Novel Biomaterials in Glaucoma Treatment

. 2024 Apr 07 ; 12 (4) : . [epub] 20240407

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38672168

Grantová podpora
NU 23-08-00586 Agentura Pro Zdravotnický Výzkum České Republiky

Glaucoma is a significant cause of blindness worldwide, and its treatment remains challenging. The disease progressively leads to damage to the optic disc and thus loss of visual acuity and visual field. High intraocular pressure (IOP) is a common risk factor. There are three major methods to treat this disease: topical, laser, and surgical. None of these are completely satisfactory; therefore, alternatives using new biomaterials are being sought. Since biomaterial engineering has experienced significant growth in recent decades, its products are gradually being introduced to various branches of medicine, with the exception of ophthalmology. Biomaterials, such as glaucoma drainage implants, have been successfully used to treat glaucoma. There is significant ongoing research on biomaterials as drug delivery systems that could overcome the disadvantages of topical glaucoma treatment, such as poor intraocular penetration or frequent drug administration. This article summarizes the use of novel biomaterials for glaucoma treatment presented in the literature. The literature search was based on articles published in English on PubMed.gov, Cochranelibrary.com, and Scopus.com between 2018 and 2023 using the following term "biomaterials in glaucoma." A total of 103 published articles, including twenty-two reviews, were included. Fifty-nine articles were excluded on the basis of their titles and abstracts.

Zobrazit více v PubMed

Bourne R.R.A., Taylor H.R., Flaxman S.R., Keeffe J., Leasher J., Naidoo K., Pesudovs K., White R.A., Wong T.Y., Resnikoff S., et al. Number of people blind or visually impaired by glaucoma worldwide and in world regions 1990–2010: A meta-analysis. PLoS ONE. 2016;11:e0162229. doi: 10.1371/journal.pone.0162229. PubMed DOI PMC

Hložánek M., Ošmera J., Ležatková P., Sedláčková P., Filouš A. The retinal nerve fiber layer thickness in glaucomatous hydrophthalmic eyes assessed by scanning laser polarimetry with variable corneal compensation in comparison with age-matched healthy children. Acta Ophthalmol. 2021;90:709–712. doi: 10.1111/j.1755-3768.2011.02133.x. PubMed DOI

Weinreb R.N., Khaw P.T. Primary open-angle glaucoma. Lancet. 2004;363:1711–1720. doi: 10.1016/S0140-6736(04)16257-0. PubMed DOI

Wang X. Advances in Biomaterials Science and Biomedical Applications in Biomedicine. IntechOpen; London, UK: 2013. Overview on biocompatibilities of implantable biomaterials; pp. 111–155.

Zuo W., Yu L., Lin J., Yang Y., Fei Q. Properties improvement of titanium alloys scaffolds in bone tissue engineering: A literature review. Ann. Transl. Med. 2021;9:1259. doi: 10.21037/atm-20-8175. PubMed DOI PMC

Keino H., Horie S., Sugita S. Immune privilege and eye-derived t-regulatory cells. J. Immunol. Res. 2018;2018:1679197. doi: 10.1155/2018/1679197. PubMed DOI PMC

Seah I., Ong C., Liu Z., Su X. Polymeric biomaterials in the treatment of posterior segment diseases. Front. Med. 2022;9:949543. doi: 10.3389/fmed.2022.949543. PubMed DOI PMC

Folgar F.A., De Moraes C.G., Teng C.C., Tello C., Ritch R., Liebmann J.M. Effect of successful and partly successful filtering surgery on the velocity of glaucomatous visual field progression. J. Glaucoma. 2012;21:615–618. doi: 10.1097/IJG.0b013e31821db409. PubMed DOI

Cardakli N., Weinreb S.F., ScM J.L.J., Quigley H.A. Long-term Functional Outcomes of Trabeculectomy Revision Surgery. Ophthalmol. Glaucoma. 2019;2:240–250. doi: 10.1016/j.ogla.2019.04.003. PubMed DOI

Gedde S.J., Herndon L.W., Brandt J.D., Budenz D.L., Feuer W.J., Schiffman J.C. Postoperative Complications in the Tube Versus Trabeculectomy (TVT) Study During Five Years of Follow-up. Am. J. Ophthalmol. 2012;153:804–814.e1. doi: 10.1016/j.ajo.2011.10.024. PubMed DOI PMC

Corradetti B., Scarritt M.E., Londono R., Badylak S.F., Hildebrandt M. The Immune Response to Implanted Materials and Devices. Springer International Publishing; Cham, Switzerland: 2017.

Cairns J.E. Trabeculectomy. Preliminary report of a new method. Am. J. Ophthalmol. 1968;66:673–679. doi: 10.1016/0002-9394(68)91288-9. PubMed DOI

Agrawal P., Bhardwaj P. Glaucoma drainage implants. Int. J. Ophthalmol. 2020;13:1318–1328. doi: 10.18240/ijo.2020.08.20. PubMed DOI PMC

Gurnani B., Tripathy K. StatPearls [Internet] StatPearls Publishing; Treasure Island, FL, USA: 2023. Minimally Invasive Glaucoma Surgery. PMID: 35881761, Bookshelf ID: NBK582156. PubMed

Gupta S., Jeria S. A Review on Glaucoma Drainage Devices and its Complications. Cureus. 2022;14:e29072. doi: 10.7759/cureus.29072. PubMed DOI PMC

Chaudhary A., Salinas L., Guidotti J., Mermoud A., Mansouri K. XEN Gel Implant: A new surgical approach in glaucoma. Expert Rev. Med. Devices. 2018;15:47–59. doi: 10.1080/17434440.2018.1419060. PubMed DOI

Vera V., Sheybani A., Wustenberg W., Romoda L., Camejo L., Liu X., Lewis R. Compatibility and durability of the gel stent material. Expert Rev. Med. Devices. 2022;19:385–391. doi: 10.1080/17434440.2022.2081073. PubMed DOI

Denis P., Hirneiß C., Reddy K.P., Kamarthy A., Calvo E., Hussain Z., Ahmed I.I.K. A First-in-Human Study of the Efficacy and Safety of MINIject in Patients with Medically Uncontrolled Open-Angle Glaucoma (STAR-I) Ophthalmol. Glaucoma. 2019;2:290–297. doi: 10.1016/j.ogla.2019.06.001. PubMed DOI

Grierson I., Minckler D., Rippy M.K., Marshall A.J., Collignon N., Bianco J., Detry B., Johnstone M.A. A novel suprachoroidal microinvasive glaucoma implant: In vivo biocompatibility and biointegration. BMC Biomed. Eng. 2020;2:10. doi: 10.1186/s42490-020-00045-1. PubMed DOI PMC

Klapstova A., Horakova J., Tunak M., Shynkarenko A., Erben J., Hlavata J., Bulir P., Chvojka J. A PVDF electrospun antifibrotic composite for use as a glaucoma drainage implant. Mater. Sci. Eng. C. 2021;119:111637. doi: 10.1016/j.msec.2020.111637. PubMed DOI

Kao B.W., Meer E., Barbolt T.A., Lewis R.A., Ahmed I.I., Lee V., Nicaise S.M., Griggs G., Miller-Ellis E.G. Biocompatibility and feasibility of VisiPlate, a novel ultrathin, multichannel glaucoma drainage device. J. Mater. Sci. Mater. Med. 2021;32:141. doi: 10.1007/s10856-021-06613-8. PubMed DOI PMC

Josyula A., Mozzer A., Szeto J., Ha Y., Richmond N., Chung S.W., Rompicharla S.V.K., Narayan J., Ramesh S., Hanes J., et al. Nanofiber-based glaucoma drainage implant improves surgical outcomes by modulating fibroblast behavior. Bioeng. Transl. Med. 2023;8:e10487. doi: 10.1002/btm2.10487. PubMed DOI PMC

Siewert S., Kischkel S., Brietzke A., Kinzel L., Lindner T., Hinze U., Chichkov B., Schmidt W., Stiehm M., Grabow N., et al. Development of a Novel Valve-Controlled Drug-Elutable Microstent for Microinvasive Glaucoma Surgery: In Vitro and Preclinical In Vivo Studies. Transl. Vis. Sci. Technol. 2023;12:4. doi: 10.1167/tvst.12.3.4. PubMed DOI PMC

Lubiński W., Krzystolik K., Gosławski W., Kuprjanowicz L., Mularczyk M. Comparison of polypropylene and silicone Ahmed® glaucoma valves in the treatment of neovascular glaucoma: A 2-year follow-up. Adv. Clin. Exp. Med. 2018;27:15–20. doi: 10.17219/acem/66806. PubMed DOI

Li X.-J., Xie L., Pan F.-S., Wang Y., Liu H., Tang Y.-R., Hutnik C.M. A feasibility study of using biodegradable magnesium alloy in glaucoma drainage device. Int. J. Ophthalmol. 2018;11:135–142. PubMed PMC

Thaller M., Böhm H., Lingenfelder C., Geiger F. Hyaluronic acid gels for pressure regulation in glaucoma treatment. Ophthalmologe. 2018;115:195–201. doi: 10.1007/s00347-017-0602-z. PubMed DOI

Shao C.G., Sinha N.R., Mohan R.R., Webel A.D. Novel Therapies for the Prevention of Fibrosis in Glaucoma Filtration Surgery. Biomedicines. 2023;11:657. doi: 10.3390/biomedicines11030657. PubMed DOI PMC

Zhao X., Liu S., Han Y., Wang Y., Lin Q. Preparation of 5-fluorouracil oaded chitosan microtube via in situ precipitation for glaucoma drainage device application: In vitro and in vivo investigation. J. Biomater. Sci. Polym. Ed. Sv. 2021;32:1849–1864. doi: 10.1080/09205063.2021.1946460. PubMed DOI

Ioannou N., Luo J., Qin M., Di Luca M., Mathew E., Tagalakis A.D., Lamprou D.A., Yu-Wai-Man C. 3D-printed long-acting 5-fluorouracil implant to prevent conjunctival fibrosis in glaucoma. J. Pharm. Pharmacol. 2023;75:276–286. doi: 10.1093/jpp/rgac100. PubMed DOI PMC

Dong A., Han L., Shao Z., Fan P., Zhou X., Yuan H. Glaucoma Drainage Device Coated with Mitomycin C Loaded Opal Shale Microparticles to Inhibit Bleb Fibrosis. ACS Appl. Mater. Interfaces. 2019;11:10244–10253. doi: 10.1021/acsami.8b18551. PubMed DOI

Chun Y.Y., Yap Z.L., Seet L.F., Chan H.H., Toh L.Z., Chu S.W.L., Lee Y.S., Wong T.T., Tan T.T.Y. Positive-charge tuned gelatin hydrogel-siSPARC injectable for siRNA anti-scarring therapy in post glaucoma filtration surgery. Sci. Rep. 2021;11:1470. doi: 10.1038/s41598-020-80542-4. PubMed DOI PMC

Ali J., Bhatnagar A., Kumar N., Ali A. Chitosan nanoparticles amplify the ocular hypotensice effect of cateolol in rabbits. Int. J. Biol. Macromol. 2014;65:479–491. PubMed

Guglielmi P., Carradori S., Campestre C., Poce G. Novel therapies for glaucoma: A patent review (2013-2019) Expert Opin. Ther. Pat. 2019;29:769–780. doi: 10.1080/13543776.2019.1653279. PubMed DOI

Singh M., Dev D., Prasad D. A Recent Overview: In Situ Gel Smart Carriers for Ocular Drug Delivery. J. Drug Deliv. Ther. 2021;11:195–205. doi: 10.22270/jddt.v11i6-S.5147. DOI

Wu K.Y., Ashkar S., Jain S., Marchand M., Tran S.D. Breaking Barriers in Eye Treatment: Polymeric Nano-Based Drug-Delivery System for Anterior Segment Diseases and Glaucoma. Polymers. 2023;15:1373. doi: 10.3390/polym15061373. PubMed DOI PMC

Bahram M., Mohseni N., Moghtader M. Emerging Concepts in Analysis and Applications of Hydrogels. IntechOpen; London, UK: 2016. An Introduction to Hydrogels and Some Recent Applications.

Silva M.M., Calado R., Marto J., Bettencourt A., Almeida A.J., Gonçalves L.M. Chitosan Nanoparticles ad a Mucoadhesive Drug Delivery System for Ocular Administration. Drugs. 2017;15:370. PubMed PMC

Zhang M., Zhao X. Alginate hydrogel dressings for advanced wound management. Int. J. Biol. Macromol. 2020;162:1414–1428. doi: 10.1016/j.ijbiomac.2020.07.311. PubMed DOI

Akulo K.A., Adali T., Moyo MT G., Bodamyali T. Inravitreal Injectable Hydrogels for Sustained Drug Delivery in Glaucoma Treatment and Therapy. Polymers. 2022;14:2359. doi: 10.3390/polym14122359. PubMed DOI PMC

Laurent S., Forge D., Port M., Roch A., Robic C., Elst L.V., Muller R.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2010;110:2574. doi: 10.1021/cr900197g. PubMed DOI

Gorantla S., Rapalli V.K., Waghule T., Singh P.P., Dubey S.K., Saha R.N., Singhvi G. Nanocarriers for ocular drug delivery: Current status and translational opportunity. RSC Adv. 2020;10:27835–27855. doi: 10.1039/D0RA04971A. PubMed DOI PMC

Dhaliwal K., Dosanjh P., Payá J.S. Biodegradable Polymers and their Role in Drug Delivery Systems. Biomed. J. Sci. Tech. Res. 2018;11:001–006. doi: 10.26717/BJSTR.2018.11.002056. DOI

Gao S., Tang G., Hua D., Xiong R., Han J., Jiang S., Zhang Q., Huang C. Stimuli-responsive bio-based polymeric systems and their applications. J. Mater. Chem. B. 2019;7:709–729. doi: 10.1039/C8TB02491J. PubMed DOI

Cegielska O., Sajkiewicz P. Targeted Drug Delivery Systems for the Treatment of Glaucoma: Most Advanced Systems Review. Polymers. 2019;11:1742. doi: 10.3390/polym11111742. PubMed DOI PMC

Allyn M.M., Luo R.H., Hellwarth E.B., Swindle-Reilly K.E. Considerations for Polymers Used in Ocular Drug Delivery. Front. Med. 2022;8:787644. doi: 10.3389/fmed.2021.787644. PubMed DOI PMC

Ali J., Ali A. Development and validation of UPLC/ESI-Q-TOF-MS for carteolol in aqueous humour: Stability, stress degradation and application in pharmacokinetics of nanoformulation. Arab. J. Chem. 2017;10:S2969–S2978.

Khan N., Khanna K., Bhatnagar A., Ahmad F.J., Ali A. Chitosan coated PLGA nanoparticles amplify the ocular hypotensive effect of forskolin:statistical design, characterization and in vivo studies. Int. J. Biol. Macromol. 2018;116:648–663. doi: 10.1016/j.ijbiomac.2018.04.122. PubMed DOI

Kumara B., Shambhu R., Prasad K.S. Why chitosan could be apt candidate for glaucoma drug delivery—An overview. Int. J. Biol. Macromol. 2021;176:47–65. doi: 10.1016/j.ijbiomac.2021.02.057. PubMed DOI

El-Feky G.S., Zayed G.M., Elshaier Y.A., Alsharif F.M. Chitosan-Gelatin Hydrogel Crosslinked With Oxidized Sucrose for the Ocular Delivery of Timolol Maleate. J. Pharm. Sci. 2018;107:3098–3104. doi: 10.1016/j.xphs.2018.08.015. PubMed DOI

Pakzad Y., Fathi M., Omidi Y., Mozafari M., Zamanian A. Synthesis and characterization of timolol maleate-loaded quaternized chitosan-based thermosensitive hydrogel: A transparent topical ocular delivery system for the treatment of glaucoma. Int. J. Biol. Macromol. 2020;159:117–128. doi: 10.1016/j.ijbiomac.2020.04.274. PubMed DOI

Nguyen D.D., Luo L.-J., Lue S.J., Lai J.-Y. The role of aromatic ring number in phenolic compound-conjugated chitosan injectables for sustained therapeutic antiglaucoma efficacy. Carbohydr. Polym. 2020;231:115770. doi: 10.1016/j.carbpol.2019.115770. PubMed DOI

Nguyen D.D., Luo L., Lai J. Dendritic Effects of Injectable Biodegradable Thermogels on Pharmacotherapy of Inflammatory Glaucoma-Associated Degradation of Extracellular Matrix. Adv. Healthc. Mater. 2019;8:e1900702. doi: 10.1002/adhm.201900702. PubMed DOI

Li J., Tian S., Tao Q., Zhao Y., Gui R., Yang F., Zang L., Chen Y., Ping Q., Hou D. Montmorillonite/chitosan nanoparticles as a novel controlled-release topical ophthalmic delivery system for the treatment of glaucoma. Int. J. Nanomed. 2018;13:3975–3987. doi: 10.2147/IJN.S162306. PubMed DOI PMC

Radwan SE S., El-Moslemany R.M., Mehanna R.A., Thabet E.H., Abdelfattah EZ A., El-Kamel A. Chitosan-coated bovine serum albumin nanoparticles for topical tatrandrine delivery in glaucoma:in vitro and in vivo assessment. Drug Deliv. 2022;29:1150–1163. doi: 10.1080/10717544.2022.2058648. PubMed DOI PMC

Luo L.-J., Nguyen D.D., Lai J.-Y. Dually functional hollow ceria nanoparticle platform for intraocular drug delivery: A push beyond the limits of static and dynamic ocular barriers toward glaucoma therapy. Biomaterials. 2020;243:119961. doi: 10.1016/j.biomaterials.2020.119961. PubMed DOI

Luo L.-J., Nguyen D.D., Lai J.-Y. Benzoic acid derivative-modified chitosan-g-poly(N-isopropylacrylamide): Methoxylation effects and pharmacological treatments of Glaucoma-related neurodegeneration. J. Control. Release. 2020;317:246–258. doi: 10.1016/j.jconrel.2019.11.038. PubMed DOI

Cesar A.L.A., Navarro L.C., Castilho R.O., Goulart G.A.C., Foureaux G., Ferreira A.J., Cronemberger S., Faraco A.A.G. New antiglaucomatous agent for the treatment of open angle glaucoma: Polymeric inserts for drug release and in vitro and in vivo study. J. Biomed. Mater. Res. Part A. 2021;109:336–345. doi: 10.1002/jbm.a.37026. PubMed DOI

Franca J.R., Foureaux G., Fuscaldi L.L., Ribeiro T.G., Castilho R.O., Yoshida M.I., Cardoso V.N., Fernandes S.O.A., Cronemberger S., Nogueira J.C., et al. Chitosan/hydroxyethyl cellulose inserts for sustained-release of dorzolamide for glaucoma treatment: In vitro and in vivo evaluation. Int. J. Pharm. 2019;30:118662. doi: 10.1016/j.ijpharm.2019.118662. PubMed DOI

Dubey V., Mohan P., Dangi J.S., Kesavan K. Brinzolamide loaded chitosan-pectin mucoadhesive nanocapsules for management of glaucoma: Formulation, characterization and pharmacodynamic study. Int. J. Biol. Macromol. 2020;152:1224–1232. doi: 10.1016/j.ijbiomac.2019.10.219. PubMed DOI

Zafar A., Alruwaili N.K., Imam S.S., Alsaidan O.A., Alharbi K.S., Yasir M., Elmowafy M., Ansari M.J., Salahuddin M., Alshehri S. Formulation of carteolol chitosomes for ocular delivery: Formulation optimization, ex-vivo permeation, and ocular toxicity examination. Cutan. Ocul. Toxicol. 2021;40:338–349. doi: 10.1080/15569527.2021.1958225. PubMed DOI

Li J., Jin X., Zhang L., Yang Y., Liu R., Li Z. Comparison of Different Chitosan Lipid Nanoparticles for Improved Ophthalmic Tetrandrine Delivery: Formulation, Characterization, Pharmacokinetic and Molecular Dynamics Simulation. J. Pharm. Sci. 2020;109:3625–3635. doi: 10.1016/j.xphs.2020.09.010. PubMed DOI

Liu S., Han X., Liu H., Zhao Y., Li H., Rupenthal I.D., Lv Z., Chen Y., Yang F., Ping Q., et al. Incorporation of ion exchange functionalized-montmorillonite into solid lipid nanoparticles with low irritation enhances drug bioavailability for glaucoma treatment. Drug Deliv. 2020;27:652–661. doi: 10.1080/10717544.2020.1756984. PubMed DOI PMC

Tian S., Li J., Tao Q., Zhao Y., Lv Z., Yang F., Duan H., Chen Y., Zhou Q., Hou D. Controlled drug delivery for glaucoma therapy using montmorillonite/Eudragit microspheres as an ion-echange carrier. Int. J. Nanomed. 2018;12:415–428. doi: 10.2147/IJN.S146346. PubMed DOI PMC

Zhang W., Li X., Ye T., Chen F., Yu S., Chen J., Yang X., Yang N., Zhang J., Liu J., et al. Nanostructured lipid carrier surface modi fied with Eudragit RS 100 and its potential ophthalmic functions. Int. J. Nanomed. 2014;9:4305–4315. PubMed PMC

Liu H., Han X., Li H., Tao Q., Hu J., Liu S., Liu H., Zhou J., Li W., Yang F., et al. Wettability and contact angle affect precorneal retention and pharmacodynamic behavior of microspheres. Drug Deliv. 2021;28:2011–2023. doi: 10.1080/10717544.2021.1981493. PubMed DOI PMC

Cheng Y.-H., Ko Y.-C., Chang Y.-F., Huang S.-H., Liu C.J.-L. Thermosensitive chitosan-gelatin-based hydrogel containing curcumin-loaded nanoparticles and latanoprost as a dual-drug delivery system for glaucoma treatment. Exp. Eye Res. 2019;179:179–187. doi: 10.1016/j.exer.2018.11.017. PubMed DOI

Donia M., Osman R., Awad G.A.S., Mortada N. Polypeptide and glycosaminoglycan polysacharide as stabilizing polymers in nanocrystals for a safe ocular hypotensive effect. Int. J. Biol. Macromol. 2020;162:1699–1710. doi: 10.1016/j.ijbiomac.2020.07.306. PubMed DOI

Wani S.U.D., Masoodi M.H., Gautam S.P., Shivakumar H.G., Alshehri S., Ghoneim M.M., Alam P., Shakeel F. Promising Role of Silk-Based Biomaterials for Ocular-Based Drug Delivery and Tissue Engineering. Polymers. 2022;14:5475. doi: 10.3390/polym14245475. PubMed DOI PMC

Cegielska O., Sierakowski M., Sajkiewicz P., Lorenz K., Kogermann K. Mucoadhesive brinzolamide-loaded nanofibers for alternative glaucoma treatment. Eur. J. Pharm. Biopharm. 2022;180:48–62. doi: 10.1016/j.ejpb.2022.09.008. PubMed DOI

Sharma P.K., Chauhan M.K. Optimization and Characterization of Brimonidine Tartrate Nanoparticles-loaded In Situ Gel for the Treatment of Glaucoma. Curr. Eye Res. 2021;46:1703–1716. doi: 10.1080/02713683.2021.1916037. PubMed DOI

Wang J., Li B., Huang D., Norat P., Grannonico M., Cooper R.C., Gui Q., Chow W.N., Liu X., Yang H. Nano-in-Nano Dendrimer Gel Particles for Efficient Topical Delivery of Antiglaucoma Drugs into the Eye. Chem. Eng. J. 2021;425:130498. doi: 10.1016/j.cej.2021.130498. PubMed DOI PMC

Jeong H., Park S., Park K., Kim M., Hong J. Sustained Nitric Oxide-Providing Small Molecule and Precise Release Behavior Study for Glaucoma Treatment. Mol. Pharm. 2020;17:656–665. doi: 10.1021/acs.molpharmaceut.9b01137. PubMed DOI

Hu C., Sun J., Zhang Y., Chen J., Lei Y., Sun X., Deng Y. Local Delivery and Sustained-Release of Nitric Oxide Donor Loaded in Mesoporous Silica Particles for Efficient Treatment of Primary Open-Angle Glaucoma. Adv. Healthc. Mater. 2018;7:e1801047. doi: 10.1002/adhm.201801047. PubMed DOI

Song J., Zhang Z. Brinzolamide loaded core-shell nanoparticles for enhanced coronial penetration in the treatment of glaucoma. J. Appl. Biomater. Funct. Mater. 2020;18:2280800020942712. doi: 10.1177/2280800020942712. PubMed DOI

Vishwaraj C.R., Kavitha S., Venkatesh R., Shukla A.G., Chandran P., Tripathi S. Neuroprotection in glaucoma. Indian. J. Ophthalmol. 2022;70:380–385. PubMed PMC

Arranz-Romera A., Davis B.M., Bravo-Osuna I., Esteban-Pérez S., Molina-Martínez I.T., Shamsher E., Ravindran N., Guo L., Cordeiro M.F., Herrero-Vanrell R. Simultaneous co-delivery of neuroprotective drugs from multi-loaded PLGA microspheres for the treatment of glaucoma. J. Control. Release. 2019;297:26–38. doi: 10.1016/j.jconrel.2019.01.012. PubMed DOI

Silva B., Gonçalves L.M., Braz B.S., Delgado E. Chitosan and Hyaluronic Acid Nanoparticles as Vehicles of Epoetin Beta for Subconjunctival Ocular Delivery. Mar. Drugs. 2022;20:151. doi: 10.3390/md20020151. PubMed DOI PMC

Garcia-Feijoo J. CyPass stent withdrawal: The end of suprachoroidal MIGS? Arch. Soc. Esp. Oftalmol. (Engl. Ed.) 2019;94:1–3. doi: 10.1016/j.oftal.2018.10.016. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...