Measuring critical force in sport climbers: a validation study of the 4 min all-out test on finger flexors
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, validační studie
Grantová podpora
Cooperatio - Sport Sciences - Biomedical and Rehabilitation Medicine
Univerzita Karlova v Praze
PubMed
38668851
PubMed Central
PMC11365833
DOI
10.1007/s00421-024-05490-7
PII: 10.1007/s00421-024-05490-7
Knihovny.cz E-zdroje
- Klíčová slova
- Critical power, Intermittent exercise, Isometric contraction, Muscle oxygen, NIRS, Threshold,
- MeSH
- dospělí MeSH
- horolezectví * fyziologie MeSH
- kosterní svaly * fyziologie MeSH
- lidé MeSH
- mladý dospělý MeSH
- prsty ruky * fyziologie MeSH
- spotřeba kyslíku fyziologie MeSH
- svalová kontrakce fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- validační studie MeSH
PURPOSE: The critical force (CF) concept, differentiating steady and non-steady state conditions, extends the critical power paradigm for sport climbing. This study aimed to validate CF for finger flexors derived from the 4 min all-out test as a boundary for the highest sustainable work intensity in sport climbers. METHODS: Twelve participants underwent multiple laboratory visits. Initially, they performed the 4 min intermittent contraction all-out test for CF determination. Subsequent verification visits involved finger-flexor contractions at various intensities, including CF, CF -2 kg, CF -4 kg, and CF -6 kg, lasting for 720 s or until failure, while monitoring muscle-oxygen dynamics of forearm muscles. RESULTS: CF, determined from the mean force of last three contractions, was measured at 20.1 ± 5.7 kg, while the end-force at 16.8 ± 5.2 kg. In the verification trials, the mean time to failure at CF was 440 ± 140 s, with only one participant completing the 720 s task. When the load was continuously lowered (-2 kg, -4 kg, and -6 kg), a greater number of participants (38%, 69%, and 92%, respectively) successfully completed the 720 s task. Changes of muscle-oxygen dynamics showed a high variability and could not clearly distinguish between exhaustive and non-exhaustive trials. CONCLUSIONS: CF, based on the mean force of the last three contractions, failed to reliably predict the highest sustainable work rate. In contrast, determining CF as the end-force of the last three contractions exhibited a stronger link to sustainable work. Caution is advised in interpreting forearm muscle-oxygen dynamics, lacking sensitivity for nuanced metabolic responses during climbing-related tasks.
Department of Sport Science University of Innsbruck Innsbruck Austria
Institute of Sport Science University of Bern Bern Switzerland
Zobrazit více v PubMed
Baláš J, Michailov M, Giles D, Kodejška J, Panáčková M, Fryer S (2016) Active recovery of the finger flexors enhances intermittent handgrip performance in rock climbers. Eur J Sport Sci 16(7):764–772. 10.1080/17461391.2015.1119198 PubMed
Baláš J, Kodejška J, Krupková D, Hannsmann J, Fryer S (2018) Reliability of near-infrared spectroscopy for measuring intermittent handgrip contractions in sport climbers. J Strength Cond Res 32(2):494–501 PubMed
Baláš J, Gajdošík J, Giles D, Fryer S, Krupková D, Brtník T, Feldmann A (2021) Isolated finger flexor vs. exhaustive whole-body climbing tests? How to assess endurance in sport climbers? Eur J Appl Physiol 121(5):1337–1348. 10.1007/s00421-021-04595-7 PubMed
Baláš J, Gajdošík J, Giles D, Fryer S (2022) The estimation of critical angle in climbing as a measure of maximal metabolic steady state. Front Physiol 12:2350 PubMed PMC
Barnes WS (1980) The relationship between maximum isometric strength and intramuscular circulatory occlusion. Ergon 23(4):351–357. 10.1080/00140138008924748 PubMed
Bartram JC, Thewlis D, Martin DT, Norton KI (2017) Predicting critical power in elite cyclists: questioning the validity of the 3 minute all-out test. Int J Sports Physiol Perform 12(6):783–787. 10.1123/ijspp.2016-0376 PubMed
Bassan ND, Denadai BS, de Lima LCR, Caritá RAC, Abdalla LHP, Greco CC (2019) Effects of resistance training on impulse above end-test torque and muscle fatigue. Exp Physiol 104(7):1115–1125. 10.1113/ep087204 PubMed
Bergstrom HC, Housh TJ, Zuniga JM, Traylor DA, Lewis RW, Camic CL, Johnson GO (2013) Responses during exhaustive exercise at critical power determined from the 3 min all-out test. J Sports Sci 31(5):537–545. 10.1080/02640414.2012.738925 PubMed
Bergua P, Montero-Marin J, Gomez-Bruton A, Casajús JA (2020) The finger flexors occlusion threshold in sport-climbers: an exploratory study on its indirect approximation. Eur J Sport Sci. 10.1080/17461391.2020.1827047 PubMed
Broxterman RM, Ade CJ, Wilcox SL, Schlup SJ, Craig JC, Barstow TJ (2014) Influence of duty cycle on the power-duration relationship: observations and potential mechanisms. Respir Physiol Neurobiol 192:102–111. 10.1016/j.resp.2013.11.010 PubMed
Burnley M, Doust JH, Vanhatalo A (2006) A 3 min all-out test to determine peak oxygen uptake and the maximal steady state. Med Sci Sports Exerc 38(11):1995–2003. 10.1249/01.mss.0000232024.06114.a6 PubMed
Caen K, Bourgois JG, Stassijns E, Boone J (2022) A longitudinal study on the interchangeable use of whole-body and local exercise thresholds in cycling. Eur J Appl Physiol 122(7):1657–1670. 10.1007/s00421-022-04942-2 PubMed PMC
Cardinale DA, Larsen FJ, Jensen-Urstad M, Rullman E, Sondergaard H, Morales-Alamo D, Boushel R (2019) Muscle mass and inspired oxygen influence oxygen extraction at maximal exercise: role of mitochondrial oxygen affinity. Acta Physiol. 10.1111/apha.13110 PubMed
Dotan R (2022) A critical review of critical power. Eur J Appl Physiol 122(7):1559–1588. 10.1007/s00421-022-04922-6 PubMed
Fanchini M, Violette F, Impellizzeri FM, Maffiuletti NA (2013) Differences in climbing-specific strength between boulder and lead rock climbers. J Strength Cond Res 27(2):310–314. 10.1519/JSC.0b013e3182577026 PubMed
Fryer S, Stoner L, Lucero A, Witter T, Scarrott C, Dickson T, Draper N (2015) Haemodynamic kinetics and intermittent finger flexor performance in rock climbers. Int J Sports Med 36(2):137–142. 10.1055/s-0034-1385887 PubMed
Fryer S, Giles D, Palomino IG, Puerta AD, España-Romero V (2018) Hemodynamic and cardiorespiratory predictors of sport rock climbing performance. J Strength Cond Res 32(12):3534–3541. 10.1519/jsc.0000000000001860 PubMed
Giles D, Chidley JB, Taylor N, Torr O, Hadley J, Randall T, Fryer S (2019) The determination of finger-flexor critical force in rock climbers. Int J Sports Physiol Perform 14(7):972–979. 10.1123/ijspp.2018-0809 PubMed
Giles D, Hartley C, Maslen H, Hadley J, Taylor N, Torr O, Fryer S (2021) An all-out test to determine finger flexor critical force in rock climbers. Int J Sports Physiol Perform 16(7):942–949. 10.1123/ijspp.2020-0637 PubMed
Gilic B, Feldmann A, Vrdoljak D, Sekulic D (2023) Forearm muscle oxygenation and blood volume parameters during sustained contraction performance in youth sport climbers. J Sports Med Phys Fitness 63(7):819–827. 10.23736/s0022-4707.23.14806-7 PubMed
Guest NS, VanDusseldorp TA, Nelson MT, Grgic J, Schoenfeld BJ, Jenkins NDM, Campbell BI (2021) International society of sports nutrition position stand: caffeine and exercise performance. J Int Soc of Sports Nutr. 10.1186/s12970-020-00383-4 PubMed PMC
Hammer SM, Alexander AM, Didier KD, Huckaby LM, Barstow TJ (2020) Limb blood flow and muscle oxygenation responses during handgrip exercise above vs. below critical force. Microvasc Res. 10.1016/j.mvr.2020.104002 PubMed
Jones AM, Burnley M, Black MI, Poole DC, Vanhatalo A (2019) The maximal metabolic steady state: redefining the “gold standard.” Physiol Reports. 10.14814/phy2.14098 PubMed PMC
Kalva CA, Zagatto AM, da Silva AS, de Araújo MYC, de Almeida PB, Papoti M (2017) Tethered 3-min all-out test did not predict the traditional critical force parameters in inexperienced swimmers. J Sports Med Phys Fitness 57(9):1126–1131. 10.23736/s0022-4707.16.06461-6 PubMed
Karsten B, Jobson SA, Hopker J, Passfield L, Beedie C (2014) The 3-min test does not provide a valid measure of critical power using the SRM isokinetic mode. Int J Sports Med 35(4):304–309. 10.1055/s-0033-1349093 PubMed
Kellawan JM, Tschakovsky ME (2014) The single-bout forearm critical force test: a new method to establish forearm aerobic metabolic exercise intensity and capacity. PLoS ONE. 10.1371/journal.pone.0093481 PubMed PMC
Kirby BS, Clark DA, Bradley EM, Wilkins BW (2021) The balance of muscle oxygen supply and demand reveals critical metabolic rate and predicts time to exhaustion. J Appl Physiol 130(6):1915–1927. 10.1152/japplphysiol.00058.2021 PubMed
Langer K, Simon C, Wiemeyer J (2023) Physical performance testing in climbing—a systematic review. Front Sports Act Living. 10.3389/fspor.2023.1130812 PubMed PMC
Levernier G, Laffaye G (2019) Four weeks of finger grip training increases the rate of force development and the maximal force in elite and top world ranking climbers. J Strength Cond Res 33(9):2471–2480. 10.1519/jsc.0000000000002230 PubMed
Limonta E, Ce E, Gobbo M, Veicsteinas A, Orizio C, Esposito F (2016) Motor unit activation strategy during a sustained isometric contraction of finger flexor muscles in elite climbers. J Sports Sci 34(2):133–142. 10.1080/02640414.2015.1035738 PubMed
Maciejczyk M, Michailov ML, Wiecek M, Szymura J, Rokowski R, Szygula Z, Beneke R (2022) Climbing-specific exercise tests: energy system contributions and relationships with sport performance. Front Physiol. 10.3389/fphys.2021.787902 PubMed PMC
McClean ZJ, MacDougall KB, Fletcher JR, Aboodarda SJ, Macintosh BR (2023) Test-retest reliability of a 4 minute all-out critical force test in rock climbers. Int J Exerc Sci 16(4):912–923 PubMed PMC
Medernach JPJ, Kleinoder H, Lotzerich HHH (2015) Fingerboard in competitive bouldering: training effects on grip strength and endurance. J Strength Cond Res 29(8):2286–2295. 10.1519/jsc.0000000000000873 PubMed
Michailov M, Baláš J, Tanev SK, Andonov HS, Kodejška J, Brown L (2018) Reliability and validity of finger strength and endurance measurements in rock climbing. Res Q Exerc Sport 89(2):246–254. 10.1080/02701367.2018.1441484 PubMed
Ozkaya O, Balci GA, As H, Cabuk R, Norouzi M (2022) Grey zone: a gap between heavy and severe exercise domain. J Strength Cond Res 36(1):113–120. 10.1519/jsc.0000000000003427 PubMed
Poole DC, Burnley M, Vanhatalo A, Rossiter HB, Jones AM (2016) Critical power: an important fatigue threshold in exercise physiology. Med Sci Sports Exerc 48(11):2320–2334. 10.1249/mss.0000000000000939 PubMed PMC
Sadamoto T, Bondepetersen F, Suzuki Y (1983) Skeletal muscle tension, flow, pressure, and EMG during sustained isometric contractions in humans. Eur J Appl Physiol 51(3):395–408. 10.1007/bf00429076 PubMed
Saraiva SM, Jacinto TA, Gonçalves AC, Gaspar D, Silva LR (2023) Overview of caffeine effects on human health and emerging delivery strategies. Pharm. 10.3390/ph16081067 PubMed PMC
Schweizer A, Hudek R (2011) Kinetics of Crimp and Slope Grip in Rock Climbing. J Appl Biomech 27(2):116–121 PubMed
Stien N, Saeterbakken AH, Andersen V (2022) Tests and procedures for measuring endurance, strength, and power in climbing-a mini-review. Front Sports and Act Living. 10.3389/fspor.2022.847447 PubMed PMC
Torr O, Randall T, Knowles R, Giles D, Atkins S (2022) Reliability and validity of a method for the assessment of sport rock climbers’ isometric finger strength. J Strength Cond Res 36(8):2277–2282. 10.1519/jsc.0000000000003548 PubMed
Vigouroux L, Quaine F (2006) Fingertip force and electromyography of finger flexor muscles during a prolonged intermittent exercise in elite climbers and sedentary individuals. J Sports Sci 24(2):181–186 PubMed
Weidauer L, Zwart MB, Clapper J, Albert J, Vukovich M, Specker B (2020) Neuromuscular performance changes throughout the menstrual cycle in physically active females. J Musculoskelet Neuronal Interact 20(3):314–324 PubMed PMC