Reading tea leaves worldwide: Decoupled drivers of initial litter decomposition mass-loss rate and stabilization
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
38712683
DOI
10.1111/ele.14415
Knihovny.cz E-zdroje
- Klíčová slova
- citizen science, environmental drivers, global change, litter decomposition, mass loss, soil organic matter formation, stabilization, tea bag index,
- MeSH
- koloběh uhlíku MeSH
- listy rostlin * MeSH
- uhlík metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- uhlík MeSH
The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models.
All Russian Institute of Sugar and Sygar Beet Named after D Mazlumov Ramon Russia
All Russian Research Institute of Agrochemistry Named after D Pryanishnikov Moscow Russia
Applied Ecology Research Group School of Life Sciences Anglia Ruskin University Cambridge UK
Belgorod Federal Agrarain Scientific Center Belgorod Russia
Biological Institute Tomsk State University Tomsk Russia
Biont Research Utrecht The Netherlands
Case Western Reserve University School of Medicine Cleveland Ohio USA
Cátedra de Ecología Facultad de Agronomía UBA Buenos Aires Argentina
CEFE Univ Montpellier CNRS EPHE IRD Montpellier France
Center for Ecosystem Science and Society Northern Arizona University Flagstaff Arizona USA
Centre for Environment Fisheries and Aquaculture Science Lowestoft UK
Centre for Forest Protection Forest Research Surrey UK
Centro de Investigación e Innovación para el Cambio Climático Universidad Santo Tomás Valdivia Chile
Chelyabinsk Agricultural Institute Chelyabinsk Russia
Chicago Botanic Garden Glencoe Illinois USA
Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria Rome Italy
Departamento de Ecologia e Zoologia Universidade Federal de Santa Catarina Florianópolis SC Brazil
Departamento de Solos e Engenharia Agrícola Universidade Federal do Paraná Curitiba Brasil
Department of Agronomy Iowa State University Ames Iowa USA
Department of Applied Ecology Hochschule Geisenheim University Geisenheim Germany
Department of Arctic Biology The University Centre in Svalbard Longyearbyen Svalbard Norway
Department of Biological and Environmental Sciences University of Gothenburg Gothenburg Sweden
Department of Biological Geological and Environmental Sciences University of Bologna Bologna Italy
Department of Biological Sciences Universidad de los Andes Bogotá Colombia
Department of Biology Norwegian University of Science and Technology Trondheim Norway
Department of Biology University of Copenhagen Copenhagen Ø Denmark
Department of Earth System Science University of California Irvine California USA
Department of Ecology and Environmental Science Umeå Universitet Umeå Sweden
Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
Department of Ecology University of Alicante Alicante Spain
Department of Ecoscience and Arctic Research Centre Aarhus University Aarhus C Denmark
Department of Environment Forest and Nature Lab Gent University Ghent Belgium
Department of Environmental Systems Science ETH Zurich Zurich Switzerland
Department of Forest Ecology and Management Swedish University of Agricultural Sciences Umeå Sweden
Department of Forest Sciences University of Helsinki Helsinki Finland
Department of Geography and Environmental Science University of Reading Reading UK
Department of Habitat Ecology Wildlife Institute of India Dehradun India
Department of Natural Systems and Resources Universidad Politécnica de Madrid Madrid Spain
Department of Wildlife Ecology and Conservation University of Florida Gainesville Florida USA
Earth Research Institute University of California Santa Barbara California USA
Ecological Science Department The James Hutton Institute Aberdeen UK
Environmental Science Center Qatar University Doha Qatar
Faculty of Environmental and Forest Sciences Agricultural University of Iceland Reykjavík Iceland
Federal Scientific Center for Fiber Crops Tver Russia
Finnish Meteorological Institute Climate System Research Helsinki Finland
Forest Services Autonomous Province of Bozen Bolzano Bolzano Italy
Helmholtz Centre for Environmental Research UFZ Leipzig Germany
INRAE Bordeaux Sciences Agro ISPA Villenave d'Ornon France
Institute for Applied Plant Biology Witterswil Switzerland
Institute for Sustainable Agriculture CSIC Cordoba Spain
Institute of Hydrology and Meteorology TUD Dresden University of Technology Tharandt Germany
Institute of Life and Environmental Sciences University of Iceland Reykjavík Iceland
Institute of Plant Science and Microbiology Universität Hamburg Hamburg Germany
Institute of Science and Environment University of Cumbria Ambleside Cumbria UK
Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile
International Institute for Applied Systems Analysis Laxenburg Austria
Knowledge Center for Biodiversity Belo Horizonte MG Brazil
Libera Universita di Bolzano Facoltà di Scienze e Tecnologie Piazza Università Bolzano Italy
National Horticultural Research Institute Ibadan Nigeria
NORCE Norwegian Research Centre AS Bjerknes Centre for Climate Research Bergen Norway
Programa de pós graduacão em Ecologia Universidade Federal de Santa Catarina Florianópolis SC Brazil
Research Group Plants and Ecosystems University of Antwerp Wilrijk Belgium
Research Institute of Organic Agriculture Frick Switzerland
School of Agriculture Food and Wine The University of Adelaide Adelaide South Australia Australia
School of Biosciences and Veterinary Medicine University of Camerino Camerino MC Italy
School of Environmental Sciences University of East Anglia Norwich UK
School of GeoSciences University of Edinburgh Edinburgh Scotland UK
Science IT University of Zürich Zurich Switzerland
Smithsonian Environmental Research Center Edgewater Maryland USA
Swiss Federal Institute for Forest Snow and Landscape Research WSL Zurich Switzerland
Terrestrial Ecology Section Department of Biology University of Copenhagen Copenhagen Ø Denmark
UMR Silva INRAE AgroParisTech Université de Lorraine Nancy France
Universidad de Los Andes Bogotá Colombia
Upper Volga Federal Agrarain Scientific Center Vladimir Russia
USDA Forest Service Southern Research Station Athens Georgia USA
USDA Forest Service Southern Research Station New Ellenton South Carolina USA
Valli Sustainability Research and Education Kanchipuram Tamil Nadu India
Wageningen Environmental Research Wageningen The Netherlands
Zobrazit více v PubMed
Althuizen, I.H.J., Lee, H., Sarneel, J.M. & Vandvik, V. (2018) Long‐term climate regime modulates the impact of short‐term climate variability on decomposition in alpine grassland soils. Ecosystems, 21, 1580–1592.
Austin, A.T. & Vivanco, L. (2006) Plant litter decomposition in a semi‐arid ecosystem controlled by photodegradation. Nature, 442, 555–558.
Bahram, M., Netherway, T., Hildebrand, F., Pritsch, K., Drenkhan, R., Loit, K. et al. (2020) Plant nutrient‐acquisition strategies drive topsoil microbiome structure and function. New Phytologist, 227, 1189–1199.
Bardgett, R.D. & van der Putten, W.H. (2014) Belowground biodiversity and ecosystem functioning. Nature, 515, 505–511.
Berg, B., Berg, M.P., Bottner, P., Box, E., Breymeyer, A., Deanta, R.C. et al. (1993) Litter mass‐loss rates in pine forests of Europe and Eastern United States—some relationships with climate and litter quality. Biogeochemistry, 20, 127–159.
Berg, B. & McClaugherty, C. (2020) Plant litter; decomposition, humus formation, carbon sequestration, 4th edition. New York, USA: Springer.
Buckeridge, K.M., Mason, K.E., McNamara, N.P., Ostle, N., Puissant, J., Goodall, T. et al. (2020) Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization. Communications Earth & Environment, 1, 36.
Cebrian, J. (1999) Patterns in the fate of production in plant communities. The American Naturalist, 154, 449–468.
Cotrufo, M.F., Soong, J.L., Horton, A.J., Campbell, E.E., Haddix, M.L., Wall, D.H. et al. (2015) Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience, 8, 776–779.
Cotrufo, M.F., Wallenstein, M.D., Boot, C.M., Denef, K. & Paul, E. (2013) The Microbial Efficiency‐Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Global Change Biology, 19, 988–995.
Daebeler, A., Petrová, E., Kinz, E., Grausenburger, S., Berthold, H., Sandén, T. et al. (2022) Pairing litter decomposition with microbial community structures using the Tea Bag Index (TBI). The Soil, 8, 163–176.
Djukic, I., Kepfer‐Rojas, S., Schmidt, I.K., Larsen, K.S., Beier, C., Berg, B. et al. (2018) Early stage litter decomposition across biomes. Science of the Total Environment, 628‐629, 1369–1394.
Duddigan, S., Alexander, P.D., Shaw, L.J., Sanden, T. & Collins, C.D. (2020) The Tea Bag Index‐UK: using citizen/community science to investigate organic matter decomposition rates in domestic gardens. Sustainability, 12, 6895.
Duddigan, S., Shaw, L.J., Alexander, P.D. & Collins, C.D. (2020) Chemical underpinning of the tea bag index: an examination of the decomposition of tea leaves. Applied and Environmental Soil Science, 2020, 8.
Fanin, N., Bezaud, S., Sarneel, J.M., Cecchini, S., Nicolas, M. & Augusto, L. (2020) Relative importance of climate, soil and plant functional traits during the early decomposition stage of standardized litter. Ecosystems, 23, 1004–1018.
Foley, J.A. (2005) Integrated biosphere simulator model (IBIS), version 2.5. Available at: https://daac.ornl.gov/cgi‐bin/dsviewer.pl?ds_id=8082020
Gessner, M.O., Chauvet, E. & Dobson, M. (1999) A perspective on leaf litter breakdown in streams. Oikos, 85, 377–384.
Gholz, H.L., Wedin, D.A., Smitherman, S.M., Harmon, M.E. & Parton, W.J. (2000) Long‐term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Global Change Biology, 6, 751–765.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D. & Moore, R. (2017) Google earth engine: planetary‐scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27.
Harmon, M.E. (2016) LTER Intersite fine litter decomposition experiment (LIDET), 1990 to 2002 version 11. (ed. Site, AFL) Corvallis.
He, Y., Wang, X.H., Wang, K., Tang, S.C., Xu, H., Chen, A.P. et al. (2021) Data‐driven estimates of global litter production imply slower vegetation carbon turnover. Global Change Biology, 27, 1678–1688.
Heimann, M. & Reichstein, M. (2008) Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature, 451, 289–292.
Hobbie, S.E., Eddy, W.C., Buyarski, C.R., Adair, E.C., Ogdahl, M.L. & Weisenhorn, P. (2012) Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment. Ecological Monographs, 82, 389–405.
IPCC. (2022) Climate change 2022: impacts, adaptation, and vulnerability. In: Pörtner, H.‐O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., et al. (Eds.) Contribution of working group II to the sixth assessment report of the intergovernmental panel on climate change, Cambridge, UK and New York, USA, p. 3056.
Joly, F.X., Scherer‐Lorenzen, M. & Hättenschwiler, S. (2023) Resolving the intricate role of climate in litter decomposition. Nature Ecology & Evolution, 7, 214–223.
Keuskamp, J.A., Dingemans, B.J.J., Lehtinen, T., Sarneel, J.M. & Hefting, M.M. (2013) Tea Bag Index: a novel approach to collect uniform decomposition data across ecosystems. Methods in Ecology and Evolution, 4, 1070–1075.
Kwon, T., Shibata, H., Kepfer‐Rojas, S., Schmidt, I.K., Larsen, K.S., Beier, C. et al. (2021) Effects of climate and atmospheric nitrogen deposition on early to mid‐term stage litter decomposition across biomes. Frontiers in Forests and Global Change, 4, 678480.
Le Noë, J., Manzoni, S., Abramoff, R., Bölscher, T., Bruni, E., Cardinael, R. et al. (2023) Soil organic carbon models need independent time‐series validation for reliable prediction. Communications Earth & Environment, 4, 158.
Lenth, R.V., Bolker, B., Buerkner, P., Gine‐Vasquez, I., Herve, M., Jung, M. et al. (2023) Emmeans: estimated marginal means, aka least‐squares means.
Li, R.S., Guo, X.Y., Han, J.M., Yang, Q.P., Zhang, W.D., Yu, X. et al. (2023) Global pattern and drivers of stable residue size from decomposing leaf litter. Catena, 232, 107390.
Minasny, B., Malone, B.P., McBratney, A.B., Angers, D.A., Arrouays, D., Chambers, A. et al. (2017) Soil carbon 4 per mille. Geoderma, 292, 59–86.
Mori, T., Nakamura, R. & Aoyagi, R. (2022) Risk of misinterpreting the Tea Bag Index: field observations and a random simulation. Ecological Research, 37, 381–389.
Mueller, P., Schile‐Beers, L.M., Mozdzer, T.J., Chmura, G.L., Dinter, T., Kuzyakov, Y. et al. (2018) Global‐change effects on early‐stage decomposition processes in tidal wetlands—implications from a global survey using standardized litter. Biogeosciences, 15, 3189–3202.
Njoroge, D.M., Chen, S.C., Zuo, J., Dossa, G.G.O. & Cornelissen, J.H.C. (2022) Soil fauna accelerate litter mixture decomposition globally, especially in dry environments. Journal of Ecology, 110, 659–672.
Ochoa‐Hueso, R., Borer, E.T., Seabloom, E.W., Hobbie, S.E., Risch, A.C., Collins, S.L. et al. (2020) Microbial processing of plant remains is co‐limited by multiple nutrients in global grasslands. Global Change Biology, 26, 4572–4582.
Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N., Underwood, E.C. et al. (2001) Terrestrial ecoregions of the worlds: a new map of life on Earth. Bioscience, 51, 933–938.
Parton, W., Silver, W.L., Burke, I.C., Grassens, L., Harmon, M.E., Currie, W.S. et al. (2007) Global‐scale similarities in nitrogen release patterns during long‐term decomposition. Science, 315, 361–364.
Parton, W.J., Hartman, M., Ojima, D. & Schimel, D. (1998) DAYCENT and its land surface submodel: description and testing. Global and Planetary Change, 19, 35–48.
Post, E., Alley, R.B., Christensen, T.R., Macias‐Fauria, M., Forbes, B.C., Gooseff, M.N. et al. (2019) The polar regions in a 2 degrees C warmer world. Science Advances, 5, eaaw9883.
Prescott, C.E. (2010) Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry, 101, 133–149.
R Core Team. (2023) R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Robbins, C.J., Norman, B.C., Halvorson, H.M., Manning, D.W., Bastias, E., Biasi, C. et al. (2022) Nutrient and stoichiometric time series measurements of decomposing coarse detritus in freshwaters worldwide from literature published between 1976–2020 ver 1. (ed. Initiative, ED).
Sanchez, P.A., Ahamed, S., Carre, F., Hartemink, A.E., Hempel, J., Huising, J. et al. (2009) Digital soil map of the world. Science, 325, 680–681.
Sarneel, J.M., Barel, J.M., Duddigan, S., Keuskamp, J.A., Pastor Oliveras, A., Sanden, T. et al. (2023) Reasons to not correct for leaching in TBI; reply to Lind et al 2022. Authorea, 13, e10133.
Sarneel, J.M.J. & Veen, G.F.C. (2017) Legacy effects of altered flooding regimes on decomposition in a boreal floodplain. Plant and Soil, 421, 57–66.
Stockmann, U., Padarian, J., McBratney, A., Minasny, B., de Brogniez, D., Montanarella, L. et al. (2015) Global soil organic carbon assessment. Global Food Security‐Agriculture Policy Economics and Environment, 6, 9–16.
Tang, H., Nolte, S., Jensen, K., Yang, Z., Wu, J. & Mueller, P. (2020) Grazing mediates soil microbial activity and litter decomposition in salt marshes. Science of the Total Environment, 720, 137559.
Thomas, H.J.D., Myers‐Smith, I.H., Høye, T.T., Bon, M.P., Lembrechts, J., Walker, E.R. et al. (2023) Litter quality outweighs climate as a driver of decomposition across the tundra biome. EcoEvoRxiv.
Trofymow, J.A., Moore, T.R., Titus, B., Prescott, C., Morrison, I., Siltanen, M. et al. (2002) Rates of litter decomposition over 6 years in Canadian forests: influence of litter quality and climate. Canadian Journal of Forest Research‐Revue Canadienne De Recherche Forestiere, 32, 789–804.
van den Brink, L., Canessa, R., Neidhardt, H., Knuver, T., Rios, R.S., Saldana, A. et al. (2023) No home‐field advantage in litter decomposition from the desert to temperate forest. Functional Ecology, 37, 1315–1327.
van den Hoogen, J., Geisen, S., Routh, D., Ferris, H., Traunspurger, W., Wardle, D.A. et al. (2019) Soil nematode abundance and functional group composition at a global scale. Nature, 572, 194–198.
Veen, G.F., Freschet, G.T., Ordonez, A. & Wardle, D.A. (2015) Litter quality and environmental controls of home‐field advantage effects on litter decomposition. Oikos, 124, 187–195.