The Estimation of Critical Angle in Climbing as a Measure of Maximal Metabolic Steady State
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35069253
PubMed Central
PMC8766676
DOI
10.3389/fphys.2021.792376
Knihovny.cz E-zdroje
- Klíčová slova
- critical power, finger flexors, muscle oxygenation, near infrared spectroscopy, oxygen kinetics, sport climbing,
- Publikační typ
- časopisecké články MeSH
Purpose: Sport climbing is a technical, self-paced sport, and the workload is highly variable and mainly localized to the forearm flexors. It has not proved effective to control intensity using measures typical of other sports, such as gas exchange thresholds, heart rate, or blood lactate. Therefore, the purposes of the study were to (1) determine the possibility of applying the mathematical model of critical power to the estimation of a critical angle (CA) as a measure of maximal metabolic steady state in climbing and (2) to compare this intensity with the muscle oxygenation breakpoint (MOB) determined during an exhaustive climbing task. Materials and Methods: Twenty-seven sport climbers undertook three to five exhaustive ascents on a motorized treadwall at differing angles to estimate CA, and one exhaustive climbing test with a progressive increase in angle to determine MOB, assessed using near-infrared spectroscopy (NIRS). Results: Model fit for estimated CA was very high (R 2 = 0.99; SEE = 1.1°). The mean peak angle during incremental test was -17 ± 5°, and CA from exhaustive trials was found at -2.5 ± 3.8°. Nine climbers performing the ascent 2° under CA were able to sustain the task for 20 min with perceived exertion at 12.1 ± 1.9 (RPE). However, climbing 2° above CA led to task failure after 15.9 ± 3.0 min with RPE = 16.4 ± 1.9. When MOB was plotted against estimated CA, good agreement was stated (ICC = 0.80, SEM = 1.5°). Conclusion: Climbers, coaches, and researchers may use a predefined route with three to five different wall angles to estimate CA as an analog of critical power to determine a maximal metabolic steady state in climbing. Moreover, a climbing test with progressive increases in wall angle using MOB also appears to provide a valid estimate of CA.
Faculty of Physical Education and Sport Charles University Prague Czechia
Lattice Training Ltd Chesterfield United Kingdom
School of Sport and Exercise University of Gloucestershire Cheltenham United Kingdom
Zobrazit více v PubMed
Baláš J., Gajdošík J., Giles D., Fryer S., Krupková D., Brtník T., et al. (2021). Isolated finger flexor vs. exhaustive whole-body climbing tests? How to assess endurance in sport climbers? Eur. J. Appl. Physiol. 121 1337–1348. 10.1007/s00421-021-04595-7 PubMed DOI
Baláš J., Kodejška J., Krupková D., Hannsmann J., Fryer S. (2018). Reliability of near-infrared spectroscopy for measuring intermittent handgrip contractions in sport climbers. J. Strength Cond. Res. 32 494–501. PubMed
Baláš J., Panáčková M., Jandová S., Martin A. J., Strejcová B., Vomáčko L., et al. (2014). The effect of climbing ability and slope inclination on vertical foot loading using a novel force sensor instrumentation system. J. Hum. Kinet. 44 75–81. 10.2478/hukin-2014-0112 PubMed DOI PMC
Barstow T. J. (2019). Understanding near infrared spectroscopy and its application to skeletal muscle research. J. Appl. Physiol. 126 1360–1376. 10.1152/japplphysiol.00166.2018 PubMed DOI
Boone J., Barstow T. J., Celie B., Prieur F., Bourgois J. (2016a). The interrelationship between muscle oxygenation, muscle activation, and pulmonary oxygen uptake to incremental ramp exercise: influence of aerobic fitness. Appl. Physiol. Nutr. Metab. 41 55–62. 10.1139/apnm-2015-0261 PubMed DOI
Boone J., Vandekerckhove K., Coomans I., Prieur F., Bourgois J. G. (2016b). An integrated view on the oxygenation responses to incremental exercise at the brain, the locomotor and respiratory muscles. Eur. J. Appl. Physiol. 116 2085–2102. 10.1007/s00421-016-3468-x PubMed DOI
Booth J., Marino F., Hill C., Gwinn T. (1999). Energy cost of sport rock climbing in elite performers. Br. J. Sports Med. 33 14–18. PubMed PMC
Borg G. A. V. (1982). Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 14 377–381. 10.1249/00005768-198205000-00012 PubMed DOI
Broxterman R. M., Craig J. C., Richardson R. S. (2018). The respiratory compensation point and the deoxygenation break point are not valid surrogates for critical power and maximum lactate steady state. Med. Science Sports Exerc. 50 2379–2382. 10.1249/mss.0000000000001699 PubMed DOI
Chin L. M. K., Kowalchuk J. M., Barstow T. J., Kondo N., Amano T., Shiojiri T., et al. (2011). The relationship between muscle deoxygenation and activation in different muscles of the quadriceps during cycle ramp exercise. J. Appl. Physiol. 111 1259–1265. 10.1152/japplphysiol.01216.2010 PubMed DOI PMC
España-Romero V., Ortega Porcel F., Artero E., Jiménez-Pavón D., Gutiérrez Sainz A., Castillo Garzón M., et al. (2009). Climbing time to exhaustion is a determinant of climbing performance in high-level sport climbers. Eur. J. Appl. Physiol. 107 517–525. PubMed
Fanchini M., Violette F., Impellizzeri F. M., Maffiuletti N. A. (2013). Differences in climbing-specific strength between boulder and lead rock climbers. J. Strength Cond. Res. 27 310–314. 10.1519/JSC.0b013e3182577026 PubMed DOI
Ferguson R. A., Brown M. D. (1997). Arterial blood pressure and forearm vascular conductance responses to sustained and rhythmic isometric exercise and arterial occlusion in trained rock climbers and untrained sedentary subjects. Eur. J. Appl. Physiol. Occup. Physiol. 76 174–180. PubMed
Fryer S., Dickson T., Draper N., Blackwell G., Hillier S. (2013). A psychophysiological comparison of on-sight lead and top rope ascents in advanced rock climbers. Scand. J. Med. Sci. Sports 23 645–650. 10.1111/j.1600-0838.2011.01432.x PubMed DOI
Fryer S., Giles D., Palomino I. G., Puerta A. D., España-Romero V. (2018). Hemodynamic and cardiorespiratory predictors of sport rock climbing performance. J. Strength Cond. Res. 32 3534–3541. 10.1519/jsc.0000000000001860 PubMed DOI
Fryer S., Stone K. J., Sveen J., Dickson T., España-Romero V., Giles D., et al. (2017). Differences in forearm strength, endurance, and hemodynamic kinetics between male boulderers and lead rock climbers. Eur. J. Sport Sci. 17 1177–1183. 10.1080/17461391.2017.1353135 PubMed DOI
Gajdošík J., Baláš J., Krupková D., Psohlavec L., Draper N. (2021). Effect of climbing speed on pulmonary oxygen uptake and muscle oxygen saturation dynamics in the finger flexors. Int. J. Sports Physiol. Perform. 1–9. 10.1123/ijspp.2021-0110 [Epub ahead of print]. PubMed DOI
Giles D., Chidley J. B., Taylor N., Torr O., Hadley J., Randall T., et al. (2019). The determination of finger-flexor critical force in rock climbers. Int. J. Sports Physiol. Perform. 14 972–979. 10.1123/ijspp.2018-0809 PubMed DOI
Giles D., Hartley C., Maslen H., Hadley J., Taylor N., Torr O., et al. (2020). An all-out test to determine finger flexor critical force in rock climbers. Int. J. Sports Physiol. Perform. 16:2020. 10.1123/ijspp.2020-0637 PubMed DOI
Grassi B., Pogliaghi S., Rampichini S., Quaresima V., Ferrari M., Marconi C., et al. (2003). Muscle oxygenation and pulmonary gas exchange kinetics during cycling exercise on-transitions in humans. J. Appl. Physiol. 95 149–158. 10.1152/japplphysiol.00695.2002 PubMed DOI
Jones A. M., Burnley M., Black M. I., Poole D. C., Vanhatalo A. (2019). The maximal metabolic steady state: redefining the ‘gold standard’. Physiol. Rep. 7:e14098. 10.14814/phy2.14098 PubMed DOI PMC
Keir D. A., Fontana F. Y., Robertson T. C., Murias J. M., Paterson D. H., Kowalchuk J. M., et al. (2015). Exercise intensity thresholds: identifying the boundaries of sustainable performance. Med. Sci. Sports Exerc. 47 1932–1940. PubMed
Levernier G., Laffaye G. (2019). Four weeks of finger grip training increases the rate of force development and the maximal force in elite and top world ranking climbers. J. Strength Cond. Res. 33 2471–2480. 10.1519/jsc.0000000000002230 PubMed DOI
Limonta E., Brighenti A., Rampichini S., Ce E., Schena F., Esposito F. (2018). Cardiovascular and metabolic responses during indoor climbing and laboratory cycling exercise in advanced and elite climbers. Eur. J. Appl. Physiol. 118 371–379. 10.1007/s00421-017-3779-6 PubMed DOI
López-Rivera E., González-Badillo J. J. (2012). The effects of two maximum grip strength training methods using the same effort duration and different edge depth on grip endurance in elite climbers. Sports Technol. 5 100–110. 10.1080/19346182.2012.716061 DOI
Lopez-Rivera E., Gonzalez-Badillo J. J. (2019). Comparison of the effects of three hangboard strength and endurance training programs on grip endurance in sport climbers. J. Hum. Kinet. 66 183–193. 10.2478/hukin-2018-0057 PubMed DOI PMC
Medernach J. P. J., Kleinoder H., Lotzerich H. H. H. (2015). Fingerboard in competitive bouldering: training effects on grip strength and endurance. J. Strength Cond. Res. 29 2286–2295. 10.1519/jsc.0000000000000873 PubMed DOI
Michailov M., Baláš J., Tanev S. K., Andonov H. S., Kodejška J., Brown L. (2018). Reliability and validity of finger strength and endurance measurements in rock climbing. Res. Q. Exerc. Sport 89 246–254. 10.1080/02701367.2018.1441484 PubMed DOI
Murias J. M., Spencer M. D., Keir D. A., Paterson D. H. (2013). Systemic and vastus lateralis muscle blood flow and O-2 extraction during ramp incremental cycle exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 304 R720–R725. 10.1152/ajpregu.00016.2013 PubMed DOI PMC
Noé F., Quaine F., Martin L. (2001). Influence of steep gradient supporting walls in rock climbing: biomechanical analysis. Gait Posture 13 86–94. PubMed
Okushima D., Poole D. C., Rossiter H. B., Barstow T. J., Kondo N., Ohmae E., et al. (2015). Muscle deoxygenation in the quadriceps during ramp incremental cycling: deep vs. superficial heterogeneity. J. Appl. Physiol. 119 1313–1319. 10.1152/japplphysiol.00574.2015 PubMed DOI
Orth D., Davids K., Seifert L. (2016). Coordination in climbing: effect of skill, practice and constraints manipulation. Sports Med. 46 255–268. 10.1007/s40279-015-0417-5 PubMed DOI
Philippe M., Filzwieser I., Leichtfried V., Blank C., Haslinger S., Fleckenstein J., et al. (2019). The effects of 8 weeks of two different training methods on on-sight lead climbing performance. J. Sports Med. Phys. Fitness 59 561–568. 10.23736/s0022-4707.18.08399-8 PubMed DOI
Poole D. C., Burnley M., Vanhatalo A., Rossiter H. B., Jones A. M. (2016). Critical power: an important fatigue threshold in exercise physiology. Med. Science Sports Exerc. 48 2320–2334. 10.1249/mss.0000000000000939 PubMed DOI PMC
Poole D. C., Rossiter H. B., Brooks G. A., Gladden L. B. (2021). The anaerobic threshold: 50+years of controversy. J. Physiol. Lond. 599 737–767. 10.1113/jp279963 PubMed DOI
Rosponi A., Schena F., Leonardi A., Tosi P. (2012). Influence of ascent speed on rock climbing economy. Sport Sci. Health 7 71–80.
Saul D., Steinmetz G., Lehmann W., Schilling A. E. (2019). Determinants for success in climbing: a systematic review. J. Exerc. Sci. Fitness 17 91–100. 10.1016/j.jesf.2019.04.002 PubMed DOI PMC
Schöffl V., Möckel F., Köstermeyer G., Roloff I., Küpper T. (2006). Development of a performance diagnosis of the anearobic strength endurance of the forearm flexor muscles in sport climbing. Int. J. Sports Med. 27 205–211. PubMed
Stien N., Pedersen H., Vereide V. A., Saeterbakken A. H., Hermans E., Kalland J., et al. (2021). Effects of two vs. four weekly campus board training sessions on bouldering performance and climbing-specific tests in advanced and elite climbers. J. Sports Sci. Med. 20 438–447. 10.52082/jssm.2021.438 PubMed DOI PMC
Thompson E., Farrow L., Hunt J., Lewis M., Ferguson R. A. (2014). Brachial artery characteristics and micro-vascular filtration capacity in rock climbers. Eur. J. Sport Sci. 15 296–304. 10.1080/17461391.2014.940560 PubMed DOI
Vanhatalo A., Jones A. M., Burnley M. (2011). Application of critical power in sport. Int. J. Sports Physiol. Perform. 6 128–136. 10.1123/ijspp.6.1.128 PubMed DOI
Wang L. X., Yoshikawa T., Hara T., Nakao H., Suzuki T., Fujimoto S. (2006). Which common NIRS variable reflects muscle estimated lactate threshold most closely? Appl. Physiol. Nutr. Metab. 31 612–620. 10.1139/h06-069 PubMed DOI
Watts P. B. (2004). Physiology of difficult rock climbing. Eur. J. Appl. Physiol. 91 361–372. PubMed
Watts P. B., Drobish K. M. (1998). Physiological responses to simulated rock climbing at different angles. Med. Sci. Sports Exerc. 30 1118–1122. PubMed
The Connection Between Resistance Training, Climbing Performance, and Injury Prevention