The impact of modifiable factors on image quality of prostate magnetic resonance imaging and PI-RADS scores
Status PubMed-not-MEDLINE Language English Country China Media print-electronic
Document type Journal Article
PubMed
40160644
PubMed Central
PMC11948393
DOI
10.21037/qims-24-1776
PII: qims-15-03-2433
Knihovny.cz E-resources
- Keywords
- Magnetic resonance imaging (MRI), Prostate Imaging Reporting and Data System (PI-RADS), cancer, hyoscine butylbromide (HB), prostate,
- Publication type
- Journal Article MeSH
BACKGROUND: The diagnostic accuracy of prostate magnetic resonance imaging (MRI) is highly dependent on image quality. Although the effects of spasmolytics and rectal preparation have been previously studied, the findings remain inconsistent and fail to address other critical modifiable factors. This study aimed to evaluate the impact of various modifiable factors on prostate MRI image quality and their subsequent influence on Prostate Imaging Reporting and Data System (PI-RADS) scoring. METHODS: Fifty-six consecutive patients who underwent 3T multiparametric MRI (mpMRI) with the administration of hyoscine butylbromide (HB+) and at least one 3T mpMRI without HB (HB-) ≤3 years earlier were retrospectively evaluated. Two radiologists performed morphometry of the prostate, bladder, rectum, and abdomen and evaluated image quality, artifacts, and motion on a five-point scale and T2 and diffusion-weighted imaging (DWI) PI-RADS v2.1 scores. The influence of HB, rectum and bladder distension, breathing motion, and examination hour were analyzed. RESULTS: The sharpness and overall image quality of T2 images were significantly better in HB+ compared to HB- (P=0.0047 and P=0.013). T2 motion artifacts were reduced earlier in the day (ρ=0.32, P=0.017). DWI susceptibility artifact correlated with patient diameter (ρ=0.40, P=0.002), but not with rectum diameter (ρ=0.09, P=0.51) or gas content (ρ=0.13, P=0.33). Examinations later in the day were associated with increased motion artifacts on T2 [hazard ratio (HR) =1.36]. T2 and DWI scores were influenced by bladder volume, breathing motion, and rectal air, but not by HB. Breathing motion negatively impacted overall image quality (HR =1.24), and DWI susceptibility artifacts (HR =1.22). CONCLUSIONS: HB administration, daytime, and breathing motion have significant influence on image quality of prostate MRI. The gas content of the rectum influences T2 image quality and T2 scores. Bladder filling is associated with reduced breathing motion, subsequently affecting DWI scores.
See more in PubMed
Hao S, Discacciati A, Eklund M, Heintz E, Östensson E, Elfström KM, Clements MS, Nordström T. Cost-effectiveness of Prostate Cancer Screening Using Magnetic Resonance Imaging or Standard Biopsy Based on the STHLM3-MRI Study. JAMA Oncol 2022;9:88-94. 10.1001/jamaoncol.2022.5252 PubMed DOI PMC
Brembilla G, Lavalle S, Parry T, Cosenza M, Russo T, Mazzone E, Pellegrino F, Stabile A, Gandaglia G, Briganti A, Montorsi F, Esposito A, De Cobelli F. Impact of prostate imaging quality (PI-QUAL) score on the detection of clinically significant prostate cancer at biopsy. Eur J Radiol 2023;164:110849. 10.1016/j.ejrad.2023.110849 PubMed DOI
Jurka M, Macova I, Wagnerova M, Capoun O, Jakubicek R, Ourednicek P, Lambert L, Burgetova A. Deep-learning-based reconstruction of T2-weighted magnetic resonance imaging of the prostate accelerated by compressed sensing provides improved image quality at half the acquisition time. Quant Imaging Med Surg 2024;14:3534-43. 10.21037/qims-23-1488 PubMed DOI PMC
Lin Y, Yilmaz EC, Belue MJ, Turkbey B. Prostate MRI and image Quality: It is time to take stock. Eur J Radiol 2023;161:110757. 10.1016/j.ejrad.2023.110757 PubMed DOI PMC
Prabhakar S, Schieda N. Patient preparation for prostate MRI: A scoping review. Eur J Radiol 2023;162:110758. 10.1016/j.ejrad.2023.110758 PubMed DOI
Ullrich T, Quentin M, Schmaltz AK, Arsov C, Rubbert C, Blondin D, Rabenalt R, Albers P, Antoch G, Schimmöller L. Hyoscine butylbromide significantly decreases motion artefacts and allows better delineation of anatomic structures in mp-MRI of the prostate. Eur Radiol 2018;28:17-23. 10.1007/s00330-017-4940-7 PubMed DOI
Slough RA, Caglic I, Hansen NL, Patterson AJ, Barrett T. Effect of hyoscine butylbromide on prostate multiparametric MRI anatomical and functional image quality. Clin Radiol 2018;73:216.e9-216.e14. 10.1016/j.crad.2017.07.013 PubMed DOI
Dyde R, Chapman AH, Gale R, Mackintosh A, Tolan DJ. Precautions to be taken by radiologists and radiographers when prescribing hyoscine-N-butylbromide. Clin Radiol 2008;63:739-43. 10.1016/j.crad.2008.02.008 PubMed DOI
Belue MJ, Yilmaz EC, Daryanani A, Turkbey B. Current Status of Biparametric MRI in Prostate Cancer Diagnosis: Literature Analysis. Life (Basel) 2022;12:804. 10.3390/life12060804 PubMed DOI PMC
Wang Y, Wang W, Yi N, Jiang L, Yin X, Zhou W, Wang L. Detection of intermediate- and high-risk prostate cancer with biparametric magnetic resonance imaging: a systematic review and meta-analysis. Quant Imaging Med Surg 2023;13:2791-806. 10.21037/qims-22-1024 PubMed DOI PMC
Barentsz JO, Richenberg J, Clements R, Choyke P, Verma S, Villeirs G, Rouviere O, Logager V, Fütterer JJ, European Society of Urogenital Radiology . ESUR prostate MR guidelines 2012. Eur Radiol 2012;22:746-57. 10.1007/s00330-011-2377-y PubMed DOI PMC
Sundaram KM, Rosenberg J, Syed AB, Chang ST, Loening AM. Assessment of T2-weighted Image Quality at Prostate MRI in Patients with and Those without Intramuscular Injection of Glucagon. Radiol Imaging Cancer 2023;5:e220070. 10.1148/rycan.220070 PubMed DOI PMC
Wagner M, Rief M, Busch J, Scheurig C, Taupitz M, Hamm B, Franiel T. Effect of butylscopolamine on image quality in MRI of the prostate. Clin Radiol 2010;65:460-4. 10.1016/j.crad.2010.02.007 PubMed DOI
Chang SD, Reinhold C, Kirkpatrick IDC, Clarke SE, Schieda N, Hurrell C, Cool DW, Tunis AS, Alabousi A, Diederichs BJ, Haider MA. Canadian Association of Radiologists Prostate MRI White Paper. Can Assoc Radiol J 2022;73:626-38. 10.1177/08465371221105532 PubMed DOI
Gutzeit A, Binkert CA, Koh DM, Hergan K, von Weymarn C, Graf N, Patak MA, Roos JE, Horstmann M, Kos S, Hungerbühler S, Froehlich JM. Evaluation of the anti-peristaltic effect of glucagon and hyoscine on the small bowel: comparison of intravenous and intramuscular drug administration. Eur Radiol 2012;22:1186-94. 10.1007/s00330-011-2366-1 PubMed DOI
Schmidt C, Hötker AM, Muehlematter UJ, Burger IA, Donati OF, Barth BK. Value of bowel preparation techniques for prostate MRI: a preliminary study. Abdom Radiol (NY) 2021;46:4002-13. 10.1007/s00261-021-03046-3 PubMed DOI PMC
Roethke MC, Kuru TH, Radbruch A, Hadaschik B, Schlemmer HP. Prostate magnetic resonance imaging at 3 Tesla: Is administration of hyoscine-N-butyl-bromide mandatory? World J Radiol 2013;5:259-63. 10.4329/wjr.v5.i7.259 PubMed DOI PMC
Vaughn BV, Rotolo S, Roth HL. Circadian rhythm and sleep influences on digestive physiology and disorders. ChronoPhysiology and Therapy 2014;4:67-77.
Malone JC, Thavamani A. Physiology, Gastrocolic Reflex. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK549888/ PubMed
Becker AS, Woo S, Leithner D, Tong A, Mayerhoefer ME, Vargas HA. The "Hungry Judge" effect on prostate MRI reporting: Chronobiological trends from 35'004 radiologist interpretations. Eur J Radiol 2024;179:111665. 10.1016/j.ejrad.2024.111665 PubMed DOI
Caglic I, Hansen NL, Slough RA, Patterson AJ, Barrett T. Evaluating the effect of rectal distension on prostate multiparametric MRI image quality. Eur J Radiol 2017;90:174-80. 10.1016/j.ejrad.2017.02.029 PubMed DOI
Reischauer C, Cancelli T, Malekzadeh S, Froehlich JM, Thoeny HC. How to improve image quality of DWI of the prostate-enema or catheter preparation? Eur Radiol 2021;31:6708-16. 10.1007/s00330-021-07842-9 PubMed DOI PMC
Coskun M, Mehralivand S, Shih JH, Merino MJ, Wood BJ, Pinto PA, Barrett T, Choyke PL, Turkbey B. Impact of bowel preparation with Fleet's™ enema on prostate MRI quality. Abdom Radiol (NY) 2020;45:4252-9. 10.1007/s00261-020-02487-6 PubMed DOI PMC
Padhani AR, Khoo VS, Suckling J, Husband JE, Leach MO, Dearnaley DP. Evaluating the effect of rectal distension and rectal movement on prostate gland position using cine MRI. Int J Radiat Oncol Biol Phys 1999;44:525-33. 10.1016/s0360-3016(99)00040-1 PubMed DOI
Dinkel J, Thieke C, Plathow C, Zamecnik P, Prüm H, Huber PE, Kauczor HU, Schlemmer HP, Zechmann CM. Respiratory-induced prostate motion: characterization and quantification in dynamic MRI. Strahlenther Onkol 2011;187:426-32. 10.1007/s00066-011-2201-2 PubMed DOI
Hu L, Zhou DW, Guo XY, Xu WH, Wei LM, Zhao JG. Adversarial training for prostate cancer classification using magnetic resonance imaging. Quant Imaging Med Surg 2022;12:3276-87. 10.21037/qims-21-1089 PubMed DOI PMC
Gao Z, Xu X, Sun H, Li T, Ding W, Duan Y, Tang L, Gu Y. The value of synthetic magnetic resonance imaging in the diagnosis and assessment of prostate cancer aggressiveness. Quant Imaging Med Surg 2024;14:5473-89. 10.21037/qims-24-291 PubMed DOI PMC
Sun Z, Wang K, Wu C, Chen Y, Kong Z, She L, Song B, Luo N, Wu P, Wang X, Zhang X, Wang X. Using an artificial intelligence model to detect and localize visible clinically significant prostate cancer in prostate magnetic resonance imaging: a multicenter external validation study. Quant Imaging Med Surg 2024;14:43-60. 10.21037/qims-23-791 PubMed DOI PMC
Mayer R, Simone CB, 2nd, Turkbey B, Choyke P. Development and testing quantitative metrics from multi-parametric magnetic resonance imaging that predict Gleason score for prostate tumors. Quant Imaging Med Surg 2022;12:1859-70. 10.21037/qims-21-761 PubMed DOI PMC
Qin X, Mu R, Zheng W, Li X, Liu F, Zhuang Z, Yang P, Zhu X. Comparison and combination of amide proton transfer magnetic resonance imaging and the apparent diffusion coefficient in differentiating the grades of prostate cancer. Quant Imaging Med Surg 2023;13:812-24. 10.21037/qims-22-721 PubMed DOI PMC
Li M, Ding N, Yin S, Lu Y, Ji Y, Jin L. Enhancing automatic prediction of clinically significant prostate cancer with deep transfer learning 2.5-dimensional segmentation on bi-parametric magnetic resonance imaging (bp-MRI). Quant Imaging Med Surg 2024;14:4893-902. 10.21037/qims-24-587 PubMed DOI PMC
Wagnerova M, Macova I, Hanus P, Jurka M, Capoun O, Lambert L, Burgetova A. Quantification and significance of extraprostatic findings on prostate MRI: a retrospective analysis and three-tier classification. Insights Imaging 2023;14:215. 10.1186/s13244-023-01549-9 PubMed DOI PMC