MicroRNA molecules as predictive biomarkers of adaptive responses to strength training and physical inactivity in haemodialysis patients
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32973233
PubMed Central
PMC7519115
DOI
10.1038/s41598-020-72542-1
PII: 10.1038/s41598-020-72542-1
Knihovny.cz E-zdroje
- MeSH
- biologické markery analýza MeSH
- dialýza ledvin metody MeSH
- fyziologická adaptace MeSH
- kondiční příprava zvířat * MeSH
- kosterní svaly metabolismus patofyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikro RNA analýza genetika MeSH
- odporový trénink * MeSH
- sedavý životní styl * MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
- mikro RNA MeSH
The miRNA-206 and miRNA-23a play an important role in muscle tissue hypertrophy, regeneration and atrophy. Both of these miRNAs have been highlighted as promising adaptation predictors; however, the available evidence on associations is inconclusive. Therefore, our aim was to assess the expression levels of these two miRNAs as predictors of change in muscle function during strength training and physical inactivity among dialysed patients. For this purpose, 46 haemodialysis patients were monitored for 12-weeks of either intradialytic strength training (EXG, n = 20) or physical inactivity during dialysis (CON, n = 26). In both groups of patients, we assessed the baseline expression levels of miRNA-23a and miRNA-206 and the isometric force generated during hip flexion (HF) contraction before and after the 12-week period. Among the EXG group, the expression of miRNA-206 predicted the change in HF (R2 = 0.63, p = 0.0005) much more strongly than the expression of miRNA-23a (R2 = 0.21, p = 0.027). Interestingly, baseline miRNA-23a (R2 = 0.30, p = 0.006) predicted the change in HF much more than miRNA-206 (p = ns) among the CON group. Our study indicates that the baseline expression of miRNA-206 could predict the response to strength training, while miRNA-23a could serve as a potential predictive marker of functional changes during physical inactivity in dialysis patients.
Clinic of Vascular Surgery East Slovak Institute of Cardiovascular Diseases Kosice 040 11 Slovakia
Fresenius Medical Care Dialysis Services Kosice Kosice 040 11 Slovakia
Zobrazit více v PubMed
Giglio J, et al. Association of sarcopenia with nutritional parameters, quality of life, hospitalization, and mortality rates of elderly patients on hemodialysis. J. Ren. Nutr. 2018;28:197–207. doi: 10.1053/j.jrn.2017.12.003. PubMed DOI
Matsuzawa R, et al. Relationship between lower extremity muscle strength and all-cause mortality in Japanese patients undergoing dialysis. Phys. Ther. 2014;94:947–956. doi: 10.2522/ptj.20130270. PubMed DOI
Oller GA, et al. Functional independence in patients with chronic kidney disease being treated with haemodialysis. Rev. Lat. Am. Enfermagem. 2012;20:1033–1040. doi: 10.1590/s0104-11692012000600004. PubMed DOI
Wang AY, et al. Muscle strength, mobility, quality of life and falls in patients on maintenance haemodialysis: a prospective study. Nephrology (Carlton) 2017;22:220–227. doi: 10.1111/nep.12749. PubMed DOI
Vogt BP, Borges MCC, Goés CR, Caramori JCT. Handgrip strength is an independent predictor of all-cause mortality in maintenance dialysis patients. Clin. Nutr. 2016;35:1429–1433. doi: 10.1016/j.clnu.2016.03.020. PubMed DOI
Johansen KL, et al. Muscle atrophy in patients receiving hemodialysis: effects on muscle strength, muscle quality, and physical function. Kidney Int. 2003;63:291–297. doi: 10.1046/j.1523-1755.2003.00704.x. PubMed DOI
John SG, Sigrist MK, Taal MW, McIntyre CW. Natural history of skeletal muscle mass changes in chronic kidney disease stage 4 and 5 patients: an observational study. PLoS ONE. 2013;8:e65372. doi: 10.1371/journal.pone.0065372. PubMed DOI PMC
Molsted, S., Bjørkman, A. S. D. & Lundstrøm, L. H. Effects of strength training to patients undergoing dialysis: a systematic review. Dan Med J.66, A5526, PMID: 30573007 (2019). PubMed
Valenzuela PL, et al. Intradialytic exercise: one size doesn't fit all. Front. Physiol. 2018;9:844. doi: 10.3389/fphys.2018.00844. PubMed DOI PMC
Fang HY, Burrows BT, King AC, Wilund KR. A Comparison of intradialytic versus out-of-clinic exercise training programs for hemodialysis patients. Blood Purif. 2019;18:1–7. doi: 10.1159/000503772. PubMed DOI
Valadi H, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007;9:654–659. doi: 10.1038/ncb1596. PubMed DOI
Sohel MH. Extracellular/Circulating MicroRNAs: Release mechanisms, functions and challenges. Achiev. Life Sci. 2016;10:175–186. doi: 10.1016/j.als.2016.11.007. DOI
Horak M, Novak J, Bienertova-Vasku J. Muscle-specific microRNAs in skeletal muscle development. Dev. Biol. 2016;410:1–13. doi: 10.1016/j.ydbio.2015.12.013. PubMed DOI
Wang J, et al. Effects of microRNAs on skeletal muscle development. Gene. 2018;20:107–113. doi: 10.1016/j.gene.2018.05.039. PubMed DOI
Novak J, Vinklarek J, Bienertova-Vasku J, Slaby O. MicroRNAs involved in skeletal muscle development and their roles in rhabdomyosarcoma pathogenesis. Pediatr. Blood Cancer. 2013;60:1739–1746. doi: 10.1002/pbc.24664. PubMed DOI
Aoi W, Sakuma K. Does regulation of skeletal muscle function involve circulating microRNAs? Front. Physiol. 2014;17:39. doi: 10.3389/fphys.2014.00039. PubMed DOI PMC
Siracusa J, Koulmann N, Banzet S. Circulating myomiRs: a new class of biomarkers to monitor skeletal muscle in physiology and medicine. J. Cachexia. Sarcopenia Muscle. 2018;9:20–27. doi: 10.1002/jcsm.12227. PubMed DOI PMC
Cui S, et al. Time-course responses of circulating microRNAs to three resistance training protocols in healthy young men. Sci. Rep. 2017;7:2203. doi: 10.1038/s41598-017-02294-y. PubMed DOI PMC
Johnson AN, Mokalled MH, Valera JM, Poss KD, Olson EN. Post-transcriptional regulation of myotube elongation and myogenesis by Hoi Polloi. Development. 2013;140:3645–3656. doi: 10.1242/dev.095596. PubMed DOI PMC
Liu N, et al. MicroRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice. J. Clin. Invest. 2012;122:2054–2065. doi: 10.1172/JCI62656. PubMed DOI PMC
Allen DL, et al. Effects of spaceflight on murine skeletal muscle gene expression. J. Appl. Physiol. 2009;106:582–595. doi: 10.1152/japplphysiol.90780.2008. PubMed DOI PMC
Novak J, Kruzliak P, Bienertova-Vasku J, Slaby O, Novak M. MicroRNA-206: a promising theranostic marker. Theranostics. 2014;4:119–133. doi: 10.7150/thno.7552. PubMed DOI PMC
Wang XH, Mitch WE. Mechanisms of muscle wasting in chronic kidney disease. Nat. Rev. Nephrol. 2014;10:504–516. doi: 10.1038/nrneph.2014.112. PubMed DOI PMC
Zhang B, et al. MicroRNA-23a curbs necrosis during early T cell activation by enforcing intracellular reactive oxygen species equilibrium. Immunity. 2016;44:568–581. doi: 10.1016/j.immuni.2016.01.007. PubMed DOI PMC
Russell AP, et al. Disruption of skeletal muscle mitochondrial network genes and miRNAs in amyotrophic lateral sclerosis. Neurobiol. Dis. 2013;49:107–117. doi: 10.1016/j.nbd.2012.08.015. PubMed DOI
Mak RH, Cheung WW. MicroRNA as novel exercise mimetic for muscle wasting in CKD. J. Am. Soc. Nephrol. 2017;28:2557–2559. doi: 10.1681/ASN.2017060631. PubMed DOI PMC
Ortiz A, Sanchez-Nino MD. Sarcopenia in CKD: a roadmap from basic pathogenetic mechanisms to clinical trials. Clin. Kidney J. 2019;12:110–112. doi: 10.1093/ckj/sfz001. PubMed DOI PMC
Dahlmans D, et al. Evaluation of muscle microRNA expression in relation to human peripheral insulin sensitivity: a cross-sectional study in metabolically distinct subject groups. Front. Physiol. 2017;8:711. doi: 10.3389/fphys.2017.00711. PubMed DOI PMC
Yan B, Zhu CD, Guo JT, Zhao LH, Zhao JL. miR-206 regulates the growth of the teleost tilapia (Oreochromis niloticus) through the modulation of IGF-1 gene expression. J. Exp. Biol. 2013;216:1265–1269. doi: 10.1242/jeb.079590. PubMed DOI
Chen JF, et al. microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J. Cell. Biol. 2010;190:867–879. doi: 10.1083/jcb.200911036. PubMed DOI PMC
Dey BK, Gagan J, Dutta A. miR-206 and -486 induce myoblast differentiation by down-regulating Pax7. Mol. Cell Biol. 2011;31:203–214. doi: 10.1128/MCB.01009-10. PubMed DOI PMC
Goljanek-Whysall K, et al. MicroRNA regulation of the paired-box transcription factor Pax3 confers robustness to developmental timing of myogenesis. Proc. Natl. Acad. Sci. U. S. A. 2011;108:11936–11941. doi: 10.1073/pnas.1105362108. PubMed DOI PMC
Hirai H, et al. MyoD regulates apoptosis of myoblasts through microRNA-mediated down-regulation of Pax3. J. Cell. Biol. 2010;191:347–365. doi: 10.1083/jcb.201006025. PubMed DOI PMC
Wada S, et al. Translational suppression of atrophic regulators by microRNA-23a integrates resistance to skeletal muscle atrophy. J. Biol. Chem. 2011;286:38456–38465. doi: 10.1074/jbc.M111.271270. PubMed DOI PMC
Lin Z, et al. miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. Proc. Natl. Acad. Sci. U. S. A. 2009;106:12103–12108. doi: 10.1073/pnas.0811371106. PubMed DOI PMC
Hudson MB, et al. miR-23a is decreased during muscle atrophy by a mechanism that includes calcineurin signaling and exosome-mediated export. Am. J. Physiol. Cell Physiol. 2014;306:C551–C558. doi: 10.1152/ajpcell.00266.2013. PubMed DOI PMC
Bodine SC, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001;294:1704–1708. doi: 10.1126/science.1065874. PubMed DOI
Eddins MJ, et al. Targeting the ubiquitin E3 ligase MuRF1 to inhibit muscle atrophy. Cell Biochem. Biophys. 2011;60:113–118. doi: 10.1007/s12013-011-9175-7. PubMed DOI
Clavel S, et al. Atrophy-related ubiquitin ligases, atrogin-1 and MuRF1 are up-regulated in aged rat Tibialis Anterior muscle. Mech. Ageing Dev. 2006;127:794–801. doi: 10.1016/j.mad.2006.07.005. PubMed DOI
Wang B, et al. microRNA-23a and microRNA-27a mimic exercise by ameliorating CKD-induced muscle atrophy. J. Am. Soc. Nephrol. 2017;28:2631–2640. doi: 10.1681/ASN.2016111213. PubMed DOI PMC
Margolis LM, Lessard SJ, Ezzyat Y, Fielding RA, Rivas DA. Circulating microRNA are predictive of aging and acute adaptive response to resistance exercise in men. J. Gerontol. A Biol. Sci. Med. Sci. 2017;72:1319–1326. doi: 10.1093/gerona/glw243. PubMed DOI PMC
Zelko A, et al. The effects of intradialytic resistance training on muscle strength, psychological well-being, clinical outcomes and circulatory micro-ribonucleic acid profiles in haemodialysis patients: Protocol for a quasi-experimental study. Medicine (Baltimore) 2019;98:e15570. doi: 10.1097/MD.0000000000015570. PubMed DOI PMC
Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J. Chronic Dis. 1987;40:373–383. doi: 10.1016/0021-9681(87)90171-8. PubMed DOI
Borg GA. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982;14:377–381. PubMed
Roberts TC, Coenen-Stass AM, Wood MJ. Assessment of RT-qPCR normalization strategies for accurate quantification of extracellular microRNAs in murine serum. PLoS ONE. 2014;9:e89237. doi: 10.1371/journal.pone.0089237. PubMed DOI PMC
Farina NH, et al. Standardizing analysis of circulating microRNA: clinical and biological relevance. J. Cell. Biochem. 2014;115:805–811. doi: 10.1002/jcb.24745. PubMed DOI PMC
Gevaert AB, et al. MicroRNA profiling in plasma samples using qPCR arrays: recommendations for correct analysis and interpretation. PLoS ONE. 2018;13:e0193173. doi: 10.1371/journal.pone.0193173. PubMed DOI PMC
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Arocho A, Chen B, Ladanyi M, Pan Q. Validation of the 2-DeltaDeltaCt calculation as an alternate method of data analysis for quantitative PCR of BCR-ABL P210 transcripts. Diagn. Mol. Pathol. 2006;15:56–61. doi: 10.1097/00019606-200603000-00009. PubMed DOI
Armstrong T, Bull F. Development of the World Health Organization Global Physical Activity Questionnaire (GPAQ) J. Public Health. 2006;14:66–70. doi: 10.1007/s10389-006-0024-x. DOI
Thivel D, et al. Physical activity, inactivity, and sedentary behaviors: definitions and implications in occupational health. Front. Public Health. 2018;6:288. doi: 10.3389/fpubh.2018.00288. PubMed DOI PMC
WHO. Global recommendations on physical activity for health. Geneva: World Health Organization. 2010. https://www.who.int/dietphysicalactivity/global-PA-recs-2010.pdf. PubMed
Cheema B, et al. Progressive exercise for anabolism in kidney disease (PEAK): a randomized, controlled trial of resistance training during hemodialysis. J. Am. Soc. Nephrol. 2007;18:1594–1601. doi: 10.1681/ASN.2006121329. PubMed DOI
Kirkman DL, et al. Anabolic exercise in haemodialysis patients: a randomised controlled pilot study. J. Cachexia Sarcopenia Muscle. 2014;5:199–207. doi: 10.1007/s13539-014-0140-3. PubMed DOI PMC
Molsted S, Harrison AP, Eidemak I, Andersen JL. The effects of high-load strength training with protein- or nonprotein-containing nutritional supplementation in patients undergoing dialysis. J. Ren. Nutr. 2013;23:132–140. doi: 10.1053/j.jrn.2012.06.007. PubMed DOI
IBM Corp., IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp. Released 2013.
Duan Y, et al. Prediction of key genes and miRNAs responsible for loss of muscle force in patients during an acute exacerbation of chronic obstructive pulmonary disease. Int. J. Mol. Med. 2016;38:1450–1462. doi: 10.3892/ijmm.2016.2761. PubMed DOI PMC
Zelko A, et al. The effects of an intradialytic resistance training on lower extremity muscle functions. Disabil. Rehabil. 2020;24:1–7. doi: 10.1080/09638288.2020.1766581. PubMed DOI