A lattice Boltzmann approach to mathematical modeling of myocardial perfusion
Language English Country Great Britain, England Media print-electronic
Document type Journal Article
Grant support
NV19-08-00071
Ministerstvo Zdravotnictví České Republiky
PubMed
38715357
DOI
10.1002/cnm.3833
Knihovny.cz E-resources
- Keywords
- advection–diffusion problem, contrast agent transport, lattice Boltzmann method, magnetic resonance imaging, mixed‐hybrid finite element method, myocardial perfusion,
- MeSH
- Finite Element Analysis * MeSH
- Contrast Media MeSH
- Coronary Circulation physiology MeSH
- Humans MeSH
- Models, Cardiovascular * MeSH
- Computer Simulation MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Contrast Media MeSH
A mathematical model of myocardial perfusion based on the lattice Boltzmann method (LBM) is proposed and its applicability is investigated in both healthy and diseased cases. The myocardium is conceptualized as a porous material in which the transport and mass transfer of a contrast agent in blood flow is studied. The results of myocardial perfusion obtained using LBM in 1D and 2D are confronted with previously reported results in the literature and the results obtained using the mixed-hybrid finite element method. Since LBM is not suitable for simulating flow in heterogeneous porous media, a simplified and computationally efficient 1D-analog approach to 2D diseased case is proposed and its applicability discussed.
See more in PubMed
Plein S, Ryf S, Schwitter J, Radjenovic A, Boesiger P, Kozerke S. Dynamic contrast‐enhanced myocardial perfusion MRI accelerated with k‐t SENSE. Magn Reson Med. 2007;58(4):777‐785. doi:10.1002/mrm.21381
Jogiya R, Kozerke S, Morton G, et al. Validation of dynamic 3‐dimensional whole heart magnetic resonance myocardial perfusion imaging against fractional flow reserve for the detection of significant coronary artery disease. J Am Coll Cardiol. 2012;60(8):756‐765. doi:10.1186/1532‐429X‐14‐S1‐O92
Sammut EC, Villa AD, Di Giovine G, et al. Prognostic value of quantitative stress perfusion cardiac magnetic resonance. JACC Cardiovasc Imaging. 2018;11(5):686‐694. doi:10.1016/j.jcmg.2017.07.022
Arthur HM, Campbell P, Harvey PJ, et al. Women, cardiac syndrome X, and microvascular heart disease. Can J Cardiol. 2012;28(2):S42‐S49. doi:10.1016/j.cjca.2011.09.006
Jerosch‐Herold M, Seethamraju RT, Swingen CM, Wilke NM, Stillman AE. Analysis of myocardial perfusion MRI. J Magn Resonance Imag. 2004;19(6):758‐770.
Axel L. Tissue mean transit time from dynamic computed tomography by a simple deconvolution technique. Invest Radiol. 1983;18(1):94‐99.
Zarinabad N, Hautvast GL, Sammut E, et al. Effects of tracer arrival time on the accuracy of high‐resolution (voxel‐wise) myocardial perfusion maps from contrast‐enhanced first‐pass perfusion magnetic resonance. IEEE Trans Biomed Eng. 2014;61(9):2499‐2506.
Lee J, Cookson A, Chabiniok R, et al. Multiscale modelling of cardiac perfusion. Modeling the Heart and the Circulatory System. Springer; 2015:51‐96.
Chapelle D, Gerbeau JF, Sainte‐Marie J, Vignon‐Clementel I. A poroelastic model valid in large strains with applications to perfusion in cardiac modeling. Computat Mech. 2010;46(1):91‐101. doi:10.1007/s00466‐009‐0452‐x
Cookson A, Lee J, Michler C, et al. A novel porous mechanical framework for modelling the interaction between coronary perfusion and myocardial mechanics. J Biomech. 2012;45(5):850‐855. doi:10.1016/j.jbiomech.2011.11.026
Cookson AN, Lee J, Michler C, et al. A spatially‐distributed computational model to quantify behaviour of contrast agents in MR perfusion imaging. Med Image Anal. 2014;18(7):1200‐1216. doi:10.1016/j.media.2014.07.002
Michler C, Cookson A, Chabiniok R, et al. A computationally efficient framework for the simulation of cardiac perfusion using a multi‐compartment Darcy porous‐media flow model. Int J Numer Methods Biomed En. 2013;29(2):217‐232. doi:10.1002/cnm.2520
Fučík R, Klinkovský J, Solovský J, Oberhuber T, Mikyška J. Multidimensional mixed–hybrid finite element method for compositional two‐phase flow in heterogeneous porous media and its parallel implementation on GPU. Comput Phys Commun. 2019;238:165‐180. doi:10.1016/j.cpc.2018.12.004
Guo Z, Shu C. Lattice Boltzmann Method and its Applications in Engineering. 3. World Scientific; 2013.
Krüger T, Kusumaatmaja H, Kuzmin A, Shardt O, Silva G, Viggen EM. The lattice Boltzmann method. Springer International Publishing; 2017:4‐15.
Sharma KV, Straka R, Tavares FW. New cascaded thermal lattice Boltzmann method for simulations of advection‐diffusion and convective heat transfer. Int J Thermal Sci. 2017;118:259‐277. doi:10.1016/j.ijthermalsci.2017.04.020
Geier M, Greiner A, Korvink JG. Cascaded digital lattice Boltzmann automata for high Reynolds number flow. Phys Rev E. 2006;73(6):66705. doi:10.1103/PhysRevE.73.066705
Sun C, Munn LL. Lattice‐Boltzmann simulation of blood flow in digitized vessel networks. Comput Math Appl. 2008;55(7):1594‐1600. doi:10.1016/j.camwa.2007.08.019
Hogan B, Shen Z, Zhang H, Misbah C, Barakat AI. Shear stress in the microvasculature: influence of red blood cell morphology and endothelial wall undulation. Biomech Model Mechanobiol. 2019;18(4):1095‐1109. doi:10.1007/s10237‐019‐01130‐8
Fučík R, Galabov R, Pauš P, et al. Investigation of phase‐contrast magnetic resonance imaging underestimation of turbulent flow through the aortic valve phantom: experimental and computational study using lattice Boltzmann method. Magn Reson Mater Phys Biol Med. 2020;33(5):649‐662. doi:10.1007/s10334‐020‐00837‐5
Eichler P, Galabov R, Fučík R, et al. Non‐Newtonian turbulent flow through aortic phantom: Experimental and computational study using magnetic resonance imaging and lattice Boltzmann method. Submitted.
Eichler P, Fuka V, Fučík R. Cumulant lattice Boltzmann simulations of turbulent flow above rough surfaces. Comput Math Appl. 2021;92:37‐47. doi:10.1016/j.camwa.2021.03.016
Fučík R, Eichler P, Straka R, Pauš P, Klinkovský J, Oberhuber T. On optimal node spacing for immersed boundary–lattice Boltzmann method in 2D and 3D. Comput Math Appl. 2019;77(4):1144‐1162. doi:10.1016/j.camwa.2018.10.045
Davis TA. Algorithm 832: UMFPACK V4.3—an unsymmetric‐pattern multifrontal method. ACM Trans Math Softw (TOMS). 2004;30(2):196‐199. doi:10.1145/992200.992206
Schmiedl U, Ogan M, Moseley M, Brasch R. Comparison of the contrast‐enhancing properties of albumin‐(Gd‐DTPA) and Gd‐DTPA at 2.0 T: and experimental study in rats. Am J Roentgenol. 1986;147(6):1263‐1270. doi:10.2214/ajr.147.6.1263
Cuenod C, Balvay D. Perfusion and vascular permeability: basic concepts and measurement in DCE‐CT and DCE‐MRI. Diagn Interv Imaging. 2013;94(12):1187‐1204. doi:10.1016/j.diii.2013.10.010
Westerhof N, Boer C, Lamberts R, Sipkema P. Cross‐talk between cardiac muscle and coronary vasculature. Physiol Rev. 2006;86(4):1263‐1308.
Chapelle D, Moireau P. General coupling of porous flows and hyperelastic formulations from thermodynamics principles to energy balance and compatible time schemes. Eur J Mech B/Fluids. 2014;46:82‐96.
Rohan E, Turjanicová J, Lukeš V. The Biot–Darcy–Brinkman model of flow in deformable double porous media; homogenization and numerical modelling. Comput Math Appl. 2019;78(9):3044‐3066.
Chabiniok R, Burtschell B, Chapelle D, Moireau P. Dimensional reduction of a poromechanical cardiac model for myocardial perfusion studies. Applications in Engineering Science. 2022;12:100121. doi:10.1016/j.apples.2022.100121
Di Gregorio S, Fedele M, Pontone G, et al. A computational model applied to myocardial perfusion in the human heart: from large coronaries to microvasculature. J Comput Phys. 2021;424:109836. doi:10.1016/j.jcp.2020.109836
Lee J, Nordsletten D, Cookson A, Rivolo S, Smith N. In silico coronary wave intensity analysis: application of an integrated one‐dimensional and poromechanical model of cardiac perfusion. Biomech Model Mechanobiol. 2016;15(6):1535‐1555. doi:10.1007/s10237‐016‐0782‐5
Hoteit H, Firoozabadi A. Numerical modeling of two‐phase flow in heterogeneous permeable media with different capillarity pressures. Adv Water Resour. 2008;31(1):56‐73.
Ewing R, Heinemann R. Incorporation of Mixed Finite Element Methods in Compositional Simulation for Reduction of Numerical Dispersion. OnePetro; 1983.
Conte S, De Boor C. Elementary Numerical Methods. McGraw‐Hill; 1972.