• This record comes from PubMed

Deep-learning-based reconstruction of T2-weighted magnetic resonance imaging of the prostate accelerated by compressed sensing provides improved image quality at half the acquisition time

. 2024 May 01 ; 14 (5) : 3534-3543. [epub] 20240411

Status PubMed-not-MEDLINE Language English Country China Media print-electronic

Document type Journal Article

Links

PubMed 38720867
PubMed Central PMC11074762
DOI 10.21037/qims-23-1488
PII: qims-14-05-3534
Knihovny.cz E-resources

BACKGROUND: Deep-learning-based reconstruction (DLR) improves the quality of magnetic resonance (MR) images which allows faster acquisitions. The aim of this study was to compare the image quality of standard and accelerated T2 weighted turbo-spin-echo (TSE) images of the prostate reconstructed with and without DLR and to find associations between perceived image quality and calculated image characteristics. METHODS: In a cohort of 47 prospectively enrolled consecutive patients referred for bi-parametric prostate magnetic resonance imaging (MRI), two T2-TSE acquisitions in the transverse plane were acquired on a 3T scanner-a standard T2-TSE sequence and a short sequence accelerated by a factor of two using compressed sensing (CS). The images were reconstructed with and without DLR in super-resolution mode. The image quality was rated in six domains. Signal-to-noise ratio (SNR), and image sharpness were measured. RESULTS: The mean acquisition time was 281±23 s for the standard and 140±12 s for the short acquisition (P<0.0001). DLR images had higher sharpness compared to non-DLR (P<0.001). Short and short-DLR had lower SNR than the standard and standard-DLR (P<0.001). The perceived image quality of short-DLR was rated better in all categories compared to the standard sequence (P<0.001 to P=0.004). All domains of subjective evaluation were correlated with measured image sharpness (P<0.001). CONCLUSIONS: T2-TSE acquisition of the prostate accelerated using CS combined with DLR reconstruction provides images with increased sharpness that have a superior quality as perceived by human readers compared to standard T2-TSE. The perceived image quality is correlated with measured image contrast.

See more in PubMed

Eldred-Evans D, Tam H, Sokhi H, Padhani AR, Winkler M, Ahmed HU. Rethinking prostate cancer screening: could MRI be an alternative screening test? Nat Rev Urol 2020;17:526-39. 10.1038/s41585-020-0356-2 PubMed DOI

Frisbie JW, Van Besien AJ, Lee A, Xu L, Wang S, Choksi A, Afzal MA, Naslund MJ, Lane B, Wong J, Wnorowski A, Siddiqui MM. PSA density is complementary to prostate MP-MRI PI-RADS scoring system for risk stratification of clinically significant prostate cancer. Prostate Cancer Prostatic Dis 2023;26:347-52. 10.1038/s41391-022-00549-y PubMed DOI

Wallström J, Geterud K, Kohestani K, Maier SE, Månsson M, Pihl CG, Socratous A, Arnsrud Godtman R, Hellström M, Hugosson J. Bi- or multiparametric MRI in a sequential screening program for prostate cancer with PSA followed by MRI? Results from the Göteborg prostate cancer screening 2 trial. Eur Radiol 2021;31:8692-702. 10.1007/s00330-021-07907-9 PubMed DOI PMC

Turkbey B, Rosenkrantz AB, Haider MA, Padhani AR, Villeirs G, Macura KJ, Tempany CM, Choyke PL, Cornud F, Margolis DJ, Thoeny HC, Verma S, Barentsz J, Weinreb JC. Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2. Eur Urol 2019;76:340-51. 10.1016/j.eururo.2019.02.033 PubMed DOI

Giganti F, Kasivisvanathan V, Kirkham A, Punwani S, Emberton M, Moore CM, Allen C. Prostate MRI quality: a critical review of the last 5 years and the role of the PI-QUAL score. Br J Radiol 2022;95:20210415. 10.1259/bjr.20210415 PubMed DOI PMC

Bass EJ, Pantovic A, Connor M, Gabe R, Padhani AR, Rockall A, Sokhi H, Tam H, Winkler M, Ahmed HU. A systematic review and meta-analysis of the diagnostic accuracy of biparametric prostate MRI for prostate cancer in men at risk. Prostate Cancer Prostatic Dis 2021;24:596-611. 10.1038/s41391-020-00298-w PubMed DOI

Polanec SH, Lazar M, Wengert GJ, Bickel H, Spick C, Susani M, Shariat S, Clauser P, Baltzer PAT. 3D T2-weighted imaging to shorten multiparametric prostate MRI protocols. Eur Radiol 2018;28:1634-41. 10.1007/s00330-017-5120-5 PubMed DOI PMC

van der Leest M, Israël B, Cornel EB, Zámecnik P, Schoots IG, van der Lelij H, Padhani AR, Rovers M, van Oort I, Sedelaar M, Hulsbergen-van de Kaa C, Hannink G, Veltman J, Barentsz J. High Diagnostic Performance of Short Magnetic Resonance Imaging Protocols for Prostate Cancer Detection in Biopsy-naïve Men: The Next Step in Magnetic Resonance Imaging Accessibility. Eur Urol 2019;76:574-81. 10.1016/j.eururo.2019.05.029 PubMed DOI

Hötker AM, Vargas HA, Donati OF, Abbreviated MR. Protocols in Prostate MRI. Life (Basel) 2022;12:552. 10.3390/life12040552 PubMed DOI PMC

Winkel DJ, Heye TJ, Benz MR, Glessgen CG, Wetterauer C, Bubendorf L, Block TK, Boll DT. Compressed Sensing Radial Sampling MRI of Prostate Perfusion: Utility for Detection of Prostate Cancer. Radiology 2019;290:702-8. 10.1148/radiol.2018180556 PubMed DOI PMC

Yu VY, Zakian K, Tyagi N, Zhang M, Romesser PB, Dresner A, Cerviño L, Otazo R. Combined Compressed Sensing and SENSE to Enhance Radiation Therapy Magnetic Resonance Imaging Simulation. Adv Radiat Oncol 2022;7:100799. 10.1016/j.adro.2021.100799 PubMed DOI PMC

Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med 2007;58:1182-95. 10.1002/mrm.21391 PubMed DOI

Gassenmaier S, Afat S, Nickel MD, Mostapha M, Herrmann J, Almansour H, Nikolaou K, Othman AE. Accelerated T2-Weighted TSE Imaging of the Prostate Using Deep Learning Image Reconstruction: A Prospective Comparison with Standard T2-Weighted TSE Imaging. Cancers (Basel) 2021;13:3593. 10.3390/cancers13143593 PubMed DOI PMC

Johnson PM, Tong A, Donthireddy A, Melamud K, Petrocelli R, Smereka P, Qian K, Keerthivasan MB, Chandarana H, Knoll F. Deep Learning Reconstruction Enables Highly Accelerated Biparametric MR Imaging of the Prostate. J Magn Reson Imaging 2022;56:184-95. 10.1002/jmri.28024 PubMed DOI PMC

Kim EH, Choi MH, Lee YJ, Han D, Mostapha M, Nickel D. Deep learning-accelerated T2-weighted imaging of the prostate: Impact of further acceleration with lower spatial resolution on image quality. Eur J Radiol 2021;145:110012. 10.1016/j.ejrad.2021.110012 PubMed DOI

Lee KL, Kessler DA, Dezonie S, Chishaya W, Shepherd C, Carmo B, Graves MJ, Barrett T. Assessment of deep learning-based reconstruction on T2-weighted and diffusion-weighted prostate MRI image quality. Eur J Radiol 2023;166:111017. 10.1016/j.ejrad.2023.111017 PubMed DOI

Ghodrati V, Shao J, Bydder M, Zhou Z, Yin W, Nguyen KL, Yang Y, Hu P. MR image reconstruction using deep learning: evaluation of network structure and loss functions. Quant Imaging Med Surg 2019;9:1516-27. 10.21037/qims.2019.08.10 PubMed DOI PMC

Wang S, Xiao T, Liu Q, Zheng H. Deep learning for fast MR imaging: A review for learning reconstruction from incomplete k-space data. Biomed Signal Process Control 2021;68:102579.

Bischoff LM, Peeters JM, Weinhold L, Krausewitz P, Ellinger J, Katemann C, Isaak A, Weber OM, Kuetting D, Attenberger U, Pieper CC, Sprinkart AM, Luetkens JA. Deep Learning Super-Resolution Reconstruction for Fast and Motion-Robust T2-weighted Prostate MRI. Radiology 2023;308:e230427. 10.1148/radiol.230427 PubMed DOI

Sharma R, Tsiamyrtzis P, Webb AG, Seimenis I, Loukas C, Leiss E, Tsekos NV. A Deep Learning Approach to Upscaling “Low-Quality” MR Images: An In Silico Comparison Study Based on the UNet Framework. Appl Sci 2022;12:11758.

Zhou Z, Ma A, Feng Q, Wang R, Cheng L, Chen X, Yang X, Liao K, Miao Y, Qiu Y. Super-resolution of brain tumor MRI images based on deep learning. J Appl Clin Med Phys 2022;23:e13758. 10.1002/acm2.13758 PubMed DOI PMC

Terada Y, Miyasaka T, Nakao A, Funayama S, Ichikawa S, Takamura T, Tamada D, Morisaka H, Onishi H. Clinical evaluation of super-resolution for brain MRI images based on generative adversarial networks. Inform Med Unlocked 2022;32:101030.

Kaur P, Sao AK, Ahuja CK. Super Resolution of Magnetic Resonance Images. J Imaging 2021;7:101. PubMed PMC

Guerreiro J, Tomás P, Garcia N, Aidos H. Super-resolution of magnetic resonance images using Generative Adversarial Networks. Comput Med Imaging Graph 2023;108:102280. 10.1016/j.compmedimag.2023.102280 PubMed DOI

Harder FN, Weiss K, Amiel T, Peeters JM, Tauber R, Ziegelmayer S, Burian E, Makowski MR, Sauter AP, Gschwend JE, Karampinos DC, Braren RF. Prospectively Accelerated T2-Weighted Imaging of the Prostate by Combining Compressed SENSE and Deep Learning in Patients with Histologically Proven Prostate Cancer. Cancers (Basel) 2022. PubMed PMC

Geerts-Ossevoort L, de Weerdt E, Duijndam A, van IJperen G, Peeters H, Doneva M, Nijenhuis M, Huang A. Speed done right. Every time. 2020. Accessed 9 Oct 2023. Available online: https://www.philips.com.vn/c-dam/b2bhc/master/landing-pages/compressed-sense-redesign/speed/MR_white_paper_Compressed_SENSE.pdf

Hollingsworth KG. Reducing acquisition time in clinical MRI by data undersampling and compressed sensing reconstruction. Phys Med Biol 2015;60:R297-322. 10.1088/0031-9155/60/21/R297 PubMed DOI

Pezzotti N, Yousefi S, Elmahdy MS, Van Gemert JHF, Schuelke C, Doneva M, Nielsen T, Kastryulin S, Lelieveldt BPF, Van Osch MJP, De Weerdt E, Staring M. An Adaptive Intelligence Algorithm for Undersampled Knee MRI Reconstruction. IEEE Access 2020;8:204825-38.

Peeters H, Chung H, Valvano G, Yakisikli D, van Gemert J, de Weerdt E, van de Ven K. Philips SmartSpeed. No compromise Image quality and speed at your fingertips. Accessed 9 Oct 2023. Available online: https://images.philips.com/is/content/PhilipsConsumer/Campaigns/HC20140401_DG/Documents/HC05072022-white_paper_philips_smartspeed.pdf

Zhang J, Ghanem B. ISTA-Net: Interpretable optimization-inspired deep network for image compressive sensing. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018:1828-37.

Fervers P, Zaeske C, Rauen P, Iuga AI, Kottlors J, Persigehl T, Sonnabend K, Weiss K, Bratke G. Conventional and Deep-Learning-Based Image Reconstructions of Undersampled K-Space Data of the Lumbar Spine Using Compressed Sensing in MRI: A Comparative Study on 20 Subjects. Diagnostics (Basel) 2023;13:418. 10.3390/diagnostics13030418 PubMed DOI PMC

Feuerriegel GC, Weiss K, Kronthaler S, Leonhardt Y, Neumann J, Wurm M, Lenhart NS, Makowski MR, Schwaiger BJ, Woertler K, Karampinos DC, Gersing AS. Evaluation of a deep learning-based reconstruction method for denoising and image enhancement of shoulder MRI in patients with shoulder pain. Eur Radiol 2023;33:4875-84. 10.1007/s00330-023-09472-9 PubMed DOI PMC

Foreman SC, Neumann J, Han J, Harrasser N, Weiss K, Peeters JM, Karampinos DC, Makowski MR, Gersing AS, Woertler K. Deep learning-based acceleration of Compressed Sense MR imaging of the ankle. Eur Radiol 2022;32:8376-85. 10.1007/s00330-022-08919-9 PubMed DOI PMC

Dong C, Loy CC, He K, Tang X. Image Super-Resolution Using Deep Convolutional Networks. IEEE Trans Pattern Anal Mach Intell 2016;38:295-307. 10.1109/TPAMI.2015.2439281 PubMed DOI

Li Y, Sixou B, Peyrin F. A review of the deep learning methods for medical images super resolution problems. IRBM 2021;42:120-33.

Giganti F, Allen C, Emberton M, Moore CM, Kasivisvanathan V, PRECISION study group . Prostate Imaging Quality (PI-QUAL): A New Quality Control Scoring System for Multiparametric Magnetic Resonance Imaging of the Prostate from the PRECISION trial. Eur Urol Oncol 2020;3:615-9. 10.1016/j.euo.2020.06.007 PubMed DOI

Zhang Z, Dai G, Liang X, Yu S, Li L, Xie Y. Can Signal-to-Noise Ratio Perform as a Baseline Indicator for Medical Image Quality Assessment. IEEE Access 2018;6:11534-43.

Erdogmus D, Larsson EG, Yan R, Principe JC, Fitzsimmons JR. Measuring the signal-to-noise ratio in magnetic resonance imaging: a caveat. Signal Process 2004;84:1035-40.

Zhan Y, Zhang R. No-Reference Image Sharpness Assessment Based on Maximum Gradient and Variability of Gradients. IEEE Trans Multimed 2018;20:1796-808.

Lin DJ, Johnson PM, Knoll F, Lui YW. Artificial Intelligence for MR Image Reconstruction: An Overview for Clinicians. J Magn Reson Imaging 2021;53:1015-28. 10.1002/jmri.27078 PubMed DOI PMC

Chen Y, Schönlieb C-B, Liò P, Leiner T, Dragotti PL, Wang G, Rueckert D, Firmin D, Yang G. AI-based Reconstruction for Fast MRI -- A Systematic Review and Meta-analysis. Proceedings of the IEEE 2022;110:224-45.

Gassenmaier S, Warm V, Nickel D, Weiland E, Herrmann J, Almansour H, Wessling D, Afat S. Thin-Slice Prostate MRI Enabled by Deep Learning Image Reconstruction. Cancers (Basel) 2023;15:578. 10.3390/cancers15030578 PubMed DOI PMC

Park JC, Park KJ, Park MY, Kim MH, Kim JK. Fast T2-Weighted Imaging With Deep Learning-Based Reconstruction: Evaluation of Image Quality and Diagnostic Performance in Patients Undergoing Radical Prostatectomy. J Magn Reson Imaging 2022;55:1735-44. 10.1002/jmri.27992 PubMed DOI

Tong A, Bagga B, Petrocelli R, Smereka P, Vij A, Qian K, Grimm R, Kamen A, Keerthivasan MB, Nickel MD, von Busch H, Chandarana H. Comparison of a Deep Learning-Accelerated vs. Conventional T2-Weighted Sequence in Biparametric MRI of the Prostate. J Magn Reson Imaging 2023;58:1055-64. 10.1002/jmri.28602 PubMed DOI PMC

Czyzewska D, Sushentsev N, Latoch E, Slough RA, Barrett T. T2-PROPELLER Compared to T2-FRFSE for Image Quality and Lesion Detection at Prostate MRI. Can Assoc Radiol J 2022;73:355-61. 10.1177/08465371211030206 PubMed DOI

Kim H, Kang SW, Kim JH, Nagar H, Sabuncu M, Margolis DJA, Kim CK. The role of AI in prostate MRI quality and interpretation: Opportunities and challenges. Eur J Radiol 2023;165:110887. 10.1016/j.ejrad.2023.110887 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...