Six-year monitoring of pesticide resistance in the Colorado potato beetle (Leptinotarsa decemlineata Say) during a neonicotinoid restriction period
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
38709762
PubMed Central
PMC11073731
DOI
10.1371/journal.pone.0303238
PII: PONE-D-23-41546
Knihovny.cz E-zdroje
- MeSH
- brouci * účinky léků MeSH
- dursban * farmakologie MeSH
- insekticidy * farmakologie MeSH
- larva účinky léků MeSH
- neonikotinoidy * farmakologie MeSH
- nitrily farmakologie MeSH
- pyrethriny farmakologie MeSH
- rezistence k insekticidům * MeSH
- Solanum tuberosum parazitologie MeSH
- thiamethoxam MeSH
- thiaziny * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- cyhalothrin MeSH Prohlížeč
- dursban * MeSH
- insekticidy * MeSH
- neonikotinoidy * MeSH
- nitrily MeSH
- pyrethriny MeSH
- thiacloprid MeSH Prohlížeč
- thiamethoxam MeSH
- thiaziny * MeSH
The Colorado potato beetle (CPB; Leptinotarsa decemlineata) is an important potato pest with known resistance to pyrethroids and organophosphates in Czechia. Decreased efficacy of neonicotinoids has been observed in last decade. After the restriction of using chlorpyrifos, thiacloprid and thiamethoxam by EU regulation, growers seek for information about the resistance of CPB to used insecticides and recommended antiresistant strategies. The development of CPB resistance to selected insecticides was evaluated in bioassays in 69 local populations from Czechia in 2017-2022 and in 2007-2022 in small plot experiments in Zabcice in South Moravia. The mortality in each subpopulation in the bioassays was evaluated at the field-recommended rates of insecticides to estimate the 50% and 90% lethal concentrations (LC50 and LC90, respectively). High levels of CPB resistance to lambda-cyhalothrin and chlorpyrifos were demonstrated throughout Czechia, without significant changes between years and regions. The average mortality after application of the field-recommended rate of lambda-cyhalothrin was influenced by temperature before larvae were sampled for bioassays and decreased with increasing temperature in June. Downwards trends in the LC90 values of chlorpyrifos and the average mortality after application of the field-recommended rate of acetamiprid in the bioassay were recorded over a 6-year period. The baseline LC50 value (with 95% confidence limit) of 0.04 mg/L of chlorantraniliprole was established for Czech populations of CPBs for the purpose of resistance monitoring in the next years. Widespread resistance to pyrethroids, organophosphates and neonicotinoids was demonstrated, and changes in anti-resistant strategies to control CPBs were discussed.
Crop Research Institute Drnovska 507 73 Ruzyne Czechia
Department of Protection Potato Research Institute Havlickuv Brod Ltd Havlickuv Brod Czechia
Zobrazit více v PubMed
Alyokhin A, Baker M, Mota-Sanchez D, Dively G, Grafius E. Colorado potato beetle resistance to insecticides. Am J Potato Res. 2008; 85(6): 395–413. 10.1007/s12230-008-9052-0. DOI
Quinton RJ. DDT-resistant Colorado potato beetles? Proc North Centr Entomol Soc Am. 1955; 9: 94–95.
Hofmaster RN, Waterfield RL, Boyd JC. Insecticides applied to the soil for control of eight species of insects on Irish potatoes in Virginia. J Econ Entomol. 1967; 60(5): 1311–1318. 10.1093/jee/60.5.1311. DOI
Hurkova J. DDT resistance in the Colorado potato beetle (Leptinotarsa decemlineata Say) in Czechoslovakia. Acta Entomol Bohemoslov. 1968; 65: 188–207.
Ioannidis PM, Grafius E, Whalon ME. Patterns of insecticide resistance to azinphosmethyl, carbofuran, and permethrin in the Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol. 1991; 84(5): 1417–1423. 10.1093/jee/84.5.1417. DOI
Noronha C, Duke GM, Chinn JM, Goettel MS. Differential susceptibility to insecticides by Leptinotarsa decemlineata [Coleoptera: Chrysomelidaee] populations from western Canada. Phytoprotection. 2001; 82(3): 113–121. 10.7202/706221ar. DOI
Zhao J-Z, Bishop B-A, Grafius EJ. Inheritance and synergism of resistance to imidacloprid in the Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol. 2000; 93(5): 1508–1151. doi: 10.1603/0022-0493-93.5.1508 PubMed DOI
Schnaars-Uvino K, Baker MB. High-level field-evolved resistance to spinosad in Colorado potato beetle, Leptinotarsa decemlineata, in organically managed fields. Pest Manag Sci 2021; 77(10): 4393–4399. 10.1002/ps.6473. PubMed DOI
Zichova T, Kocourek F, Salava J, Nadova K, Stara J. Detection of organophosphate and pyrethroid resistance alleles in Czech Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) populations by molecular methods. Pest Manag Sci. 2010; 66(8): 853–860. doi: 10.1002/ps.1952 PubMed DOI
Mota-Sanchez D, Hollingworth RM, Grafius EJ, Moyer DD. Resistance and cross-resistance to neonicotinoid insecticides and spinosad in the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). Pest Manag Sci 2006; 62(1): 30–37. doi: 10.1002/ps.1120 PubMed DOI
Alyokhin A, Dively G, Patterson M, Castaldo C, Rogers D, Mahoney M, et al.. Resistance and cross-resistance to imidacloprid and thiamethoxam in the Colorado potato beetle Leptinotarsa decemlineata. Pest Manag Sci. 2007; 63(1): 32–41. 10.1002/ps.1305. PubMed DOI
Szendrei Z, Grafius E, Byrne A, Ziegler A. Resistance to neonicotinoid insecticides in field populations of the Colorado potato beetle (Coleoptera: Chrysomelidae). Pest Manag Sci. 2012; 68(6): 941–946. doi: 10.1002/ps.3258 PubMed DOI
Jiang W-H, Wang Z-T, Xiong M-H, Lu W-P, Liu P, Guo W-C, et al.. Insecticide resistance status of Colorado potato beetle (Coleoptera: Chrysomelidae) adults in northern Xinjiang Uygur Autonomous Region. J Econ Entomol. 2010; 103(4): 1365–1371. doi: 10.1603/ec10031 PubMed DOI
Sladan S, Kostic M, Sivcev I, Jankovic S, Kljajic P, Todorovic G, et al.. Resistance of Colorado potato beetle (Coleoptera: Chrysomelidae) to neonicotinoids, pyrethroids and nereistoxins in Serbia. Rom Biotechnol Lett. 2012; 17(5): 7599–7609.
Kaplanoglu E, Chapman P, Scott IM, Donly C. Overexpression of a cytochrome P450 and a UDP-glycosyltransferase is associated with imidacloprid resistance in the Colorado potato beetle, Leptinotarsa decemlineata. Sci Rep. 2017; 7(1): 1762. 10.1038/s41598-017-01961-4. PubMed DOI PMC
Insecticide Resistance Action Committee (IRAC). The IRAC mode of action classification. Insecticide Resistance Action Committee. Insecticide Resistance Action Committee (IRAC); 2023. Available from: https://irac-online.org/mode-of-action/classification-online/.
Scott IM, Tolman JH, MacArthur DC. Insecticide resistance and cross-resistance development in Colorado potato beetle Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae) populations in Canada 2008–2011. Pest Manag Sci. 2015; 71(5): 712–721. 10.1002/ps.3833. PubMed DOI
Olson ER, Dively GP, Nelson JO. Baseline susceptibility to imidacloprid and cross resistance patterns in Colorado potato beetle (Coleoptera: Chrysomelidae) populations. J Econ Entomol. 2000; 93(2):447–458. doi: 10.1603/0022-0493-93.2.447 PubMed DOI
Alyokhin A, Mota-Sanchez D, Baker M, Snyder WE, Menasha S, Whalon M, et al.. The Red Queen in a potato field: integrated pest management versus chemical dependency in Colorado potato beetle control. Pest Manag Sci. 2015; 71(3):343–356. doi: 10.1002/ps.3826 PubMed DOI
Clements J, Schoville S, Peterson N, Lan Q, Groves RL. Characterizing molecular mechanisms of imidacloprid resistance in select populations of Leptinotarsa decemlineata in the Central Sands region of Wisconsin. PLoS ONE 2016; 11(1): e0147844. 10.1371/journal.pone.0147844. PubMed DOI PMC
Sial AA, Brunner JF, Doerr MD. Susceptibility of Choristoneura rosaceana (Lepidoptera: Tortricidae) to two new reduced-risk insecticides. J Econ Entomol. 2010; 103(1): 140–146. 10.1603/EC09238. PubMed DOI
Su J, Lai T, Li J. Susceptibility of field populations of Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) in China to chlorantraniliprole and the activities of detoxification enzymes. Crop Prot. 2012; 42: 217–222. 10.1016/j.cropro.2012.06.012. DOI
Wang X, Khakame SK, Ye C, Yang Y, Wu Y. Characterisation of field-evolved resistance to chlorantraniliprole in the diamondback moth, Plutella xylostella, from China. Pest Manag Sci. 2013; 69(5): 661–665. 10.1002/ps.3422. PubMed DOI
Jiang W-H, Lu W-P, Guo W-C, Xia Z-H, Fu W-J, Li G-Q. Chlorantraniliprole susceptibility in Leptinotarsa decemlineata in the north Xinjiang Uygur Autonomous Region in China. J Econ Entomol. 2012; 105(2): 549–554. 10.1603/ec11194. PubMed DOI
Wraight SP, Ramos ME. Delayed efficacy of Beauveria bassiana foliar spray applications against Colorado potato beetle: impacts of number and timing of applications on larval and next-generation adult populations. Biol Control. 2015; 83: 51–67. 10.1016/j.biocontrol.2014.12.019. DOI
Hlavkova D, Skokova Habustova O, Puza V, Vinokurov K, Kodrik D. Role of adipokinetic hormone in the Colorado potato beetle, Leptinotarsa decemlineata infected with the entomopathogenic nematode Steinernema carpocapsae. Comp Biochem Physiol C Toxicol Pharmacol. 2022; 262: 109466. 10.1016/j.cbpc.2022.109466. PubMed DOI
Goldel B, Lemic D, Bazok R. Alternatives to synthetic insecticides in the control of the Colorado potato beetle (Leptinotarsa decemlineata Say) and their environmental benefits. Agriculture. 2020; 10(12): 611. 10.3390/agriculture10120611. DOI
Kadoic Balasko M, Mikac KM, Bazok R, Lemic D. Modern techniques in Colorado potato beetle (Leptinotarsa decemlineata Say) control and resistance management: history review and future perspectives. Insects. 2020; 11(9): 581. 10.3390/insects11090581. PubMed DOI PMC
Chen YH, Cohen ZP, Bueno EM, Christensen BM, Schoville SD. Rapid evolution of insecticide resistance in the Colorado potato beetle, Leptinotarsa decemlineata. Curr Opin Insect Sci. 2023; 55: 101000. 10.1016/j.cois.2022.101000. PubMed DOI
Pelissie B, Chen YH, Cohen ZP, Crossley MS, Hawthorne DJ, Izzo V, et al.. Genome resequencing reveals rapid, repeated evolution in the Colorado potato beetle. Mol Biol Evol. 2022; 39(2): msac016. doi: 10.1093/molbev/msac016 PubMed DOI PMC
Huseth AS, Petersen JD, Poveda K, Szendrei Z, Nault BA, Kennedy GG, et al.. Spatial and temporal potato intensification drives insecticide resistance in the specialist herbivore, Leptinotarsa decemlineata. PLoS ONE. 2015; 10(6): e0127576. 10.1371/journal.pone.0127576. PubMed DOI PMC
Grapputo A, Boman S, Lindstrom L, Lyytinen A, Mappes J. The voyage of an invasive species across continents: genetic diversity of North American and European Colorado potato beetle populations. Mol Ecol. 2005; 14(14): 4207–4219. doi: 10.1111/j.1365-294X.2005.02740.x PubMed DOI
Henderson CF, Tilton EW. Tests with acaricides against the brown wheat mite. J Econ Entomol. 1955; 48(2): 157–161. 10.1093/jee/48.2.157. DOI
R Development Core Team. (2023) R: a language and environment for statistical computing, version 4.3.1. Vienna: R Foundation for Statistical Computing; 2023. Available from: http://www.R-project.org.
Rouder JN, Speckman PL, Sun D, Morey RD, Iverson G. Bayesian t tests for accepting and rejecting the null hypothesis. Psychon Bull Rev. 2009; 16(2): 225–237. doi: 10.3758/PBR.16.2.225 PubMed DOI
Rouder JN, Morey RD, Speckman PL, Province JM. Default Bayes factors for ANOVA designs. J Math Psychol. 2012; 56(5): 356–374. 10.1016/j.jmp.2012.08.001. DOI
Morey RD, Rouder JN, Jamil T, Urbanek S, Forner K, Ly A. BayesFactor: computation of Bayes factors for common designs. R package version 0.9.12–4.5. CRAN—The Comprehensive R Archive Network, 2023. Available from: https://cran.r-project.org/web/packages/BayesFactor/.
Czech Statistical Office (CZSO). Areas under crops as at 31 May 2023 in Czechia. Prague: Czech Statistical Office (CZSO); 2023. Available from: https://vdb.czso.cz/vdbvo2/faces/en/index.jsf?page=vystup-objekt&f=TABULKA&z=T&skupId=346&katalog=30840&pvo=ZEM03A&pvo=ZEM03A&evo=v1982_!_ZEM03A-2023T_1.
European Commission (EC). Commission Implementing Regulation (EU) No 485/2013 of 24 May 2013 amending Implementing Regulation (EU) No 540/2011, as regards the conditions of approval of the active substances clothianidin, thiamethoxam and imidacloprid, and prohibiting the use and sale of seeds treated with plant protection products containing those active substances. Document 32013R0485. Off J Eur Union. 2013; OJ L 139, 25.5.2013: 12–26. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1484755697880&uri=CELEX:32013R0485.
European Commission (EC). Commission Implementing Regulation (EU) 2020/18 of 10 January 2020 concerning the non-renewal of the approval of the active substance chlorpyrifos, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. Document 32020R0018. Off J Eur Union. 2020; OJ L 7: 14–16. Available from: https://eur-lex.europa.eu/eli/reg_impl/2020/18/oj.
European Commission (EC). Commission Implementing Regulation (EU) 2020/23 of 13 January 2020 concerning the non-renewal of the approval of the active substance thiacloprid, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. Document 32020R0023. Off J Eur Union. 2020; OJ L 8, 14.1.2020: 8–11. Available from: https://eur-lex.europa.eu/eli/reg_impl/2020/23/oj.
Brevik K, Schoville SD, Mota-Sanchez D, Chen YH. Pesticide durability and the evolution of resistance: a novel application of survival analysis. Pest Manag Sci. 2018; 74(8): 1953–1963. doi: 10.1002/ps.4899 PubMed DOI
Clements J, Schoville S, Clements N, Chapman S, Groves RL. Temporal patterns of imidacloprid resistance throughout a growing season in Leptinotarsa decemlineata populations. Pest Manag Sci. 2017; 73(3): 641–650. 10.1002/ps.4480. PubMed DOI PMC
Crossley MS, Chen YH, Groves RL, Schoville SD. Landscape genomics of Colorado potato beetle provides evidence of polygenic adaptation to insecticides. Mol Ecol. 2017; 26(22): 6284–6300. doi: 10.1111/mec.14339 PubMed DOI
Dively GP, Crossley MS, Schoville SD, Steinhauer N, Hawthorne DJ. Regional differences in gene regulation may underlie patterns of sensitivity to novel insecticides in Leptinotarsa decemlineata. Pest Manag Sci. 2020; 76(12): 4278–4285. 10.1002/ps.5992. PubMed DOI
Kryukov VY, Rotskaya U, Yaroslavtseva O, Polenogova O, Kryukova N, Akhanaev Y, et al.. Fungus Metarhizium robertsii and neurotoxic insecticide affect gut immunity and microbiota in Colorado potato beetles. Sci Rep. 2021; 11(1): 1299. 10.1038/s41598-020-80565-x. PubMed DOI PMC
Stara J, Kocourek F. Seven-year monitoring of pyrethroid resistance in the pollen beetle (Brassicogethes aeneus F.) during implementation of insect resistance management. Pest Manag Sci. 2018; 74(1): 200–209. doi: 10.1002/ps.4695 PubMed DOI
Wiktelius S. Wind dispersal of insects. Grana 1981; 20(3): 205–207. 10.1080/00173138109427667. DOI
Ferro DN, Logan JA, Voss RH, Elkinton JS. Colorado potato beetle (Coleoptera: Chrysomelidae) temperature-dependent growth and feeding rates. Environ Entomol. 1985; 14(3): 343–348. 10.1093/ee/14.3.343. DOI
Klein C, Baker M, Alyokhin A, Mota-Sanchez D. Geographic variation in dominance of spinosad resistance in Colorado potato beetles (Coleoptera: Chrysomelidae). J Econ Entomol. 2021; 114(1): 320–325. doi: 10.1093/jee/toaa274 PubMed DOI