Size and Polarizability of Boron Cluster Carriers Modulate Chaotropic Membrane Transport
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
SAF2017-89890-R
Agencia estatal de investigación
PCI2019-103400
Agencia estatal de investigación
PID2020-117143RB-I00
Agencia estatal de investigación
PRE2018-085973
Agencia estatal de investigación
FPU21/04747
Agencia estatal de investigación
Centro singular de investigación de Galicia accreditation 2019-2022, ED431G 2019/03
Xunta de Galicia
ED431C 2017/25
Xunta de Galicia
2016-AD031
Xunta de Galicia
ED431F 2023/12
Xunta de Galicia
ED481B-2023-123
Xunta de Galicia
Oportunius program
GAIN
101099867
EIC
CEP - Centrální evidence projektů
101113110
EIC
CEP - Centrální evidence projektů
HR23-00221
"La Caixa" Foundation
677786
ERC
CEP - Centrální evidence projektů
RGY0066/2017
HFSP
Centro singular de investigación de Galicia accreditation 2019-2022, ED431G 2019/03
European Regional Development Fund (ERDF)
NA-868/14
Deutsche Forschungsgemeinschaft (DFG)
NA-868/15
Deutsche Forschungsgemeinschaft (DFG)
NA-868/17
Deutsche Forschungsgemeinschaft (DFG)
INST 676/7-1 FUGG
Deutsche Forschungsgemeinschaft (DFG)
2114409S
Czech Science Foundation
PubMed
38712936
DOI
10.1002/anie.202404286
Knihovny.cz E-zdroje
- Klíčová slova
- Boron, Cluster compounds, Membranes, Peptide delivery, Vesicles,
- MeSH
- biologický transport MeSH
- bor * chemie metabolismus MeSH
- boritany chemie metabolismus MeSH
- hydrofobní a hydrofilní interakce MeSH
- lidé MeSH
- sloučeniny boru chemie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bor * MeSH
- boritany MeSH
- sloučeniny boru MeSH
Perhalogenated closo-borates represent a new class of membrane carriers. They owe this activity to their chaotropicity, which enables the transport of hydrophilic molecules across model membranes and into living cells. The transport efficiency of this new class of cluster carriers depends on a careful balance between their affinity to membranes and cargo, which varies with chaotropicity. However, the structure-activity parameters that define chaotropic transport remain to be elucidated. Here, we have studied the modulation of chaotropic transport by decoupling the halogen composition from the boron core size. The binding affinity between perhalogenated decaborate and dodecaborate clusters carriers was quantified with different hydrophilic model cargos, namely a neutral and a cationic peptide, phalloidin and (KLAKLAK)2. The transport efficiency, membrane-lytic properties, and cellular toxicity, as obtained from different vesicle and cell assays, increased with the size and polarizability of the clusters. These results validate the chaotropic effect as the driving force behind the membrane transport propensity of boron clusters. This work advances our understanding of the structural features of boron cluster carriers and establishes the first set of rational design principles for chaotropic membrane transporters.
Zobrazit více v PubMed
A. Barba-Bon, G. Salluce, I. Lostalé-Seijo, K. I. Assaf, A. Hennig, J. Montenegro, W. M. Nau, Nature 2022, 603, 637–642.
X. Hu, D. Guo, Angew. Chem. Int. Ed. 2022, 61, e202204979.
Y. Chen, A. Barba-Bon, B. Grüner, M. Winterhalter, M. A. Aksoyoglu, S. Pangeni, M. Ashjari, K. Brix, G. Salluce, Y. Folgar-Cameán, J. Montenegro, W. M. Nau, J. Am. Chem. Soc. 2023, 145, 13089–13098.
Y. Hirai, Y. Makita, J. Asaoka, Y. Aoyagi, A. Nomoto, H. Okamura, S. Fujiwara, ACS Omega 2023, 8, 35321–35327.
K. I. Assaf, W. M. Nau, Angew. Chem. Int. Ed. 2018, 57, 13968–13981.
K. I. Assaf, M. S. Ural, F. Pan, T. Georgiev, S. Simova, K. Rissanen, D. Gabel, W. M. Nau, Angew. Chem. Int. Ed. 2015, 54, 6852–6856.
I. Lostalé-Seijo, J. Montenegro, Nat. Chem. Rev. 2018, 2, 258–277.
I. Lostalé-Seijo, I. Louzao, M. Juanes, J. Montenegro, Chem. Sci. 2017, 8, 7923–7931.
L. E. Bickerton, T. G. Johnson, A. Kerckhoffs, M. J. Langton, Chem. Sci. 2021, 12, 11252–11274.
G. Gasparini, E.-K. Bang, J. Montenegro, S. Matile, Chem. Commun. 2015, 51, 10389–10402.
S. Cavalli, F. Albericio, A. Kros, Chem. Soc. Rev. 2010, 39, 241–263.
S. A. Bode, I. C. Kruis, H. P. J. H. M. Adams, W. C. Boelens, G. J. M. Pruijn, J. C. M. van Hest, D. W. P. M. Löwik, ChemBioChem 2017, 18, 185–188.
K. Karki, D. Gabel, D. Roccatano, Inorg. Chem. 2012, 51, 4894–4896.
B. Naskar, O. Diat, V. Nardello-Rataj, P. Bauduin, J. Phys. Chem. C 2015, 119, 20985–20992.
F. Hofmeister, Arch. für Exp. Pathol. und Pharmakologie 1888, 24, 247–260.
R. Fernandez-Alvarez, V. Ďorďovič, M. Uchman, P. Matějíček, Langmuir 2018, 34, 3541–3554.
T. Buchecker, P. Schmid, S. Renaudineau, O. Diat, A. Proust, A. Pfitzner, P. Bauduin, Chem. Commun. 2018, 54, 1833–1836.
A. Barba-Bon, N. I. Gumerova, E. Tanuhadi, M. Ashjari, Y. Chen, A. Rompel, W. M. Nau, Adv. Mater. 2024, 36, 2309219.
M. Hohenschutz, P. Bauduin, C. G. Lopez, B. Förster, W. Richtering, Angew. Chem. Int. Ed. 2023, 62, e202210208.
A. A. Ivanov, C. Falaise, P. A. Abramov, M. A. Shestopalov, K. Kirakci, K. Lang, M. A. Moussawi, M. N. Sokolov, N. G. Naumov, S. Floquet, D. Landy, M. Haouas, K. A. Brylev, Y. V. Mironov, Y. Molard, S. Cordier, E. Cadot, Chem. A Eur. J. 2018, 24, 13467–13478.
A. Kaczmarczyk, G. B. Kolski, J. Phys. Chem. 1964, 68, 1227–1229.
A. Kaczmarczyk, G. B. Kolski, Inorg. Chem. 1965, 4, 665–671.
K. I. Assaf, J. Holub, E. Bernhardt, J. M. Oliva-Enrich, M. I. Fernández Pérez, M. Canle, J. A. Santaballa, J. Fanfrlík, D. Hnyk, W. M. Nau, ChemPhysChem 2020, 21, 971–976.
K. I. Assaf, W. M. Nau, Org. Biomol. Chem. 2023, 21, 6636–6651.
P. Dullinger, D. Horinek, J. Am. Chem. Soc. 2023, 145, 24922–24930.
J. Poater, C. Viñas, I. Bennour, S. Escayola, M. Solà, F. Teixidor, J. Am. Chem. Soc. 2020, 142, 9396–9407.
N. A. Bernier, J. Teh, D. Reichel, J. L. Zahorsky-Reeves, J. M. Perez, A. M. Spokoyny, Langmuir 2021, 37, 14500–14508.
E. Hey-Hawkins, C. Viñas Teixidor, Boron-Based Compounds: Potential and Emerging Applications in Medicine, Wiley, 2018.
J. Cebula, K. Fink, J. Boratyński, T. M. Goszczyński, Coord. Chem. Rev. 2023, 477, 214940.
V. V. Avdeeva, T. M. Garaev, E. A. Malinina, K. Y. Zhizhin, N. T. Kuznetsov, Russ. J. Inorg. Chem. 2022, 67, 28–47.
Z. J. Leśnikowski, J. Med. Chem. 2016, 59, 7738–7758.
J. C. Axtell, L. M. A. Saleh, E. A. Qian, A. I. Wixtrom, A. M. Spokoyny, Inorg. Chem. 2018, 57, 2333–2350.
A. G. Beck-Sickinger, D. P. Becker, O. Chepurna, B. Das, S. Flieger, E. Hey-Hawkins, N. Hosmane, S. S. Jalisatgi, H. Nakamura, R. Patil, M. da G H Vicente, C. Viñas, Cancer Biother. Radiopharm. 2023, 38, 160–172.
D. Dziura, S. Tabbassum, A. MacNeil, D. D. Maharaj, R. Laxdal, O. Kester, M. Pan, H. Kumada, D. Marquardt, Can. J. Phys. 2023, 101, 363–372.
Y. Wang, A. M. Spokoyny, ACS Cent. Sci. 2022, 8, 309–311.
K. Fink, K. Kobak, M. Kasztura, J. Boratyński, T. M. Goszczyński, Bioconjugate Chem. 2018, 29, 3509–3515.
K. Ebenryter-Olbińska, D. Kaniowski, M. Sobczak, B. A. Wojtczak, S. Janczak, E. Wielgus, B. Nawrot, Z. J. Leśnikowski, Chem. A Eur. J. 2017, 23, 16535–16546.
D. Kaniowski, K. Kulik, J. Suwara, K. Ebenryter-Olbińska, B. Nawrot, Int. J. Mol. Sci. 2022, 23, 12190.
M. V. Kuperman, M. Y. Losytskyy, A. Y. Bykov, S. M. Yarmoluk, K. Y. Zhizhin, N. T. Kuznetsov, O. A. Varzatskii, E. Gumienna-Kontecka, V. B. Kovalska, J. Mol. Struct. 2017, 1141, 75–80.
D. Awad, M. Bartok, F. Mostaghimi, I. Schrader, N. Sudumbrekar, T. Schaffran, C. Jenne, J. Eriksson, M. Winterhalter, J. Fritz, K. Edwards, D. Gabel, ChemPlusChem 2015, 80, 656–664.
D. Awad, L. Damian, M. Winterhalter, G. Karlsson, K. Edwards, D. Gabel, Chem. Phys. Lipids 2009, 157, 78–85.
V. Ďorďovič, Z. Tošner, M. Uchman, A. Zhigunov, M. Reza, J. Ruokolainen, G. Pramanik, P. Cígler, K. Kalíková, M. Gradzielski, P. Matějíček, Langmuir 2016, 32, 6713–6722.
W. N. Lipscomb, A. R. Pitochelli, M. F. Hawthorne, J. Am. Chem. Soc. 1959, 81, 5833–5834.
R. Hoffmann, W. N. Lipscomb, J. Chem. Phys. 1962, 37, 520–523.
I. B. Sivaev, A. V. Prikaznov, D. Naoufal, Collect. Czech. Chem. Commun. 2010, 75, 1149–1199.
W. H. Knoth, H. C. Miller, D. C. England, G. W. Parshall, E. L. Muetterties, J. Am. Chem. Soc. 1962, 84, 1056–1057.
T. Takeuchi, V. Bagnacani, F. Sansone, S. Matile, ChemBioChem 2009, 10, 2793–2799.
V. Francisco, A. Piñeiro, W. M. Nau, L. García-Río, Chem. A Eur. J. 2013, 19, 17809–17820.
M. Nishihara, F. Perret, T. Takeuchi, S. Futaki, A. N. Lazar, A. W. Coleman, N. Sakai, S. Matile, Org. Biomol. Chem. 2005, 3, 1659–1669.
M. Melak, M. Plessner, R. Grosse, J. Cell Sci. 2017, 130, 525–530.
K. W. Teng, Y. Ishitsuka, P. Ren, Y. Youn, X. Deng, P. Ge, S. H. Lee, A. S. Belmont, P. R. Selvin, eLife 2016, 5, e20378.
W. C. de Vries, D. Grill, M. Tesch, A. Ricker, H. Nüsse, J. Klingauf, A. Studer, V. Gerke, B. J. Ravoo, Angew. Chem. Int. Ed. 2017, 56, 9603–9607.
J. Wehland, M. Osborn, K. Weber, Proc. Nat. Acad. Sci. 1977, 74, 5613–5617.
M. An, D. Wijesinghe, O. A. Andreev, Y. K. Reshetnyak, D. M. Engelman, Proc. Nat. Acad. Sci. 2010, 107, 20246–20250.
M. M. Javadpour, M. M. Juban, W.-C. J. Lo, S. M. Bishop, J. B. Alberty, S. M. Cowell, C. L. Becker, M. L. McLaughlin, J. Med. Chem. 1996, 39, 3107–3113.
H. M. Ellerby, W. Arap, L. M. Ellerby, R. Kain, R. Andrusiak, G. Del Rio, S. Krajewski, C. R. Lombardo, R. Rao, E. Ruoslahti, D. E. Bredesen, R. Pasqualini, Nat. Med. 1999, 5, 1032–1038.
J. Hoyer, U. Schatzschneider, M. Schulz-Siegmund, I. Neundorf, Beilstein J. Org. Chem. 2012, 8, 1788–1797.
M. Acar, D. Tatini, B. W. Ninham, F. Rossi, N. Marchettini, P. Lo Nostro, Molecules 2022, 27, 8519.
K. I. Assaf, B. Begaj, A. Frank, M. Nilam, A. S. Mougharbel, U. Kortz, J. Nekvinda, B. Grüner, D. Gabel, W. M. Nau, J. Org. Chem. 2019, 84, 11790–11798.
M. Hou, R. Lu, A. Yu, RSC Adv. 2014, 4, 23078–23083.
Y. Levin, Phys. Rev. Lett. 2009, 102, 147803.
W. Kunz, P. Lo Nostro, B. W. Ninham, Curr. Opin. Colloid Interface Sci. 2004, 9, 1–18.
P. Lo Nostro, B. W. Ninham, A. Lo Nostro, G. Pesavento, L. Fratoni, P. Baglioni, Phys. Biol. 2005, 2, 1.
S. He, F. Biedermann, N. Vankova, L. Zhechkov, T. Heine, R. E. Hoffman, A. De Simone, T. T. Duignan, W. M. Nau, Nat. Chem. 2018, 10, 1252–1257.
H. Tandon, P. Ranjan, T. Chakraborty, V. Suhag, Mol. Diversity 2021, 25, 249–262.