Size and Polarizability of Boron Cluster Carriers Modulate Chaotropic Membrane Transport

. 2024 Jul 15 ; 63 (29) : e202404286. [epub] 20240614

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38712936

Grantová podpora
SAF2017-89890-R Agencia estatal de investigación
PCI2019-103400 Agencia estatal de investigación
PID2020-117143RB-I00 Agencia estatal de investigación
PRE2018-085973 Agencia estatal de investigación
FPU21/04747 Agencia estatal de investigación
Centro singular de investigación de Galicia accreditation 2019-2022, ED431G 2019/03 Xunta de Galicia
ED431C 2017/25 Xunta de Galicia
2016-AD031 Xunta de Galicia
ED431F 2023/12 Xunta de Galicia
ED481B-2023-123 Xunta de Galicia
Oportunius program GAIN
101099867 EIC CEP - Centrální evidence projektů
101113110 EIC CEP - Centrální evidence projektů
HR23-00221 "La Caixa" Foundation
677786 ERC CEP - Centrální evidence projektů
RGY0066/2017 HFSP
Centro singular de investigación de Galicia accreditation 2019-2022, ED431G 2019/03 European Regional Development Fund (ERDF)
NA-868/14 Deutsche Forschungsgemeinschaft (DFG)
NA-868/15 Deutsche Forschungsgemeinschaft (DFG)
NA-868/17 Deutsche Forschungsgemeinschaft (DFG)
INST 676/7-1 FUGG Deutsche Forschungsgemeinschaft (DFG)
2114409S Czech Science Foundation

Perhalogenated closo-borates represent a new class of membrane carriers. They owe this activity to their chaotropicity, which enables the transport of hydrophilic molecules across model membranes and into living cells. The transport efficiency of this new class of cluster carriers depends on a careful balance between their affinity to membranes and cargo, which varies with chaotropicity. However, the structure-activity parameters that define chaotropic transport remain to be elucidated. Here, we have studied the modulation of chaotropic transport by decoupling the halogen composition from the boron core size. The binding affinity between perhalogenated decaborate and dodecaborate clusters carriers was quantified with different hydrophilic model cargos, namely a neutral and a cationic peptide, phalloidin and (KLAKLAK)2. The transport efficiency, membrane-lytic properties, and cellular toxicity, as obtained from different vesicle and cell assays, increased with the size and polarizability of the clusters. These results validate the chaotropic effect as the driving force behind the membrane transport propensity of boron clusters. This work advances our understanding of the structural features of boron cluster carriers and establishes the first set of rational design principles for chaotropic membrane transporters.

Zobrazit více v PubMed

A. Barba-Bon, G. Salluce, I. Lostalé-Seijo, K. I. Assaf, A. Hennig, J. Montenegro, W. M. Nau, Nature 2022, 603, 637–642.

X. Hu, D. Guo, Angew. Chem. Int. Ed. 2022, 61, e202204979.

Y. Chen, A. Barba-Bon, B. Grüner, M. Winterhalter, M. A. Aksoyoglu, S. Pangeni, M. Ashjari, K. Brix, G. Salluce, Y. Folgar-Cameán, J. Montenegro, W. M. Nau, J. Am. Chem. Soc. 2023, 145, 13089–13098.

Y. Hirai, Y. Makita, J. Asaoka, Y. Aoyagi, A. Nomoto, H. Okamura, S. Fujiwara, ACS Omega 2023, 8, 35321–35327.

K. I. Assaf, W. M. Nau, Angew. Chem. Int. Ed. 2018, 57, 13968–13981.

K. I. Assaf, M. S. Ural, F. Pan, T. Georgiev, S. Simova, K. Rissanen, D. Gabel, W. M. Nau, Angew. Chem. Int. Ed. 2015, 54, 6852–6856.

I. Lostalé-Seijo, J. Montenegro, Nat. Chem. Rev. 2018, 2, 258–277.

I. Lostalé-Seijo, I. Louzao, M. Juanes, J. Montenegro, Chem. Sci. 2017, 8, 7923–7931.

L. E. Bickerton, T. G. Johnson, A. Kerckhoffs, M. J. Langton, Chem. Sci. 2021, 12, 11252–11274.

G. Gasparini, E.-K. Bang, J. Montenegro, S. Matile, Chem. Commun. 2015, 51, 10389–10402.

S. Cavalli, F. Albericio, A. Kros, Chem. Soc. Rev. 2010, 39, 241–263.

S. A. Bode, I. C. Kruis, H. P. J. H. M. Adams, W. C. Boelens, G. J. M. Pruijn, J. C. M. van Hest, D. W. P. M. Löwik, ChemBioChem 2017, 18, 185–188.

K. Karki, D. Gabel, D. Roccatano, Inorg. Chem. 2012, 51, 4894–4896.

B. Naskar, O. Diat, V. Nardello-Rataj, P. Bauduin, J. Phys. Chem. C 2015, 119, 20985–20992.

F. Hofmeister, Arch. für Exp. Pathol. und Pharmakologie 1888, 24, 247–260.

R. Fernandez-Alvarez, V. Ďorďovič, M. Uchman, P. Matějíček, Langmuir 2018, 34, 3541–3554.

T. Buchecker, P. Schmid, S. Renaudineau, O. Diat, A. Proust, A. Pfitzner, P. Bauduin, Chem. Commun. 2018, 54, 1833–1836.

A. Barba-Bon, N. I. Gumerova, E. Tanuhadi, M. Ashjari, Y. Chen, A. Rompel, W. M. Nau, Adv. Mater. 2024, 36, 2309219.

M. Hohenschutz, P. Bauduin, C. G. Lopez, B. Förster, W. Richtering, Angew. Chem. Int. Ed. 2023, 62, e202210208.

A. A. Ivanov, C. Falaise, P. A. Abramov, M. A. Shestopalov, K. Kirakci, K. Lang, M. A. Moussawi, M. N. Sokolov, N. G. Naumov, S. Floquet, D. Landy, M. Haouas, K. A. Brylev, Y. V. Mironov, Y. Molard, S. Cordier, E. Cadot, Chem. A Eur. J. 2018, 24, 13467–13478.

A. Kaczmarczyk, G. B. Kolski, J. Phys. Chem. 1964, 68, 1227–1229.

A. Kaczmarczyk, G. B. Kolski, Inorg. Chem. 1965, 4, 665–671.

K. I. Assaf, J. Holub, E. Bernhardt, J. M. Oliva-Enrich, M. I. Fernández Pérez, M. Canle, J. A. Santaballa, J. Fanfrlík, D. Hnyk, W. M. Nau, ChemPhysChem 2020, 21, 971–976.

K. I. Assaf, W. M. Nau, Org. Biomol. Chem. 2023, 21, 6636–6651.

P. Dullinger, D. Horinek, J. Am. Chem. Soc. 2023, 145, 24922–24930.

J. Poater, C. Viñas, I. Bennour, S. Escayola, M. Solà, F. Teixidor, J. Am. Chem. Soc. 2020, 142, 9396–9407.

N. A. Bernier, J. Teh, D. Reichel, J. L. Zahorsky-Reeves, J. M. Perez, A. M. Spokoyny, Langmuir 2021, 37, 14500–14508.

E. Hey-Hawkins, C. Viñas Teixidor, Boron-Based Compounds: Potential and Emerging Applications in Medicine, Wiley, 2018.

J. Cebula, K. Fink, J. Boratyński, T. M. Goszczyński, Coord. Chem. Rev. 2023, 477, 214940.

V. V. Avdeeva, T. M. Garaev, E. A. Malinina, K. Y. Zhizhin, N. T. Kuznetsov, Russ. J. Inorg. Chem. 2022, 67, 28–47.

Z. J. Leśnikowski, J. Med. Chem. 2016, 59, 7738–7758.

J. C. Axtell, L. M. A. Saleh, E. A. Qian, A. I. Wixtrom, A. M. Spokoyny, Inorg. Chem. 2018, 57, 2333–2350.

A. G. Beck-Sickinger, D. P. Becker, O. Chepurna, B. Das, S. Flieger, E. Hey-Hawkins, N. Hosmane, S. S. Jalisatgi, H. Nakamura, R. Patil, M. da G H Vicente, C. Viñas, Cancer Biother. Radiopharm. 2023, 38, 160–172.

D. Dziura, S. Tabbassum, A. MacNeil, D. D. Maharaj, R. Laxdal, O. Kester, M. Pan, H. Kumada, D. Marquardt, Can. J. Phys. 2023, 101, 363–372.

Y. Wang, A. M. Spokoyny, ACS Cent. Sci. 2022, 8, 309–311.

K. Fink, K. Kobak, M. Kasztura, J. Boratyński, T. M. Goszczyński, Bioconjugate Chem. 2018, 29, 3509–3515.

K. Ebenryter-Olbińska, D. Kaniowski, M. Sobczak, B. A. Wojtczak, S. Janczak, E. Wielgus, B. Nawrot, Z. J. Leśnikowski, Chem. A Eur. J. 2017, 23, 16535–16546.

D. Kaniowski, K. Kulik, J. Suwara, K. Ebenryter-Olbińska, B. Nawrot, Int. J. Mol. Sci. 2022, 23, 12190.

M. V. Kuperman, M. Y. Losytskyy, A. Y. Bykov, S. M. Yarmoluk, K. Y. Zhizhin, N. T. Kuznetsov, O. A. Varzatskii, E. Gumienna-Kontecka, V. B. Kovalska, J. Mol. Struct. 2017, 1141, 75–80.

D. Awad, M. Bartok, F. Mostaghimi, I. Schrader, N. Sudumbrekar, T. Schaffran, C. Jenne, J. Eriksson, M. Winterhalter, J. Fritz, K. Edwards, D. Gabel, ChemPlusChem 2015, 80, 656–664.

D. Awad, L. Damian, M. Winterhalter, G. Karlsson, K. Edwards, D. Gabel, Chem. Phys. Lipids 2009, 157, 78–85.

V. Ďorďovič, Z. Tošner, M. Uchman, A. Zhigunov, M. Reza, J. Ruokolainen, G. Pramanik, P. Cígler, K. Kalíková, M. Gradzielski, P. Matějíček, Langmuir 2016, 32, 6713–6722.

W. N. Lipscomb, A. R. Pitochelli, M. F. Hawthorne, J. Am. Chem. Soc. 1959, 81, 5833–5834.

R. Hoffmann, W. N. Lipscomb, J. Chem. Phys. 1962, 37, 520–523.

I. B. Sivaev, A. V. Prikaznov, D. Naoufal, Collect. Czech. Chem. Commun. 2010, 75, 1149–1199.

W. H. Knoth, H. C. Miller, D. C. England, G. W. Parshall, E. L. Muetterties, J. Am. Chem. Soc. 1962, 84, 1056–1057.

T. Takeuchi, V. Bagnacani, F. Sansone, S. Matile, ChemBioChem 2009, 10, 2793–2799.

V. Francisco, A. Piñeiro, W. M. Nau, L. García-Río, Chem. A Eur. J. 2013, 19, 17809–17820.

M. Nishihara, F. Perret, T. Takeuchi, S. Futaki, A. N. Lazar, A. W. Coleman, N. Sakai, S. Matile, Org. Biomol. Chem. 2005, 3, 1659–1669.

M. Melak, M. Plessner, R. Grosse, J. Cell Sci. 2017, 130, 525–530.

K. W. Teng, Y. Ishitsuka, P. Ren, Y. Youn, X. Deng, P. Ge, S. H. Lee, A. S. Belmont, P. R. Selvin, eLife 2016, 5, e20378.

W. C. de Vries, D. Grill, M. Tesch, A. Ricker, H. Nüsse, J. Klingauf, A. Studer, V. Gerke, B. J. Ravoo, Angew. Chem. Int. Ed. 2017, 56, 9603–9607.

J. Wehland, M. Osborn, K. Weber, Proc. Nat. Acad. Sci. 1977, 74, 5613–5617.

M. An, D. Wijesinghe, O. A. Andreev, Y. K. Reshetnyak, D. M. Engelman, Proc. Nat. Acad. Sci. 2010, 107, 20246–20250.

M. M. Javadpour, M. M. Juban, W.-C. J. Lo, S. M. Bishop, J. B. Alberty, S. M. Cowell, C. L. Becker, M. L. McLaughlin, J. Med. Chem. 1996, 39, 3107–3113.

H. M. Ellerby, W. Arap, L. M. Ellerby, R. Kain, R. Andrusiak, G. Del Rio, S. Krajewski, C. R. Lombardo, R. Rao, E. Ruoslahti, D. E. Bredesen, R. Pasqualini, Nat. Med. 1999, 5, 1032–1038.

J. Hoyer, U. Schatzschneider, M. Schulz-Siegmund, I. Neundorf, Beilstein J. Org. Chem. 2012, 8, 1788–1797.

M. Acar, D. Tatini, B. W. Ninham, F. Rossi, N. Marchettini, P. Lo Nostro, Molecules 2022, 27, 8519.

K. I. Assaf, B. Begaj, A. Frank, M. Nilam, A. S. Mougharbel, U. Kortz, J. Nekvinda, B. Grüner, D. Gabel, W. M. Nau, J. Org. Chem. 2019, 84, 11790–11798.

M. Hou, R. Lu, A. Yu, RSC Adv. 2014, 4, 23078–23083.

Y. Levin, Phys. Rev. Lett. 2009, 102, 147803.

W. Kunz, P. Lo Nostro, B. W. Ninham, Curr. Opin. Colloid Interface Sci. 2004, 9, 1–18.

P. Lo Nostro, B. W. Ninham, A. Lo Nostro, G. Pesavento, L. Fratoni, P. Baglioni, Phys. Biol. 2005, 2, 1.

S. He, F. Biedermann, N. Vankova, L. Zhechkov, T. Heine, R. E. Hoffman, A. De Simone, T. T. Duignan, W. M. Nau, Nat. Chem. 2018, 10, 1252–1257.

H. Tandon, P. Ranjan, T. Chakraborty, V. Suhag, Mol. Diversity 2021, 25, 249–262.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...