Global arthropod beta-diversity is spatially and temporally structured by latitude

. 2024 May 08 ; 7 (1) : 552. [epub] 20240508

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38720028

Grantová podpora
27108123 Research Grants Council, University Grants Committee (RGC, UGC)

Odkazy

PubMed 38720028
PubMed Central PMC11078949
DOI 10.1038/s42003-024-06199-1
PII: 10.1038/s42003-024-06199-1
Knihovny.cz E-zdroje

Global biodiversity gradients are generally expected to reflect greater species replacement closer to the equator. However, empirical validation of global biodiversity gradients largely relies on vertebrates, plants, and other less diverse taxa. Here we assess the temporal and spatial dynamics of global arthropod biodiversity dynamics using a beta-diversity framework. Sampling includes 129 sampling sites whereby malaise traps are deployed to monitor temporal changes in arthropod communities. Overall, we encountered more than 150,000 unique barcode index numbers (BINs) (i.e. species proxies). We assess between site differences in community diversity using beta-diversity and the partitioned components of species replacement and richness difference. Global total beta-diversity (dissimilarity) increases with decreasing latitude, greater spatial distance and greater temporal distance. Species replacement and richness difference patterns vary across biogeographic regions. Our findings support long-standing, general expectations of global biodiversity patterns. However, we also show that the underlying processes driving patterns may be regionally linked.

Agence Nationale des Parcs Nationaux Departement de la Recherche Scientifique Libreville Gabon

AIM Advanced Identification Methods GmbH Leipzig Germany

ARC Centre for Forest Values University of Tasmania Hobart TAS Australia

Australian Landscape Trust Renmark SA SA5341 Australia

BC Conservation Data Centre Ministry of Environment Box 9338 Station Prov Govt Victoria BC V8W 9M1 Canada

Biology Centre Czech Academy of Sciences Institute of Entomology Ceske Budejovice Czech Republic

Canadian High Arctic Research Station Polar Knowledge Canada Cambridge Bay NU Canada

Canadian National Collection of Insects Arachnids and Nematodes Agriculture and Agri Food Canada Ottawa ON Canada

CEFE Univ Montpellier CNRS EPHE IRD Montpellier France

Centre for Biodiversity Genomics University of Guelph Guelph ON Canada

Centre for Tropical Environmental and Sustainability Sciences James Cook University Cairns Queensland Australia

Departamento de Biología University of Puerto Rico at Mayagüez Mayagüez 00680 Puerto Rico

Department of Agricultural Sciences Faculty of Agriculture and Forestry University of Helsinki PO Box 27 Helsinki Finland

Department of Animal Ecology and Tropical Biology Biocenter University of Würzburg Am Hubland 97074 Würzburg Germany

Department of Biological and Environmental Science University of Jyväskylä P O Box 35 FI 40014 Jyväskylä Finland

Department of Biology Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim N 7491 Norway

Department of Biology University of Pennsylvania Philadelphia PA 19104 USA

Department of Ecology Swedish University of Agricultural Sciences Ulls väg 18B Uppsala 75651 Sweden

Department of Integrative Biology University of Guelph Guelph ON Canada

Department of Natural History NTNU University Museum Norwegian University of Science and Technology Trondheim NO 7491 Norway

Department of Science Natural History Museum South Kensington London United Kingdom

Department of Zoology University of Chittagong 4331 Chittagong Bangladesh

División Ornitología Museo Argentino de Ciencias Naturales Bernardino Rivadavia Buenos Aires Argentina

Ecology and Genetics Research Unit University of Oulu PO Box 3000 90014 Oulu Finland

Entomological Museum College of Plant Protection Northwest A and F University Yangling 712100 Shaanxi China

Estación de Biología Chamela Instituto de Biología Universidad Nacional Autónoma de México A P 21 C P 48980 San Patricio Jalisco Mexico

Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic

Insectarium Montréal Space for Life Montréal QC Canada

Institute of Biodiversity and Ecosystem Research Bulgarian Academy of Sciences 2 Gagarin Street 1113 Sofia Bulgaria

Key Laboratory of Plant Protection Resources and Pest Management Ministry of Education Northwest A and F University Yangling 712100 Shaanxi China

Laboratório de Ecologia de Invertebrados Coordenação de Zoologia Museu Paraense Emilio Goeldi Avenida Perimetral 1901 Terra Firma CEP 66077 530 Belém Pará Brazil

Laboratory of Hydrobiology Scientific and Practical Center for Bioresources National Academy of Sciences of Belarus Minsk Belarus

Leibniz Institute for the Analysis of Biodiversity Change Museum Koenig Bonn Adenauerallee 160 53113 Bonn Germany

Lepsoc Africa Magaliesburg South Africa

Mpala Research Centre and Department of Ecology and Evolutionary Biology Princeton University Princeton NJ USA

National Museum of Natural History Smithsonian Institution Washington WA USA

North Cascades National Park Service Complex 810 State Route 20 Sedro Woolley WA 98284 USA

Organismal and Evolutionary Biology Research Programme Faculty of Biological and Environmental Sciences University of Helsinki P O Box 65 Helsinki 00014 Finland

Plant Production Department College of Food and Agriculture Sciences King Saud University Riyadh 11451 Saudi Arabia

Private collector Perth Australia

Rare Charitable Research Reserve Cambridge ON Canada

San Diego Barcode of Life San Diego CA 92130 USA

School of Biological Sciences The University of Hong Kong Pokfulam Road Hong Kong SAR China

School of Science University of Waikato Hamilton New Zealand

Section of Ecology Behavior and Evolution School of Biological Sciences University of California San Diego 9500 Gilman Drive La Jolla CA 92093 0116 USA

SNSB Zoologische Staatssammlung München Munich Germany

Stanley Park Ecology Society P O Box 5167 Vancouver BC V6B 4B2 Canada

The Wetlands Centre Cockburn WA WA6163 Australia

US National Park Service 1316 Cherokee Orchard Road Great Smoky Mountains National Park Gatlinburg TN USA

Worldwide Fund for Nature International Nairobi Kenya

Zobrazit více v PubMed

IUCN. The IUCN Red List of Threatened Species, https://www.iucnredlist.org (2022).

García‐Robledo C, et al. The Erwin equation of biodiversity: From little steps to quantum leaps in the discovery of tropical insect diversity. Biotropica. 2020;52:590–597. doi: 10.1111/btp.12811. DOI

Felipe-Lucia MR, et al. Land-use intensity alters networks between biodiversity, ecosystem functions, and services. Proc. Natl Acad. Sci. 2020;117:28140–28149. doi: 10.1073/pnas.2016210117. PubMed DOI PMC

Stork NE. How many species of insects and other terrestrial arthropods are there on Earth? Annu. Rev. Entomol. 2018;63:31–45. doi: 10.1146/annurev-ento-020117-043348. PubMed DOI

Hillebrand H. On the generality of the latitudinal diversity gradient. Am. Naturalist. 2004;163:192–211. doi: 10.1086/381004. PubMed DOI

Willig MR, Kaufman DM, Stevens RD. Latitudinal gradients of biodiversity: Pattern, process, scale, and synthesis. Annu. Rev. Ecol. Evol. Syst. 2003;34:273–309. doi: 10.1146/annurev.ecolsys.34.012103.144032. DOI

Rahbek C, et al. Humboldt’s enigma: What causes global patterns of mountain biodiversity? Science. 2019;365:1108–LP-1113. doi: 10.1126/science.aax0149. PubMed DOI

Qian H, Ricklefs RE. A latitudinal gradient in large-scale beta diversity for vascular plants in North America. Ecol. Lett. 2007;10:737–744. doi: 10.1111/j.1461-0248.2007.01066.x. PubMed DOI

Mannion PD, Upchurch P, Benson RBJ, Goswami A. The latitudinal biodiversity gradient through deep time. Trends Ecol. Evol. 2014;29:42–50. doi: 10.1016/j.tree.2013.09.012. PubMed DOI

Dowle EJ, Morgan-Richards M, Trewick SA. Molecular evolution and the latitudinal biodiversity gradient. Heredity. 2013;110:501–510. doi: 10.1038/hdy.2013.4. PubMed DOI PMC

Pontarp M, et al. The Latitudinal Diversity Gradient: Novel Understanding through Mechanistic Eco-evolutionary Models. Trends Ecol. Evol. 2019;34:211–223. doi: 10.1016/j.tree.2018.11.009. PubMed DOI

Kinlock NL, et al. Explaining global variation in the latitudinal diversity gradient: Meta-analysis confirms known patterns and uncovers new ones. Glob. Ecol. Biogeogr. 2018;27:125–141. doi: 10.1111/geb.12665. DOI

Borcard, D., Gillet, F. & Legendre, P. Numerical ecology with R. 2nd edn, Vol. 2 (Springer, 2018).

Victorero L, Robert K, Robinson LF, Taylor ML, Huvenne VA. Species replacement dominates megabenthos beta diversity in a remote seamount setting. Sci. Rep. 2018;8:1–11. doi: 10.1038/s41598-018-22296-8. PubMed DOI PMC

Schmera D, Podani J, Legendre P. What do beta diversity components reveal from presence-absence community data? Let us connect every indicator to an indicandum! Ecol. Indic. 2020;117:106540. doi: 10.1016/j.ecolind.2020.106540. DOI

Lazarina M, et al. Replacement drives native β-diversity of British avifauna, while richness differences shape alien β-diversity. Divers. Distrib. 2023;29:61–74. doi: 10.1111/ddi.13641. DOI

Podani J, Ricotta C, Schmera D. A general framework for analyzing beta diversity, nestedness and related community-level phenomena based on abundance data. Ecol. Complex. 2013;15:52–61. doi: 10.1016/j.ecocom.2013.03.002. DOI

Koricheva J, Gurevitch J. Uses and misuses of meta-analysis in plant ecology. J. Ecol. 2014;102:828–844. doi: 10.1111/1365-2745.12224. DOI

Zhang X, et al. Local community assembly mechanisms shape soil bacterial β diversity patterns along a latitudinal gradient. Nat. Commun. 2020;11:5428. doi: 10.1038/s41467-020-19228-4. PubMed DOI PMC

Bista I, et al. Performance of amplicon and shotgun sequencing for accurate biomass estimation in invertebrate community samples. Mol. Ecol. Resour. 2018;18:1020–1034. doi: 10.1111/1755-0998.12888. PubMed DOI

Seymour M, et al. Environmental DNA provides higher resolution assessment of riverine biodiversity and ecosystem function via spatio-temporal nestedness and turnover partitioning. Commun. Biol. 2021;4:512–512. doi: 10.1038/s42003-021-02031-2. PubMed DOI PMC

Gaston KJ, Blackburn TM, Spicer JI. Rapoport’s rule: time for an epitaph? Trends Ecol. Evol. 1998;13:70–74. doi: 10.1016/S0169-5347(97)01236-6. PubMed DOI

Field R, et al. Spatial species-richness gradients across scales: a meta-analysis. J. Biogeogr. 2009;36:132–147. doi: 10.1111/j.1365-2699.2008.01963.x. DOI

Novotny V, et al. Low beta diversity of herbivorous insects in tropical forests. Nature. 2007;448:692–695. doi: 10.1038/nature06021. PubMed DOI

Qian H. Beta diversity in relation to dispersal ability for vascular plants in North America. Glob. Ecol. Biogeogr. 2009;18:327–332. doi: 10.1111/j.1466-8238.2009.00450.x. DOI

Dobrovolski R, Melo AS, Cassemiro FAS, Diniz-Filho JAF. Climatic history and dispersal ability explain the relative importance of turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 2012;21:191–197. doi: 10.1111/j.1466-8238.2011.00671.x. DOI

Mateo RG, et al. The mossy north: an inverse latitudinal diversity gradient in European bryophytes. Sci. Rep. 2016;6:25546. doi: 10.1038/srep25546. PubMed DOI PMC

Socolar JB, Gilroy JJ, Kunin WE, Edwards DP. How Should Beta-Diversity Inform Biodiversity Conservation? Trends Ecol. Evol. 2016;31:67–80. doi: 10.1016/j.tree.2015.11.005. PubMed DOI

Fine PV. Ecological and evolutionary drivers of geographic variation in species diversity. Annu. Rev. Ecol. Evol. Syst. 2015;46:369–392. doi: 10.1146/annurev-ecolsys-112414-054102. DOI

Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B. How many species are there on earth and in the ocean? PLOS Biol. 2011;9:e1001127–e1001127. doi: 10.1371/journal.pbio.1001127. PubMed DOI PMC

Ratnasingham S, Hebert PDN. A DNA-based registry for all animal species: The Barcode Index Number (BIN) system. PLOS One. 2013;8:e66213–e66213. doi: 10.1371/journal.pone.0066213. PubMed DOI PMC

deWaard JR, et al. A reference library for Canadian invertebrates with 1.5 million barcodes, voucher specimens, and DNA samples. Sci. Data. 2019;6:308–308. doi: 10.1038/s41597-019-0320-2. PubMed DOI PMC

Slipinski, S., Leschen, R. & Lawrence, J. Order Coleoptera Linnaeus, 1758. In Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness (ed. Zhang, Z.-Q.) 3148 (Zootaxa, 2011). PubMed

Lennon JJ, Koleff P, GreenwooD JJD, Gaston KJ. The geographical structure of British bird distributions: diversity, spatial turnover and scale. J. Anim. Ecol. 2001;70:966–979. doi: 10.1046/j.0021-8790.2001.00563.x. DOI

Dynesius M, Jansson R. Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proc. Natl Acad. Sci. 2000;97:9115–9120. doi: 10.1073/pnas.97.16.9115. PubMed DOI PMC

Hoorn, C., Perrigo, A. & Antonelli, A. Mountains, climate and biodiversity (John Wiley & Sons, 2018).

Poff NL. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. J. North Am. Benthological Soc. 1997;16:391–409. doi: 10.2307/1468026. DOI

Cadotte MW, Tucker CM. Should Environmental Filtering be Abandoned? Trends Ecol. Evol. 2017;32:429–437. doi: 10.1016/j.tree.2017.03.004. PubMed DOI

Benício RA, et al. Differential speciation rates, colonization time and niche conservatism affect community assembly across adjacent biogeographical regions. J. Biogeogr. 2021;48:2211–2225. doi: 10.1111/jbi.14145. DOI

Hanski I. Habitat fragmentation and species richness. J. Biogeogr. 2015;42:989–993. doi: 10.1111/jbi.12478. DOI

Svenning J-C, Eiserhardt WL, Normand S, Ordonez A, Sandel B. The influence of paleoclimate on present-day patterns in biodiversity and ecosystems. Annu. Rev. Ecol. Evol. Syst. 2015;46:551–572. doi: 10.1146/annurev-ecolsys-112414-054314. DOI

Wiens JJ, Donoghue MJ. Historical biogeography, ecology and species richness. Trends Ecol. Evol. 2004;19:639–644. doi: 10.1016/j.tree.2004.09.011. PubMed DOI

Zhang C, et al. Topographic heterogeneity and temperature amplitude explain species richness patterns of birds in the Qinghai–Tibetan Plateau. Curr. Zool. 2017;63:131–137. PubMed PMC

Antonelli A, et al. Geological and climatic influences on mountain biodiversity. Nat. Geosci. 2018;11:718–725. doi: 10.1038/s41561-018-0236-z. DOI

Massol F, et al. Linking community and ecosystem dynamics through spatial ecology. Ecol. Lett. 2011;14:313–323. doi: 10.1111/j.1461-0248.2011.01588.x. PubMed DOI

Seymour M, et al. Ecological community dynamics: 20 years of moth sampling reveals the importance of generalists for community stability. Basic Appl. Ecol. 2020;49:34–44. doi: 10.1016/j.baae.2020.11.002. DOI

Tonkin JD, Bogan MT, Bonada N, Rios-Touma B, Lytle DA. Seasonality and predictability shape temporal species diversity. Ecology. 2017;98:1201–1216. doi: 10.1002/ecy.1761. PubMed DOI

Basset Y, et al. Arthropod Distribution in a Tropical Rainforest: Tackling a Four Dimensional Puzzle. PLOS One. 2015;10:e0144110. doi: 10.1371/journal.pone.0144110. PubMed DOI PMC

Grøtan V, Lande R, Chacon IA, DeVries PJ. Seasonal cycles of diversity and similarity in a Central American rainforest butterfly community. Ecography. 2014;37:509–516. doi: 10.1111/ecog.00635. DOI

Wagner DL, Grames EM, Forister ML, Berenbaum MR, Stopak D. Insect decline in the Anthropocene: Death by a thousand cuts. Proc. Natl Acad. Sci. 2021;118:e2023989118–e2023989118. doi: 10.1073/pnas.2023989118. PubMed DOI PMC

Pintor AFV, Schwarzkopf L, Krockenberger AK. Rapoport’s Rule: Do climatic variability gradients shape range extent? Ecol. Monogr. 2015;85:643–659. doi: 10.1890/14-1510.1. DOI

Dyer EE, Redding DW, Cassey P, Collen B, Blackburn TM. Evidence for Rapoport’s rule and latitudinal patterns in the global distribution and diversity of alien bird species. J. Biogeogr. 2020;47:1362–1372. doi: 10.1111/jbi.13825. DOI

Hebert PDN, Cywinska A, Ball SL, deWaard JR. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 2003;270:313–321. doi: 10.1098/rspb.2002.2218. PubMed DOI PMC

Hijmans, R. J., Williams, E., Vennes, C. & Hijmans, M. R. J. Package ‘geosphere’. In Spherical trigonometry 1 (2017).

Engel T, et al. Using coverage-based rarefaction to infer non-random species distributions. Ecosphere. 2021;12:e03745. doi: 10.1002/ecs2.3745. DOI

McGlinn DJ, et al. Measurement of Biodiversity (MoB): A method to separate the scale-dependent effects of species abundance distribution, density, and aggregation on diversity change. Methods Ecol. Evol. 2019;10:258–269. doi: 10.1111/2041-210X.13102. DOI

Koleff P, Gaston KJ, Lennon JJ. Measuring beta diversity for presence–absence data. J. Anim. Ecol. 2003;72:367–382. doi: 10.1046/j.1365-2656.2003.00710.x. DOI

Baselga A. Multiplicative partition of true diversity yields independent alpha and beta components; additive partition does not. Ecology. 2010;91:1974–1981. doi: 10.1890/09-0320.1. PubMed DOI

Chihara, L. M. & Hesterberg, T. C. Mathematical statistics with resampling and R. (John Wiley & Sons, 2018).

Seymour, M. Seymour_etal_CommunicationsBiology2024, https://zenodo.org/doi/10.5281/zenodo.10828655 (2024). DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...