Lithium rescues cultured rat metatarsals from dexamethasone-induced growth failure

. 2024 Sep ; 96 (4) : 952-963. [epub] 20240429

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38684886
Odkazy

PubMed 38684886
PubMed Central PMC11502490
DOI 10.1038/s41390-024-03192-6
PII: 10.1038/s41390-024-03192-6
Knihovny.cz E-zdroje

BACKGROUND: Glucocorticoids are commonly used in children with different chronic diseases. Growth failure represents a so far untreatable undesired side-effect. As lithium chloride (LiCl) is known to induce cell renewal in various tissues, we hypothesized that LiCl may prevent glucocorticoid-induced growth failure. METHODS: We monitored growth of fetal rat metatarsals cultured ex-vivo with dexamethasone and/or LiCl, while molecular mechanisms were explored through RNA sequencing by implementing the differential gene expression and gene set analysis. Quantification of β-catenin in human growth plate cartilage cultured with dexamethasone and/or LiCl was added for verification. RESULTS: After 14 days of culture, the length of dexamethasone-treated fetal rat metatarsals increased by 1.4 ± 0.2 mm compared to 2.4 ± 0.3 mm in control bones (p < 0.001). The combination of LiCl and dexamethasone led to bone length increase of 1.9 ± 0.3 mm (p < 0.001 vs. dexamethasone alone). By adding lithium, genes for cell cycle and Wnt/β-catenin, Hedgehog and Notch signaling, were upregulated compared to dexamethasone alone group. CONCLUSIONS: LiCl has the potential to partially rescue from dexamethasone-induced bone growth impairment in an ex vivo model. Transcriptomics identified cell renewal and proliferation as candidates for the underlying mechanisms. Our observations may open up the development of a new treatment strategy for bone growth disorders. IMPACT: LiCl is capable to prevent glucocorticoid-induced growth failure in rat metatarsals in vitro. The accompanying drug-induced transcriptomic changes suggested cell renewal and proliferation as candidate underlying mechanisms. Wnt/beta-catenin pathway could be one of those novel mechanisms.

Zobrazit více v PubMed

Ciancia, S. et al. Osteoporosis in Children and Adolescents: When to Suspect and How to Diagnose It. Eur. J. Pediatr.181, 2549–2561 (2022). PubMed PMC

Blodgett, F. M., Burgin, L., Iezzoni, D., Gribetz, D. & Talbot, N. B. Effects of Prolonged Cortisone Therapy on the Statural Growth, Skeletal Maturation and Metabolic Status of Children. N. Engl. J. Med.254, 636–641 (1956). PubMed

Rygg, M. et al. A Longitudinal Printo Study on Growth and Puberty in Juvenile Systemic Lupus Erythematosus. Ann. Rheum. Dis.71, 511–517 (2012). PubMed

Luo, J. M. & Murphy, L. J. Dexamethasone Inhibits Growth Hormone Induction of Insulin-Like Growth Factor-I (Igf-I) Messenger Ribonucleic Acid (Mrna) in Hypophysectomized Rats and Reduces Igf-I Mrna Abundance in the Intact Rat. Endocrinology125, 165–171 (1989). PubMed

Chrysis, D., Ritzen, E. M. & Savendahl, L. Growth Retardation Induced by Dexamethasone Is Associated with Increased Apoptosis of the Growth Plate Chondrocytes. J. Endocrinol.176, 331–337 (2003). PubMed

Zaman, F., Chrysis, D., Huntjens, K., Fadeel, B. & Savendahl, L. Ablation of the Pro-Apoptotic Protein Bax Protects Mice from Glucocorticoid-Induced Bone Growth Impairment. PLoS One7, e33168 (2012). PubMed PMC

Ohnaka, K., Tanabe, M., Kawate, H., Nawata, H. & Takayanagi, R. Glucocorticoid Suppresses the Canonical Wnt Signal in Cultured Human Osteoblasts. Biochem. Biophys. Res. Commun.329, 177–181 (2005). PubMed

Naito, M., Ohashi, A. & Takahashi, T. Dexamethasone Inhibits Chondrocyte Differentiation by Suppression of Wnt/Beta-Catenin Signaling in the Chondrogenic Cell Line Atdc5. Histochem. Cell Biol.144, 261–272 (2015). PubMed

Baron, R. & Kneissel, M. Wnt Signaling in Bone Homeostasis and Disease: From Human Mutations to Treatments. Nat. Med.19, 179–192 (2013). PubMed

Zhu, Z. et al. Lithium Stimulates Human Bone Marrow Derived Mesenchymal Stem Cell Proliferation through Gsk-3beta-Dependent Beta-Catenin/Wnt Pathway Activation. FEBS J.281, 5371–5389 (2014). PubMed

Smith, E., Coetzee, G. A. & Frenkel, B. Glucocorticoids Inhibit Cell Cycle Progression in Differentiating Osteoblasts Via Glycogen Synthase Kinase-3beta. J. Biol. Chem.277, 18191–18197 (2002). PubMed

Cade, J. F. Lithium Salts in the Treatment of Psychotic Excitement. Med J. Aust.2, 349–352 (1949). PubMed

Berger, G. E. et al. Neuroprotective Effects of Low-Dose Lithium in Individuals at Ultra-High Risk for Psychosis. A Longitudinal Mri/Mrs Study. Curr. Pharm. Des.18, 570–575 (2012). PubMed

Findling, R. L. et al. Combination Lithium and Divalproex Sodium in Pediatric Bipolar Symptom Re-Stabilization. J. Am. Acad. Child Adolesc. Psychiatry45, 142–148 (2006). PubMed

Bagi, C. & Burger, E. H. Mechanical Stimulation by Intermittent Compression Stimulates Sulfate Incorporation and Matrix Mineralization in Fetal Mouse Long-Bone Rudiments under Serum-Free Conditions. Calcif. Tissue Int.45, 342–347 (1989). PubMed

De Luca, F. et al. Regulation of Growth Plate Chondrogenesis by Bone Morphogenetic Protein-2. Endocrinology142, 430–436 (2001). PubMed

Eriksson, E. et al. Bortezomib Is Cytotoxic to the Human Growth Plate and Permanently Impairs Bone Growth in Young Mice. PLoS One7, e50523 (2012). PubMed PMC

Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. Nih Image to Imagej: 25 Years of Image Analysis. Nat. Methods9, 671–675 (2012). PubMed PMC

Anders, S., Pyl, P. T. & Huber, W. Htseq-a Python Framework to Work with High-Throughput Sequencing Data. Bioinformatics31, 166–169 (2015). PubMed PMC

Love, M. I., Huber, W. & Anders, S. Moderated Estimation of Fold Change and Dispersion for Rna-Seq Data with Deseq2. Genome Biol.15, 550 (2014). PubMed PMC

Wu, D. & Smyth, G. K. Camera: A Competitive Gene Set Test Accounting for Inter-Gene Correlation. Nucleic Acids Res.40, e133 (2012). PubMed PMC

Zaman, F. et al. Dexamethasone Differentially Regulates Bcl-2 Family Proteins in Human Proliferative Chondrocytes: Role of Pro-Apoptotic Bid. Toxicol. Lett.224, 196–200 (2014). PubMed

R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2019).

Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving Bioscience Research Reporting: The Arrive Guidelines for Reporting Animal Research. PLoS Biol.8, e1000412 (2010). PubMed PMC

Minashima, T., Zhang, Y., Lee, Y. & Kirsch, T. Lithium Protects against Cartilage Degradation in Osteoarthritis. Arthritis. Rheumatol.66, 1228–1236 (2014). PubMed

Thompson, C. L. et al. Lithium Chloride Prevents Interleukin-1β Induced Cartilage Degradation and Loss of Mechanical Properties. J. Orthop. Res.33, 1552–1559 (2015). PubMed PMC

Hui, W. et al. Lithium Protects Cartilage from Cytokine-Mediated Degradation by Reducing Collagen-Degrading Mmp Production Via Inhibition of the P38 Mitogen-Activated Protein Kinase Pathway. Rheumatology49, 2043–2053 (2010). PubMed

Lozanoff, S., Sciulli, P. W. & Negulesco, J. A. The Effect of Lithium Carbonate Administration on Growth in the Domestic Fowl. Growth49, 91–104 (1985). PubMed

Chen, Y. et al. Beta-Catenin Signaling Plays a Disparate Role in Different Phases of Fracture Repair: Implications for Therapy to Improve Bone Healing. PLoS Med.4, e249 (2007). PubMed PMC

Lieu, C. A. et al. Lithium Prevents Parkinsonian Behavioral and Striatal Phenotypes in an Aged Parkin Mutant Transgenic Mouse Model. Brain Res.1591, 111–117 (2014). PubMed PMC

Xu, W., Ge, Y., Liu, Z. & Gong, R. Glycogen Synthase Kinase 3beta Orchestrates Microtubule Remodeling in Compensatory Glomerular Adaptation to Podocyte Depletion. J. Biol. Chem.290, 1348–1363 (2015). PubMed PMC

Zanni, G. et al. Lithium Treatment Reverses Irradiation-Induced Changes in Rodent Neural Progenitors and Rescues Cognition. Mol. Psychiatry26, 322–340 (2021). PubMed PMC

Thompson, C. L., Wiles, A., Poole, C. A. & Knight, M. M. Lithium Chloride Modulates Chondrocyte Primary Cilia and Inhibits Hedgehog Signaling. FASEB J.30, 716–726 (2016). PubMed

Zhou, X. et al. Chondroprotective Effects of Palmatine on Osteoarthritis in Vivo and in Vitro: A Possible Mechanism of Inhibiting the Wnt/Beta-Catenin and Hedgehog Signaling Pathways. Int. Immunopharmacol.34, 129–138 (2016). PubMed

Ding, L. et al. Beta‑Catenin Signalling Inhibits Cartilage Endplate Chondrocyte Homeostasis in Vitro. Mol. Med. Rep.20, 567–572 (2019). PubMed PMC

Guidotti, S. et al. Lithium Chloride Dependent Glycogen Synthase Kinase 3 Inactivation Links Oxidative DNA Damage, Hypertrophy and Senescence in Human Articular Chondrocytes and Reproduces Chondrocyte Phenotype of Obese Osteoarthritis Patients. PLoS One10, e0143865 (2015). PubMed PMC

Zieba, J. T., Chen, Y. T., Lee, B. H. & Bae, Y. Notch Signaling in Skeletal Development, Homeostasis and Pathogenesis. Biomolecules10, 332 (2020). PubMed PMC

Kronenberg, H. M. Developmental Regulation of the Growth Plate. Nature423, 332–336 (2003). PubMed

Chagin, A. S., Karimian, E., Sundstrom, K., Eriksson, E. & Savendahl, L. Catch-up Growth after Dexamethasone Withdrawal Occurs in Cultured Postnatal Rat Metatarsal Bones. J. Endocrinol.204, 21–29 (2010). PubMed

Sproule, B. Lithium in Bipolar Disorder: Can Drug Concentrations Predict Therapeutic Effect? Clin. Pharmacokinet.41, 639–660 (2002). PubMed

McKnight, R. F. et al. Lithium Toxicity Profile: A Systematic Review and Meta-Analysis. Lancet379, 721–728 (2012). PubMed

Ehrlich, B. E., Clausen, C. & Diamond, J. M. Lithium Pharmacokinetics: Single-Dose Experiments and Analysis Using a Physiological Model. J. Pharmacokinet. Biopharm.8, 439–461 (1980). PubMed

Ryves, W. J. & Harwood, A. J. Lithium Inhibits Glycogen Synthase Kinase-3 by Competition for Magnesium. Biochem. Biophys. Res. Commun.280, 720–725 (2001). PubMed

Kawasaki, Y. et al. Phosphorylation of GSK-3beta by cGMP-dependent protein kinase II promotes hypertrophic differentiation of murine chondrocytes. J. Clin. Invest.118, 2506–2515 (2008). PubMed PMC

Ning, B. et al. Dual function of beta-catenin in articular cartilage growth and degeneration at different stages of postnatal cartilage development. Int. Orthop.36, 655–664 (2012). PubMed PMC

Krase, A., Abedian, R., Steck, E., Hurschler, C. & Richter, W. BMP activation and Wnt-signalling affect biochemistry and functional biomechanical properties of cartilage tissue engineering constructs. Osteoarthr. Cartil.22, 284–292 (2014). PubMed

Thompson, C. L. et al. Chondrocyte expansion is associated with loss of primary cilia and disrupted hedgehog signalling. Eur. Cell Mater.34, 128–141 (2017). PubMed

Soave, A., Chiu, L. L. Y., Momin, A. & Waldman, S. D. Lithium chloride-induced primary cilia recovery enhances biosynthetic response of chondrocytes to mechanical stimulation. Biomech. Model Mechanobiol.21, 605–614 (2022). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...