strength training with protein- or nonprotein-containing nutritional supplementation in patients undergoing dialysis. J. Ren. Nutr. 2013;23:132–140. doi: 10.1053/j.jrn.2012.06.007. PubMed DOI

IBM Corp., IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp. Released 2013.

Duan Y, et al. Prediction of key genes and miRNAs responsible for loss of muscle force in patients during an acute exacerbation of chronic obstructive pulmonary disease. Int. J. Mol. Med. 2016;38:1450–1462. doi: 10.3892/ijmm.2016.2761. PubMed DOI PMC

Zelko A, et al. The effects of an intradialytic resistance training on lower extremity muscle functions. Disabil. Rehabil. 2020;24:1–7. doi: 10.1080/09638288.2020.1766581. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...