Global arthropod beta-diversity is spatially and temporally structured by latitude
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
27108123
Research Grants Council, University Grants Committee (RGC, UGC)
PubMed
38720028
PubMed Central
PMC11078949
DOI
10.1038/s42003-024-06199-1
PII: 10.1038/s42003-024-06199-1
Knihovny.cz E-zdroje
- MeSH
- biodiverzita * MeSH
- časoprostorová analýza MeSH
- členovci * klasifikace fyziologie MeSH
- zeměpis MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Global biodiversity gradients are generally expected to reflect greater species replacement closer to the equator. However, empirical validation of global biodiversity gradients largely relies on vertebrates, plants, and other less diverse taxa. Here we assess the temporal and spatial dynamics of global arthropod biodiversity dynamics using a beta-diversity framework. Sampling includes 129 sampling sites whereby malaise traps are deployed to monitor temporal changes in arthropod communities. Overall, we encountered more than 150,000 unique barcode index numbers (BINs) (i.e. species proxies). We assess between site differences in community diversity using beta-diversity and the partitioned components of species replacement and richness difference. Global total beta-diversity (dissimilarity) increases with decreasing latitude, greater spatial distance and greater temporal distance. Species replacement and richness difference patterns vary across biogeographic regions. Our findings support long-standing, general expectations of global biodiversity patterns. However, we also show that the underlying processes driving patterns may be regionally linked.
Agence Nationale des Parcs Nationaux Departement de la Recherche Scientifique Libreville Gabon
AIM Advanced Identification Methods GmbH Leipzig Germany
ARC Centre for Forest Values University of Tasmania Hobart TAS Australia
Australian Landscape Trust Renmark SA SA5341 Australia
Biology Centre Czech Academy of Sciences Institute of Entomology Ceske Budejovice Czech Republic
Canadian High Arctic Research Station Polar Knowledge Canada Cambridge Bay NU Canada
CEFE Univ Montpellier CNRS EPHE IRD Montpellier France
Centre for Biodiversity Genomics University of Guelph Guelph ON Canada
Departamento de Biología University of Puerto Rico at Mayagüez Mayagüez 00680 Puerto Rico
Department of Biology University of Pennsylvania Philadelphia PA 19104 USA
Department of Ecology Swedish University of Agricultural Sciences Ulls väg 18B Uppsala 75651 Sweden
Department of Integrative Biology University of Guelph Guelph ON Canada
Department of Science Natural History Museum South Kensington London United Kingdom
Department of Zoology University of Chittagong 4331 Chittagong Bangladesh
Ecology and Genetics Research Unit University of Oulu PO Box 3000 90014 Oulu Finland
Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
Insectarium Montréal Space for Life Montréal QC Canada
Lepsoc Africa Magaliesburg South Africa
National Museum of Natural History Smithsonian Institution Washington WA USA
North Cascades National Park Service Complex 810 State Route 20 Sedro Woolley WA 98284 USA
Private collector Perth Australia
Rare Charitable Research Reserve Cambridge ON Canada
San Diego Barcode of Life San Diego CA 92130 USA
School of Biological Sciences The University of Hong Kong Pokfulam Road Hong Kong SAR China
School of Science University of Waikato Hamilton New Zealand
SNSB Zoologische Staatssammlung München Munich Germany
Stanley Park Ecology Society P O Box 5167 Vancouver BC V6B 4B2 Canada
Zobrazit více v PubMed
IUCN. The IUCN Red List of Threatened Species, https://www.iucnredlist.org (2022).
García‐Robledo C, et al. The Erwin equation of biodiversity: From little steps to quantum leaps in the discovery of tropical insect diversity. Biotropica. 2020;52:590–597. doi: 10.1111/btp.12811. DOI
Felipe-Lucia MR, et al. Land-use intensity alters networks between biodiversity, ecosystem functions, and services. Proc. Natl Acad. Sci. 2020;117:28140–28149. doi: 10.1073/pnas.2016210117. PubMed DOI PMC
Stork NE. How many species of insects and other terrestrial arthropods are there on Earth? Annu. Rev. Entomol. 2018;63:31–45. doi: 10.1146/annurev-ento-020117-043348. PubMed DOI
Hillebrand H. On the generality of the latitudinal diversity gradient. Am. Naturalist. 2004;163:192–211. doi: 10.1086/381004. PubMed DOI
Willig MR, Kaufman DM, Stevens RD. Latitudinal gradients of biodiversity: Pattern, process, scale, and synthesis. Annu. Rev. Ecol. Evol. Syst. 2003;34:273–309. doi: 10.1146/annurev.ecolsys.34.012103.144032. DOI
Rahbek C, et al. Humboldt’s enigma: What causes global patterns of mountain biodiversity? Science. 2019;365:1108–LP-1113. doi: 10.1126/science.aax0149. PubMed DOI
Qian H, Ricklefs RE. A latitudinal gradient in large-scale beta diversity for vascular plants in North America. Ecol. Lett. 2007;10:737–744. doi: 10.1111/j.1461-0248.2007.01066.x. PubMed DOI
Mannion PD, Upchurch P, Benson RBJ, Goswami A. The latitudinal biodiversity gradient through deep time. Trends Ecol. Evol. 2014;29:42–50. doi: 10.1016/j.tree.2013.09.012. PubMed DOI
Dowle EJ, Morgan-Richards M, Trewick SA. Molecular evolution and the latitudinal biodiversity gradient. Heredity. 2013;110:501–510. doi: 10.1038/hdy.2013.4. PubMed DOI PMC
Pontarp M, et al. The Latitudinal Diversity Gradient: Novel Understanding through Mechanistic Eco-evolutionary Models. Trends Ecol. Evol. 2019;34:211–223. doi: 10.1016/j.tree.2018.11.009. PubMed DOI
Kinlock NL, et al. Explaining global variation in the latitudinal diversity gradient: Meta-analysis confirms known patterns and uncovers new ones. Glob. Ecol. Biogeogr. 2018;27:125–141. doi: 10.1111/geb.12665. DOI
Borcard, D., Gillet, F. & Legendre, P. Numerical ecology with R. 2nd edn, Vol. 2 (Springer, 2018).
Victorero L, Robert K, Robinson LF, Taylor ML, Huvenne VA. Species replacement dominates megabenthos beta diversity in a remote seamount setting. Sci. Rep. 2018;8:1–11. doi: 10.1038/s41598-018-22296-8. PubMed DOI PMC
Schmera D, Podani J, Legendre P. What do beta diversity components reveal from presence-absence community data? Let us connect every indicator to an indicandum! Ecol. Indic. 2020;117:106540. doi: 10.1016/j.ecolind.2020.106540. DOI
Lazarina M, et al. Replacement drives native β-diversity of British avifauna, while richness differences shape alien β-diversity. Divers. Distrib. 2023;29:61–74. doi: 10.1111/ddi.13641. DOI
Podani J, Ricotta C, Schmera D. A general framework for analyzing beta diversity, nestedness and related community-level phenomena based on abundance data. Ecol. Complex. 2013;15:52–61. doi: 10.1016/j.ecocom.2013.03.002. DOI
Koricheva J, Gurevitch J. Uses and misuses of meta-analysis in plant ecology. J. Ecol. 2014;102:828–844. doi: 10.1111/1365-2745.12224. DOI
Zhang X, et al. Local community assembly mechanisms shape soil bacterial β diversity patterns along a latitudinal gradient. Nat. Commun. 2020;11:5428. doi: 10.1038/s41467-020-19228-4. PubMed DOI PMC
Bista I, et al. Performance of amplicon and shotgun sequencing for accurate biomass estimation in invertebrate community samples. Mol. Ecol. Resour. 2018;18:1020–1034. doi: 10.1111/1755-0998.12888. PubMed DOI
Seymour M, et al. Environmental DNA provides higher resolution assessment of riverine biodiversity and ecosystem function via spatio-temporal nestedness and turnover partitioning. Commun. Biol. 2021;4:512–512. doi: 10.1038/s42003-021-02031-2. PubMed DOI PMC
Gaston KJ, Blackburn TM, Spicer JI. Rapoport’s rule: time for an epitaph? Trends Ecol. Evol. 1998;13:70–74. doi: 10.1016/S0169-5347(97)01236-6. PubMed DOI
Field R, et al. Spatial species-richness gradients across scales: a meta-analysis. J. Biogeogr. 2009;36:132–147. doi: 10.1111/j.1365-2699.2008.01963.x. DOI
Novotny V, et al. Low beta diversity of herbivorous insects in tropical forests. Nature. 2007;448:692–695. doi: 10.1038/nature06021. PubMed DOI
Qian H. Beta diversity in relation to dispersal ability for vascular plants in North America. Glob. Ecol. Biogeogr. 2009;18:327–332. doi: 10.1111/j.1466-8238.2009.00450.x. DOI
Dobrovolski R, Melo AS, Cassemiro FAS, Diniz-Filho JAF. Climatic history and dispersal ability explain the relative importance of turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 2012;21:191–197. doi: 10.1111/j.1466-8238.2011.00671.x. DOI
Mateo RG, et al. The mossy north: an inverse latitudinal diversity gradient in European bryophytes. Sci. Rep. 2016;6:25546. doi: 10.1038/srep25546. PubMed DOI PMC
Socolar JB, Gilroy JJ, Kunin WE, Edwards DP. How Should Beta-Diversity Inform Biodiversity Conservation? Trends Ecol. Evol. 2016;31:67–80. doi: 10.1016/j.tree.2015.11.005. PubMed DOI
Fine PV. Ecological and evolutionary drivers of geographic variation in species diversity. Annu. Rev. Ecol. Evol. Syst. 2015;46:369–392. doi: 10.1146/annurev-ecolsys-112414-054102. DOI
Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B. How many species are there on earth and in the ocean? PLOS Biol. 2011;9:e1001127–e1001127. doi: 10.1371/journal.pbio.1001127. PubMed DOI PMC
Ratnasingham S, Hebert PDN. A DNA-based registry for all animal species: The Barcode Index Number (BIN) system. PLOS One. 2013;8:e66213–e66213. doi: 10.1371/journal.pone.0066213. PubMed DOI PMC
deWaard JR, et al. A reference library for Canadian invertebrates with 1.5 million barcodes, voucher specimens, and DNA samples. Sci. Data. 2019;6:308–308. doi: 10.1038/s41597-019-0320-2. PubMed DOI PMC
Slipinski, S., Leschen, R. & Lawrence, J. Order Coleoptera Linnaeus, 1758. In Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness (ed. Zhang, Z.-Q.) 3148 (Zootaxa, 2011). PubMed
Lennon JJ, Koleff P, GreenwooD JJD, Gaston KJ. The geographical structure of British bird distributions: diversity, spatial turnover and scale. J. Anim. Ecol. 2001;70:966–979. doi: 10.1046/j.0021-8790.2001.00563.x. DOI
Dynesius M, Jansson R. Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proc. Natl Acad. Sci. 2000;97:9115–9120. doi: 10.1073/pnas.97.16.9115. PubMed DOI PMC
Hoorn, C., Perrigo, A. & Antonelli, A. Mountains, climate and biodiversity (John Wiley & Sons, 2018).
Poff NL. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. J. North Am. Benthological Soc. 1997;16:391–409. doi: 10.2307/1468026. DOI
Cadotte MW, Tucker CM. Should Environmental Filtering be Abandoned? Trends Ecol. Evol. 2017;32:429–437. doi: 10.1016/j.tree.2017.03.004. PubMed DOI
Benício RA, et al. Differential speciation rates, colonization time and niche conservatism affect community assembly across adjacent biogeographical regions. J. Biogeogr. 2021;48:2211–2225. doi: 10.1111/jbi.14145. DOI
Hanski I. Habitat fragmentation and species richness. J. Biogeogr. 2015;42:989–993. doi: 10.1111/jbi.12478. DOI
Svenning J-C, Eiserhardt WL, Normand S, Ordonez A, Sandel B. The influence of paleoclimate on present-day patterns in biodiversity and ecosystems. Annu. Rev. Ecol. Evol. Syst. 2015;46:551–572. doi: 10.1146/annurev-ecolsys-112414-054314. DOI
Wiens JJ, Donoghue MJ. Historical biogeography, ecology and species richness. Trends Ecol. Evol. 2004;19:639–644. doi: 10.1016/j.tree.2004.09.011. PubMed DOI
Zhang C, et al. Topographic heterogeneity and temperature amplitude explain species richness patterns of birds in the Qinghai–Tibetan Plateau. Curr. Zool. 2017;63:131–137. PubMed PMC
Antonelli A, et al. Geological and climatic influences on mountain biodiversity. Nat. Geosci. 2018;11:718–725. doi: 10.1038/s41561-018-0236-z. DOI
Massol F, et al. Linking community and ecosystem dynamics through spatial ecology. Ecol. Lett. 2011;14:313–323. doi: 10.1111/j.1461-0248.2011.01588.x. PubMed DOI
Seymour M, et al. Ecological community dynamics: 20 years of moth sampling reveals the importance of generalists for community stability. Basic Appl. Ecol. 2020;49:34–44. doi: 10.1016/j.baae.2020.11.002. DOI
Tonkin JD, Bogan MT, Bonada N, Rios-Touma B, Lytle DA. Seasonality and predictability shape temporal species diversity. Ecology. 2017;98:1201–1216. doi: 10.1002/ecy.1761. PubMed DOI
Basset Y, et al. Arthropod Distribution in a Tropical Rainforest: Tackling a Four Dimensional Puzzle. PLOS One. 2015;10:e0144110. doi: 10.1371/journal.pone.0144110. PubMed DOI PMC
Grøtan V, Lande R, Chacon IA, DeVries PJ. Seasonal cycles of diversity and similarity in a Central American rainforest butterfly community. Ecography. 2014;37:509–516. doi: 10.1111/ecog.00635. DOI
Wagner DL, Grames EM, Forister ML, Berenbaum MR, Stopak D. Insect decline in the Anthropocene: Death by a thousand cuts. Proc. Natl Acad. Sci. 2021;118:e2023989118–e2023989118. doi: 10.1073/pnas.2023989118. PubMed DOI PMC
Pintor AFV, Schwarzkopf L, Krockenberger AK. Rapoport’s Rule: Do climatic variability gradients shape range extent? Ecol. Monogr. 2015;85:643–659. doi: 10.1890/14-1510.1. DOI
Dyer EE, Redding DW, Cassey P, Collen B, Blackburn TM. Evidence for Rapoport’s rule and latitudinal patterns in the global distribution and diversity of alien bird species. J. Biogeogr. 2020;47:1362–1372. doi: 10.1111/jbi.13825. DOI
Hebert PDN, Cywinska A, Ball SL, deWaard JR. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 2003;270:313–321. doi: 10.1098/rspb.2002.2218. PubMed DOI PMC
Hijmans, R. J., Williams, E., Vennes, C. & Hijmans, M. R. J. Package ‘geosphere’. In Spherical trigonometry 1 (2017).
Engel T, et al. Using coverage-based rarefaction to infer non-random species distributions. Ecosphere. 2021;12:e03745. doi: 10.1002/ecs2.3745. DOI
McGlinn DJ, et al. Measurement of Biodiversity (MoB): A method to separate the scale-dependent effects of species abundance distribution, density, and aggregation on diversity change. Methods Ecol. Evol. 2019;10:258–269. doi: 10.1111/2041-210X.13102. DOI
Koleff P, Gaston KJ, Lennon JJ. Measuring beta diversity for presence–absence data. J. Anim. Ecol. 2003;72:367–382. doi: 10.1046/j.1365-2656.2003.00710.x. DOI
Baselga A. Multiplicative partition of true diversity yields independent alpha and beta components; additive partition does not. Ecology. 2010;91:1974–1981. doi: 10.1890/09-0320.1. PubMed DOI
Chihara, L. M. & Hesterberg, T. C. Mathematical statistics with resampling and R. (John Wiley & Sons, 2018).
Seymour, M. Seymour_etal_CommunicationsBiology2024, https://zenodo.org/doi/10.5281/zenodo.10828655 (2024). DOI