Electrical Stimulation-Based Twitch Exercise Suppresses Progression of Immobilization-Induced Muscle Fibrosis via Downregulation of PGC-1?/VEGF Pathway
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
38710059
PubMed Central
PMC11081190
DOI
10.33549/physiolres.935212
PII: 935212
Knihovny.cz E-zdroje
- MeSH
- down regulace * MeSH
- elektrická stimulace MeSH
- elektrostimulační terapie metody MeSH
- fibróza * MeSH
- kondiční příprava zvířat fyziologie MeSH
- kosterní svaly * metabolismus patologie MeSH
- krysa rodu Rattus MeSH
- nemoci svalů metabolismus patologie prevence a kontrola etiologie MeSH
- potkani Wistar MeSH
- PPARGC1A * metabolismus MeSH
- progrese nemoci MeSH
- signální transdukce fyziologie MeSH
- vaskulární endoteliální růstový faktor A * metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Ppargc1a protein, rat MeSH Prohlížeč
- PPARGC1A * MeSH
- vascular endothelial growth factor A, rat MeSH Prohlížeč
- vaskulární endoteliální růstový faktor A * MeSH
This study aimed to determine whether electrical stimulation-based twitch exercise is effective in inhibiting the progression of immobilization-induced muscle fibrosis. 19 Wistar rats were randomly divided into a control group (n=6), an immobilization group (n=6; with immobilization only), and a Belt group (n=7; with immobilization and twitch exercise through the belt electrode device, beginning 2 weeks after immobilization). The bilateral soleus muscles were harvested after the experimental period. The right soleus muscles were used for histological analysis, and the left soleus muscles were used for biochemical and molecular biological analysis. As a result, in the picrosirius red images, the perimysium and endomysium were thicker in both the immobilization and Belt groups compared to the control group. However, the perimysium and endomysium thickening were suppressed in the Belt group. The hydroxyproline content and alpha-SMA, TGF-beta1, and HIF-1alpha mRNA expressions were significantly higher in the immobilization and belt groups than in the control group. These expressions were significantly lower in the Belt group than in the immobilization group. The capillary-to-myofiber ratio and the mRNA expressions of VEGF and PGC-1alpha were significantly lower in the immobilization and belt groups than in the control group, these were significantly higher in the Belt group than in the immobilization group. From these results, Electrical stimulation-based twitch exercise using the belt electrode device may prevent the progression of immobilization-induced muscle fibrosis caused by downregulating PGC-1alpha/VEGF pathway, we surmised that this intervention strategy might be effective against the progression of muscle contracture. Keywords: Immobilization, Skeletal muscle, Fibrosis, Electrical stimulation-based twitch exercise, PGC-1alpha/VEGF pathway.
Zobrazit více v PubMed
Honda Y, Tanaka M, Tanaka N, Sasabe R, Goto K, Kataoka H, Sakamoto J, Nakano J, Okita M. Relationship between extensibility and collagen expression in immobilized rat skeletal muscle. Muscle Nerve. 2018;57(4):672–678. doi: 10.1002/mus.26011. PubMed DOI
Honda Y, Sakamoto J, Nakano J, Kataoka H, Sasabe R, Goto K, Tanaka M, Origuchi T, Yoshimura T, Okita M. Upregulation of interleukin-1β/transforming growth factor-β1 and hypoxia relate to molecular mechanisms underlying immobilization-induced muscle contracture. Muscle Nerve. 2015;52(3):419–427. doi: 10.1002/mus.24558. PubMed DOI
Thom R, Rowe GC, Jang C, Safdar A, Arany Z. Hypoxic induction of vascular endothelial growth factor (VEGF) and angiogenesis in muscle by truncated peroxisome proliferator-activated receptor γ coactivator (PGC)-1α. J Biol Chem. 2014;289(13):8810–8817. doi: 10.1074/jbc.M114.554394. PubMed DOI PMC
Joyner MJ, Casey DP. Muscle blood flow, hypoxia, and hypoperfusion. J Appl Physiol. 2014;116(7):852–857. doi: 10.1152/japplphysiol.00620.2013. PubMed DOI PMC
Arany Z, Foo SY, Ma Y, Ruas JL, Bommi-Reddy A, Girnun G, Cooper M, Laznik D, Chinsomboon J, Rangwala SM, Baek KH, Rosenzweig A, Spiegelman BM. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1α. Nature. 2008;451(7181):1008–1012. doi: 10.1038/nature06613. PubMed DOI
Leick L, Hellsten Y, Fentz J, Lyngby SS, Wojtaszewski JF, Hidalgo J, Pilegaard H. PGC-1alpha mediates exercise-induced skeletal muscle VEGF expression in mice. Am J Physiol Endocrinol Metab. 2009;297(1):92–103. doi: 10.1152/ajpendo.00076.2009. PubMed DOI
Valle-Tenney R, Rebolledo D, Acuña MJ, Brandan E. HIF-Hypoxia Signaling in Skeletal Muscle Physiology and Fibrosis. J Cell Commun Signal. 2020;14(2):147–158. doi: 10.1007/s12079-020-00553-8. PubMed DOI PMC
Gorski T, De Bock K. Metabolic regulation of exercise-induced angiogenesis. Vasc Biol. 2019;1(1):1–8. doi: 10.1530/VB-19-0008. PubMed DOI PMC
Carraro U, Rossini K, Mayr W, Kern H. Muscle fiber regeneration in human permanent lower motoneuron denervation: relevance to safety and effectiveness of FES-training, which induces muscle recovery in SCI subjects. Artif Organs. 2005;29(3):187–191. doi: 10.1111/j.1525-1594.2005.29032.x. PubMed DOI
Ruas JL, White JP, Rao RR, Kleiner S, Brannan KT, Harrison BC, Greene NP, Wu J, Estall JL, Irving BA, Lanza IR, Rasbach KA, Okutsu M, Nair KS, Yan Z, Leinwand LA, Spiegelman BM. A PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell. 2012;151(6):1319–1331. doi: 10.1016/j.cell.2012.10.050. PubMed DOI PMC
Arany Z. PGC-1 coactivators and skeletal muscle adaptations in health and disease. Curr Opin Genet Dev. 2008;18(5):426–434. doi: 10.1016/j.gde.2008.07.018. PubMed DOI PMC
Numata H, Nakase J, Inaki A, Mochizuki T, Oshima T, Takata Y, Kinuya S, Tsuchiya H. Effects of the belt electrode skeletal muscle electrical stimulation system on lower extremity skeletal muscle activity: evaluation using positron emission tomography. J Orthop Sci. 2016;21(1):53–56. doi: 10.1016/j.jos.2015.09.003. PubMed DOI
Yoshida N, Morimoto Y, Kataoka H, Sakamoto J, Nakano J, Okita M. Effects of combination therapy of heat stress and muscle contraction exercise induced by neuromuscular electrical stimulation on disuse atrophy in the rat gastrocnemius. J Phys Ther Sci. 2013;25(2):201–206. doi: 10.1589/jpts.25.201. DOI
Yoshimura A, Sakamoto J, Honda Y, Kataoka H, Nakano J, Okita M. Cyclic muscle twitch contraction inhibits immobilization-induced muscle contracture and fibrosis in rats. Connect Tissue Res. 2017;58(5):487–495. doi: 10.1080/03008207.2016.1257004. PubMed DOI
Honda Y, Tanaka N, Kajiwara Y, Kondo Y, Kataoka H, Sakamoto J, Akimoto R, Nawata A, Okita M. Effect of belt electrode-skeletal muscle electrical stimulation on immobilization-induced muscle fibrosis. PLoS One. 2021;16(5):e0244120. doi: 10.1371/journal.pone.0244120. PubMed DOI PMC
Kataoka H, Nakano J, Morimoto Y, Honda Y, Sakamoto J, Origuchi T, Okita M, Yoshimura T. Hyperglycemia inhibits recovery from disuse-induced skeletal muscle atrophy in rats. Physiol Res. 2014;63(4):465–474. doi: 10.33549/physiolres.932687. PubMed DOI
Gundersen K. Muscle memory and a new cellular model for muscle atrophy and hypertrophy. J Exp Biol. 2016;219(Pt 2):235–242. doi: 10.1242/jeb.124495. PubMed DOI
Kang C, Ji LL. Muscle immobilization and remobilization downregulates PGC-1α signaling and the mitochondrial biogenesis pathway. J Appl Physiol. 2013;115(11):1618–1625. doi: 10.1152/japplphysiol.01354.2012. PubMed DOI
Tanaka N, Honda Y, Kajiwara Y, Kataoka H, Origuchi T, Sakamoto J, Okita M. Myonuclear apoptosis via cleaved caspase-3 upregulation is related to macrophage accumulation underlying immobilization-induced muscle fibrosis. Muscle Nerve. 2022;65(3):341–349. doi: 10.1002/mus.27473. PubMed DOI
Mauviel A. Transforming growth factor-beta: a key mediator of fibrosis. Methods Mol Med. 2005;117:69–80. doi: 10.1385/1-59259-940-0:069. PubMed DOI
Blaauboer ME, Smit TH, Hanemaaijer R, Stoop R, Everts V. Cyclic mechanical stretch reduces myofibroblast differentiation of primary lung fibroblasts. Biochem Biophys Res Commun. 2011;404(1):23–27. doi: 10.1016/j.bbrc.2010.11.033. PubMed DOI
Gabbiani G. The myofibroblast in wound healing and fibrocontractive diseases. J Pathol. 2003;200(4):500–503. doi: 10.1002/path.1427. PubMed DOI
Behnke BJ, Ramsey MW, Stabley JN, Dominguez JM, 2nd, Davis RT, 3rd, McCullough DJ, Muller-Delp JM, Delp MD. Effects of aging and exercise training on skeletal muscle blood flow and resistance artery morphology. J Appl Physiol. 2012;113(11):1699–1708. doi: 10.1152/japplphysiol.01025.2012. PubMed DOI PMC
Charifi N, Kadi F, Féasson L, Costes F, Geyssant A, Denis C. Enhancement of microvessel tortuosity in the vastus lateralis muscle of old men in response to endurance training. J Physiol. 2004;554(Pt 2):559–569. doi: 10.1113/jphysiol.2003.046953. PubMed DOI PMC
Qin L, Appell HJ, Chan KM, Maffulli N. Electrical stimulation prevents immobilization atrophy in skeletal muscle of rabbits. Arch Phys Med Rehabil. 1997;78(5):512–517. doi: 10.1016/S0003-9993(97)90166-0. PubMed DOI
Shoag J, Arany Z. Regulation of hypoxia-inducible genes by PGC-1 alpha. Arterioscler Thromb Vasc Biol. 2010;30(4):662–666. doi: 10.1161/ATVBAHA.108.181636. PubMed DOI
Saint-Geniez M, Jiang A, Abend S, Liu L, Sweigard H, Connor KM, Arany Z. PGC-1α regulates normal and pathological angiogenesis in the retina. Am J Pathol. 2013;182(1):255–265. doi: 10.1016/j.ajpath.2012.09.003. PubMed DOI PMC