Ultrafast Formation of Charge Transfer Trions at Molecular-Functionalized 2D MoS2 Interfaces

. 2024 Jul 22 ; 63 (30) : e202405123. [epub] 20240619

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38714495

Grantová podpora
DE-FOA-0002449 U.S. Department of Energy
CHE-2303936 National Science Foundation
CHE-2153757 National Science Foundation
project LL2101 Ministry of Education Youth and Sports (MEYS) ERC-CZ program
reg. No. CZ.02.1.01/0.0/0.0/15_003/0000444 Project Advanced Functional Nanorobots
DE-FOA-0002449 Office of Science

In this work, we investigate trion dynamics occurring at the heterojunction between organometallic molecules and a monolayer transition metal dichalcogenide (TMD) with transient electronic sum frequency generation (tr-ESFG) spectroscopy. By pumping at 2.4 eV with laser pulses, we have observed an ultrafast hole transfer, succeeded by the emergence of charge-transfer trions. This observation is facilitated by the cancellation of ground state bleach and stimulated emission signals due to their opposite phases, making tr-ESFG especially sensitive to the trion formation dynamics. The presence of charge-transfer trion at molecular functionalized TMD monolayers suggests the potential for engineering the local electronic structures and dynamics of specific locations on TMDs and offers a potential for transferring unique electronic attributes of TMD to the molecular layers.

Zobrazit více v PubMed

M. Kan, J. Y. Wang, X. W. Li, S. H. Zhang, Y. W. Li, Y. Kawazoe, Q. Sun, P. Jena, J. Phys. Chem. C 2014, 118, 1515–1522.

N. Alidoust, G. Bian, S. Y. Xu, R. Sankar, M. Neupane, C. Liu, I. Belopolski, D. X. Qu, J. D. Denlinger, F. C. Chou, M. Z. Hasan, Nat. Commun. 2014, 5, DOI 10.1038/ncomms5673.

D. Vaquero, V. Clericò, J. Salvador-Sánchez, A. Martín-Ramos, E. Díaz, F. Domínguez-Adame, Y. M. Meziani, E. Diez, J. Quereda, Commun. Phys. 2020, 3, DOI 10.1038/s42005-020-00460-9.

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, J. Shan, Nat. Mater. 2013, 12, 207–211.

W. Wang, N. Sui, M. Ni, X. Chi, L. Pan, H. Zhang, Z. Kang, Q. Zhou, Y. Wang, J. Phys. Chem. C 2020, 124, 1749–1754.

A. Ayari, E. Cobas, O. Ogundadegbe, M. S. Fuhrer, J. Appl. Phys. 2007, 101, DOI 10.1063/1.2407388.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 2011, 6, 147–150.

S. Kallatt, S. Das, S. Chatterjee, K. Majumdar, NPJ 2D Mater. Appl. 2019, 3, DOI 10.1038/s41699-019-0097-3.

H. Lee, Y. Koo, S. Kumar, Y. Jeong, D. G. Heo, S. H. Choi, H. Joo, M. Kang, R. H. Siddique, K. K. Kim, H. S. Lee, S. An, H. Choo, K. D. Park, Nat. Commun. 2023, 14, DOI 10.1038/s41467-023-37481-1.

R. Liu, F. Wang, L. Liu, X. He, J. Chen, Y. Li, T. Zhai, Small Structures 2021, 2, DOI 10.1002/sstr.202000136.

S. J. Liang, B. Cheng, X. Cui, F. Miao, Adv. Mater. 2020, 32, DOI 10.1002/adma.201903800.

S. Zhang, J. Liu, M. M. Kirchner, H. Wang, Y. Ren, W. Lei, J. Phys. D 2021, 54, DOI 10.1088/1361-6463/ac16a4.

Z. Song, T. Schultz, Z. Ding, B. Lei, C. Han, P. Amsalem, T. Lin, D. Chi, S. L. Wong, Y. J. Zheng, M. Y. Li, L. J. Li, W. Chen, N. Koch, Y. L. Huang, A. T. S. Wee, ACS Nano 2017, 11, 9128–9135.

S. Bertolazzi, M. Gobbi, Y. Zhao, C. Backes, P. Samorì, Chem. Soc. Rev. 2018, 47, 6845–6888.

Y. Huang, F. Zhuge, J. Hou, L. Lv, P. Luo, N. Zhou, L. Gan, T. Zhai, ACS Nano 2018, 12, 4062–4073.

S. Andleeb, X. Wang, H. Dong, S. Valligatla, C. N. Saggau, L. Ma, O. G. Schmidt, F. Zhu, Nanomaterials 2023, 13, DOI 10.3390/nano13091491.

S. Li, C. Zhong, A. Henning, V. K. Sangwan, Q. Zhou, X. Liu, M. S. Rahn, S. A. Wells, H. Y. Park, J. Luxa, Z. Sofer, A. Facchetti, P. Darancet, T. J. Marks, L. J. Lauhon, E. A. Weiss, M. C. Hersam, ACS Nano 2020, 14, 3509–3518.

M. Van Winkle, I. M. Craig, S. Carr, M. Dandu, K. C. Bustillo, J. Ciston, C. Ophus, T. Taniguchi, K. Watanabe, A. Raja, S. M. Griffin, D. K. Bediako, Nat. Commun. 2023, 14, DOI 10.1038/s41467-023-38504-7.

R. Hou, Y. Xia, S. Yang, ACS Omega 2020, 5, 26748–26754.

T. R. Kafle, B. Kattel, S. D. Lane, T. Wang, H. Zhao, W. L. Chan, ACS Nano 2017, 11, 10184–10192.

Z. Wang, C. Sun, X. Xu, Y. Liu, Z. Chen, Y. M. Yang, H. Zhu, J. Am. Chem. Soc. 2023, 145, 11227–11235.

L. Zhang, F. Zhou, X. Zhang, S. Yang, B. Wen, H. Yan, T. Yildirim, X. Song, Q. Yang, M. Tian, N. Wan, H. Song, J. Pei, S. Qin, J. Zhu, S. Wageh, O. A. Al-Hartomy, A. G. Al-Sehemi, H. Shen, Y. Liu, H. Zhang, Adv. Mater. 2023, 35, DOI 10.1002/adma.202206212.

T. Deilmann, K. S. Thygesen, Nano Lett. 2018, 18, 1460–1465.

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, H. Zhang, Nat. Chem. 2013, 5, 263–275.

Z. Wang, L. Zhao, K. F. Mak, J. Shan, Nano Lett. 2017, 17, 740–746.

M. Chhowalla, Z. Liu, H. Zhang, Chem. Soc. Rev. 2015, 44, 2584–2586.

X. Xu, W. Yao, D. Xiao, T. F. Heinz, Nat. Phys. 2014, 10, 343–350.

M. R. Habib, H. Li, Y. Kong, T. Liang, S. M. Obaidulla, S. Xie, S. Wang, X. Ma, H. Su, M. Xu, Nanoscale 2018, 10, 16107–16115.

X. Zhu, N. R. Monahan, Z. Gong, H. Zhu, K. W. Williams, C. A. Nelson, J. Am. Chem. Soc. 2015, 137, 8313–8320.

X. Zhu, N. R. Monahan, Z. Gong, H. Zhu, K. W. Williams, C. A. Nelson, J. Am. Chem. Soc. 2015, 137, 8313–8320.

S. Das, Y. Wang, Y. Dai, S. Li, Z. Sun, Light-Sci. Appl. 2021, 10, DOI 10.1038/s41377-021-00462-4.

N. Kumar, J. He, D. He, Y. Wang, H. Zhao, J. Appl. Phys. 2013.

I. Irfan, S. Golovynskyi, M. Bosi, L. Seravalli, O. A. Yeshchenko, B. Xue, D. Dong, Y. Lin, R. Qiu, B. Li, J. Qu, J. Phys. Chem. C 2021, 125, 4119–4132.

J. Choi, H. Zhang, J. H. Choi, ACS Nano 2016, 10, 1671–1680.

S. Das, Y. Wang, Y. Dai, S. Li, Z. Sun, Light-Sci. Appl. 2021, 10, DOI 10.1038/s41377-021-00462-4.

P. Valencia-Acuna, P. Zereshki, M. M. Tavakoli, J. H. Park, J. Kong, H. Zhao, Phys. Rev. B 2020, 102, DOI 10.1103/PhysRevB.102.035414.

Y. Li, X. Wu, W. Liu, H. Xu, X. Liu, Appl. Phys. Lett. 2021, 119, DOI 10.1063/5.0060587.

C. Cheng, J. Zhang, B. Zhu, G. Liang, L. Zhang, J. Yu, Angew. Chem. Int. Ed. 2023, 62, DOI 10.1002/anie.202218688.

R. Canton-Vitoria, H. B. Gobeze, V. M. Blas-Ferrando, J. Ortiz, Y. Jang, F. Fernández-Lázaro, Á. Sastre-Santos, Y. Nakanishi, H. Shinohara, F. D'Souza, N. Tagmatarchis, Angew. Chem. 2019, 131, 5768–5773.

I. K. Sideri, Y. Jang, J. Garcés-Garcés, Á. Sastre-Santos, R. Canton-Vitoria, R. Kitaura, F. Fernández-Lázaro, F. D'Souza, N. Tagmatarchis, Angew. Chem. Int. Ed. 2021, 60, 9120–9126.

X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, F. Wang, Nat. Nanotechnol. 2014, 9, 682–686.

S. B. Homan, V. K. Sangwan, I. Balla, H. Bergeron, E. A. Weiss, M. C. Hersam, Nano Lett. 2017, 17, 164–169.

S. B. Homan, V. K. Sangwan, I. Balla, H. Bergeron, E. A. Weiss, M. C. Hersam, Nano Lett. 2017, 17, 164–169.

C. Zhong, V. K. Sangwan, C. Wang, H. Bergeron, M. C. Hersam, E. A. Weiss, J. Phys. Chem. Lett. 2018, 9, 2484–2491.

S. Padgaonkar, S. H. Amsterdam, H. Bergeron, K. Su, T. J. Marks, M. C. Hersam, E. A. Weiss, J. Phys. Chem. C 2019, 123, 13337–13343.

A. Autere, H. Jussila, A. Marini, J. R. M. Saavedra, Y. Dai, A. Säynätjoki, L. Karvonen, H. Yang, B. Amirsolaimani, R. A. Norwood, N. Peyghambarian, H. Lipsanen, K. Kieu, F. J. G. De Abajo, Z. Sun, Phys. Rev. B 2018, 98, DOI 10.1103/PhysRevB.98.115426.

L. Mennel, M. Paur, T. Mueller, APL Photonics 2019, 4, DOI 10.1063/1.5051965.

Y. R. Shen, V. Ostroverkhov, Chem. Rev. 2006, 106, 1140–1154.

M. Vinaykin, A. V. Benderskii, J. Phys. Chem. Lett. 2012, 3, 3348–3352.

Y. Tong, Y. Zhao, N. Li, M. Osawa, P. B. Davies, S. Ye, J. Chem. Phys. 2010, 133, DOI 10.1063/1.3428668.

P. E. Ohno, H. F. Wang, F. Paesani, J. L. Skinner, F. M. Geiger, J. Phys. Chem. A 2018, 122, 4457–4464.

J. Tan, B. Zhang, Y. Luo, S. Ye, Angew. Chem. Int. Ed. 2017, 56, 12977–12981.

M. Bonn, Y. Nagata, E. H. G. Backus, Angew. Chem. 2015, 127, 5652–5669.

J. Lu, A. Carvalho, H. Liu, S. X. Lim, A. H. Castro Neto, C. H. Sow, Angew. Chem. 2016, 128, 12124–12128.

S. Yamaguchi, T. Tahara, J. Chem. Phys. 2008, 129, DOI 10.1063/1.2981179.

G. H. Deng, Y. Qian, Y. Rao, J. Chem. Phys. 2019, 150, DOI 10.1063/1.5063458.

D. E. Cotton, A. P. Moon, S. T. Roberts, J. Phys. Chem. C 2020, 124, 11401–11413.

Y. Li, J. Wang, W. Xiong, J. Phys. Chem. C 2015, 119, 28083–28089.

G.-H. Deng, Y. Qian, T. Zhang, J. Han, H. Chen, Y. Rao, The Proceedings of the National Academy of Sciences 2021, DOI 10.1073/pnas.2100608118/-/DCSupplemental.

R. De, N. A. Calvet, B. Dietzek-Ivansic, Angew. Chem. Int. Ed. 2024, DOI 10.1002/anie.202313574.

C. Wang, Y. Jing, L. Chen, W. Xiong, J. Phys. Chem. Lett. 2022, 13, 8733–8739.

A. Forment-Aliaga, E. Coronado, Chem. Rec. 2018, 18, 737–748.

J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao, X. Xu, Nat. Rev. Mater. 2016, 1, DOI 10.1038/natrevmats.2016.55.

E. C. Ahn, NPJ 2D Mater. Appl. 2020, 4, DOI 10.1038/s41699-020-0152-0.

Y. Zhao, K. Xu, F. Pan, C. Zhou, F. Zhou, Y. Chai, Adv. Funct. Mater. 2017, 27, DOI 10.1002/adfm.201603484.

L. Tong, R. P. Thummel, Chem. Sci. 2016, 7, 6591–6603.

L. Tong, R. Zong, R. Zhou, N. Kaveevivitchai, G. Zhang, R. P. Thummel, Faraday Discuss. 2015, 185, 87–104.

H. W. Tseng, R. Zong, J. T. Muckerman, R. Thummel, Inorg. Chem. 2008, 47, 11763–11773.

I. Purnama, Salmahaminati, M. Abe, M. Hada, Y. Kubo, J. Y. Mulyana, Dalton Trans. 2019, 48, 688–695.

M. Berg, K. Keyshar, I. Bilgin, F. Liu, H. Yamaguchi, R. Vajtai, C. Chan, G. Gupta, S. Kar, P. Ajayan, T. Ohta, A. D. Mohite, Phys. Rev. B 2017, 95, DOI 10.1103/PhysRevB.95.235406.

S. Mouri, Y. Miyauchi, K. Matsuda, Nano Lett. 2013, 13, 5944–5948.

Y. R. Shen, Surface Properties Probed by Second-Harmonic and Sum-Frequency Generation n.d.

S. Yamaguchi, T. Tahara, J. Phys. Chem. C 2015, 119, 14815–14828.

E. Collini, Chem. Soc. Rev. 2013, 42, 4932–4947.

P. Hamm, M. Zanni, Concepts and Methods of 2D Infrared Spectroscopy 2011.

S. Mukamel, N. Y. Oxford, PRINCIPLES OF NONLINEAR OPTICAL SPECTROSCOPY 1995.

S. H. Aleithan, M. Y. Livshits, S. Khadka, J. J. Rack, M. E. Kordesch, E. Stinaff, Phys. Rev. B 2016, 94, DOI 10.1103/PhysRevB.94.035445.

T. Goswami, R. Rani, K. S. Hazra, H. N. Ghosh, J. Phys. Chem. Lett. 2019, 3057–3063.

A. Singh, G. Moody, K. Tran, M. E. Scott, V. Overbeck, G. Berghäuser, J. Schaibley, E. J. Seifert, D. Pleskot, N. M. Gabor, J. Yan, D. G. Mandrus, M. Richter, E. Malic, X. Xu, X. Li, Phys. Rev. B 2016, 93, DOI 10.1103/PhysRevB.93.041401.

F. Gao, Y. Gong, M. Titze, R. Almeida, P. M. Ajayan, H. Li, Phys. Rev. B 2016, 94, DOI 10.1103/PhysRevB.94.245413.

D. Li, C. Trovatello, S. Dal Conte, M. Nuß, G. Soavi, G. Wang, A. C. Ferrari, G. Cerullo, T. Brixner, Nat. Commun. 2021, 12, DOI 10.1038/s41467-021-20895-0.

L. Wibmer, S. Lages, T. Unruh, D. M. Guldi, Adv. Mater. 2018, 30, DOI 10.1002/adma.201706702.

T. Godde, D. Schmidt, J. Schmutzler, M. Aßmann, J. Debus, F. Withers, E. M. Alexeev, O. Del Pozo-Zamudio, O. V. Skrypka, K. S. Novoselov, M. Bayer, A. I. Tartakovskii, Phys. Rev. B 2016, 94, DOI 10.1103/PhysRevB.94.165301.

J. Pandey, A. Soni, Appl. Surf. Sci. 2019, 463, 52–57.

T. Deilmann, K. S. Thygesen, Nano Lett. 2018, 18, 1460–1465.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, T. F. Heinz, Phys. Rev. Lett. 2014, 113, DOI 10.1103/PhysRevLett.113.076802.

A. Singh, G. Moody, K. Tran, M. E. Scott, V. Overbeck, G. Berghäuser, J. Schaibley, E. J. Seifert, D. Pleskot, N. M. Gabor, J. Yan, D. G. Mandrus, M. Richter, E. Malic, X. Xu, X. Li, Phys. Rev. B 2016, 93, DOI 10.1103/PhysRevB.93.041401.

R. Matsunaga, K. Matsuda, Y. Kanemitsu, Phys. Rev. Lett. 2011, 106, DOI 10.1103/PhysRevLett.106.037404.

A. Ramasubramaniam, Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 86, DOI 10.1103/PhysRevB.86.115409.

G. Bastard, E. E. Mendez, L. L. Chang, L. Esaki, Exciton Binding Energy in Quantum Wells n.d.

G. Finkelstein, V. Umansky, I. Bar-Joseph, V. Ciulin, S. Haacke, J.-D. Ganiè, B. Deveaud, PHYSICAL REVIEW B 15 NOVEMBER 1998-I VOLUME n.d.

E. Vanelle, M. Paillard, X. Marie, T. Amand, P. Gilliot, D. Brinkmann, R. Lé, J. Cibert, S. Tatarenko, Spin Coherence and Formation Dynamics of Charged Excitons in CdTeÕCd 1ÀxÀy Mg x Zn y Te Quantum Wells n.d.

D. Sanvitto, R. A. Hogg, A. J. Shields, M. Y. Simmons, D. A. Ritchie, M. Pepper, Phys. Status Solidi B 2001, 227, 297–306.

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, X. Xu, Nat. Commun. 2013, 4, DOI 10.1038/ncomms2498.

T. Nishihara, Y. Yamada, M. Okano, Y. Kanemitsu, Appl. Phys. Lett. 2013, 103, DOI 10.1063/1.4813014.

T. Koyama, S. Shimizu, Y. Miyata, H. Shinohara, A. Nakamura, Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 87, DOI 10.1103/PhysRevB.87.165430.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...