Application of environmental DNA metabarcoding to identify fish community characteristics in subtropical river systems

. 2024 May ; 14 (5) : e11214. [epub] 20240509

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38725828

Fish are vital in river ecosystems; however, traditional investigations of fish usually cause ecological damage. Extracting DNA from aquatic environments and identifying DNA sequences offer an alternative, noninvasive approach for detecting fish species. In this study, the effects of environmental DNA (eDNA), coupled with PCR and next-generation sequencing, and electrofishing for identifying fish community composition and diversity were compared. In three subtropical rivers of southern China, fish specimens and eDNA in water were collected along the longitudinal (upstream-downstream) gradient of the rivers. Both fish population parameters, including species abundance and biomass, and eDNA OTU richness grouped 38 sampling sites into eight spatial zones with significant differences in local fish community composition. Compared with order-/family-level grouping, genus-/species-level grouping could more accurately reveal the differences between upstream zones I-III, midstream zones IV-V, and downstream zones VI-VIII. From the headwaters to the estuary, two environmental gradients significantly influenced the longitudinal distribution of the fish species, including the first gradient composed of habitat and physical water parameters and the second gradient composed of chemical water parameters. The high regression coefficient of alpha diversity between eDNA and electrofishing methods as well as the accurate identification of dominant, alien, and biomarker species in each spatial zone indicated that eDNA could characterize fish community attributes at a level similar to that of traditional approaches. Overall, our results demonstrated that eDNA metabarcoding can be used as an effective tool for revealing fish composition and diversity, which is important for using the eDNA technique in aquatic field monitoring.

Zobrazit více v PubMed

Balasingham, K. D. , Walter, R. P. , Mandrak, N. E. , & Heath, D. D. J. M. E. (2018). Environmental DNA detection of rare and invasive fish species in two Great Lakes tributaries. Molecular Ecology, 27, 112–127. PubMed

Barbour, M. T. , Gerritsen, J. , Snyder, B. , & Stribling, J. (1999). Rapid bioassessment protocols for use in streams and wadeable rivers. Washington, USA: USEPA.

Beng, K. C. , & Corlett, R. T. (2020). Applications of environmental DNA (eDNA) in ecology and conservation: Opportunities, challenges and prospects. Biodiversity and Conservation, 29, 2089–2121.

Bernos, T. A. , Yates, M. C. , Docker, M. F. , Fitzgerald, A. , Hanner, R. , Heath, D. , Imrit, A. , Livernois, J. , Myler, E. , Patel, K. , Sharma, S. , Young, R. , & Mandrak, N. E. (2023). Environmental DNA (eDNA) applications in freshwater fisheries management and conservation in Canada: Overview of current challenges and opportunities. Canadian Journal of Fisheries and Aquatic Sciences, 80, 1170–1186.

Borcard, D. , Gillet, F. , & Legendre, P. (2011). Numerical ecology with R. Springer.

Bylemans, J. , Gleeson, D. M. , Duncan, R. P. , Hardy, C. M. , & Furlan, E. M. (2019). A performance evaluation of targeted eDNA and eDNA metabarcoding analyses for freshwater fishes. Environmental DNA, 1, 402–414.

Civade, R. , Dejean, T. , Valentini, A. , Roset, N. , Raymond, J.‐C. , Bonin, A. , Taberlet, P. , & Pont, D. (2016). Spatial representativeness of environmental DNA metabarcoding signal for fish biodiversity assessment in a natural freshwater system. PLoS One, 11, e0157366. PubMed PMC

Doi, H. , Inui, R. , Akamatsu, Y. , Kanno, K. , Yamanaka, H. , Takahara, T. , & Minamoto, T. (2017). Environmental DNA analysis for estimating the abundance and biomass of stream fish. Freshwater Biology, 62, 30–39.

Flotemersch, J. E. , Stribling, J. B. , & Paul, M. J. (2006). Concepts and Approaches for the Bioassessment of Non‐wadeable Streams and Rivers. Cincinnati, OH, USA: Office of Research and Development, USEPA.

Garlapati, D. , Charankumar, B. , Ramu, K. , Madeswaran, P. , & Ramana Murthy, M. V. (2019). A review on the applications and recent advances in environmental DNA (eDNA) metagenomics. Reviews in Environmental Science and Bio/Technology, 18, 389–411.

Hauer, F. R. , & Lamberti, G. A. (2007). Methods in stream ecology. Academic Press.

Kumar, G. , Reaume, A. M. , Farrell, E. , & Gaither, M. R. (2022). Comparing eDNA metabarcoding primers for assessing fish communities in a biodiverse estuary. PLoS One, 17, e0266720. PubMed PMC

Lacoursière‐Roussel, A. , Côté, G. , Leclerc, V. , & Bernatchez, L. (2016). Quantifying relative fish abundance with eDNA: A promising tool for fisheries management. Journal of Applied Ecology, 53, 1148–1157.

Liu, C. , Cui, Y. , Li, X. , & Yao, M. (2021). Microeco: An R package for data mining in microbial community ecology. FEMS Microbiology Ecology, 97, fiaa255. PubMed

Magoč, T. , & Salzberg, S. L. (2011). FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27, 2957–2963. PubMed PMC

Nguyen, B. N. , Shen, E. W. , Seemann, J. , Correa, A. M. S. , O'Donnell, J. L. , Altieri, A. H. , Knowlton, N. , Crandall, K. A. , Egan, S. P. , McMillan, W. O. , & Leray, M. (2020). Environmental DNA survey captures patterns of fish and invertebrate diversity across a tropical seascape. Scientific Reports, 10, 6729. PubMed PMC

Olds, B. P. , Jerde, C. L. , Renshaw, M. A. , Li, Y. , Evans, N. T. , Turner, C. R. , Deiner, K. , Mahon, A. R. , Brueseke, M. A. , Shirey, P. D. , Pfrender, M. E. , Lodge, D. M. , & Lamberti, G. A. (2016). Estimating species richness using environmental. DNA, 6, 4214–4226. PubMed PMC

Pont, D. , Rocle, M. , Valentini, A. , Civade, R. , Jean, P. , Maire, A. , Roset, N. , Schabuss, M. , Zornig, H. , & Dejean, T. (2018). Environmental DNA reveals quantitative patterns of fish biodiversity in large rivers despite its downstream transportation. Scientific Reports, 8, 10361. PubMed PMC

Port, J. A. , O'Donnell, J. L. , Romero‐Maraccini, O. C. , Leary, P. R. , Litvin, S. Y. , Nickols, K. J. , Yamahara, K. M. , & Kelly, R. P. (2016). Assessing vertebrate biodiversity in a kelp forest ecosystem using environmental DNA. Molecular Ecology, 25, 527–541. PubMed PMC

Rognes, T. , Flouri, T. , Nichols, B. , Quince, C. , & Mahé, F. (2016). VSEARCH: A versatile open source tool for metagenomics. PeerJ, 4, e2584. PubMed PMC

Rourke, M. L. , Fowler, A. M. , Hughes, J. M. , Broadhurst, M. K. , DiBattista, J. D. , Fielder, S. , Walburn, J. W. , & Furlan, E. M. (2022). Environmental DNA (eDNA) as a tool for assessing fish biomass: A review of approaches and future considerations for resource surveys. Environmental DNA, 4, 9–33.

Sakata, M. K. , Watanabe, T. , Maki, N. , Ikeda, K. , Kosuge, T. , Okada, H. , Yamanaka, H. , Sado, T. , Miya, M. , & Minamoto, T. (2020). Determining an effective sampling method for eDNA metabarcoding: A case study for fish biodiversity monitoring in a small, natural river. Limnology, 22, 221–235.

Segata, N. , Izard, J. , Waldron, L. , Gevers, D. , Miropolsky, L. , Garrett, W. S. , & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biology, 12, 1–18. PubMed PMC

Shu, L. , Ludwig, A. , & Peng, Z. (2021). Environmental DNA metabarcoding primers for freshwater fish detection and quantification: In silico and in tanks. Ecology and Evolution, 11, 8281–8294. PubMed PMC

Stewart, K. A. (2019). Understanding the effects of biotic and abiotic factors on sources of aquatic environmental DNA. Biodiversity and Conservation, 28, 983–1001.

Stoeckle, M. Y. , Lyubov, S. , Zachary, C. P. , & Hideyuki, D. (2017). Aquatic environmental DNA detects seasonal fish abundance and habitat preference in an urban estuary. PLoS One, 12, e0175186. PubMed PMC

Wang, S. , Luo, B.‐K. , Qin, Y.‐J. , Zhao, J.‐G. , Wang, T.‐T. , Stewart, S. D. , Yang, Y. , Chen, Z. B. , & Qiu, H. X. (2020). Fish isotopic niches associated with environmental indicators and human disturbance along a disturbed large subtropical river in China. Science of the Total Environment, 750, 141667. PubMed

Wang, S. , Su, L.‐H. , Luo, B.‐K. , Qin, Y.‐J. , Stewart, S. D. , Tang, J.‐P. , Wang, T. T. , Yang, Y. , & Cheng, G. (2020). Stable isotopes reveal effects of natural drivers and anthropogenic pressures on isotopic niches of invertebrate communities in a large subtropical river of China. Environmental Science and Pollution Research, 27, 36132–36146. PubMed

Wang, S. , Tang, J.‐P. , Su, L.‐H. , Fan, J.‐J. , Chang, H.‐Y. , Wang, T.‐T. , Wang, L. , Lin, H. J. , & Yang, Y. (2019). Fish feeding groups, food selectivity, and diet shifts associated with environmental factors and prey availability along a large subtropical river, China. Aquatic Sciences, 81, 31.

Wang, S. , Wang, L. , Chang, H.‐Y. , Li, F. , Tang, J.‐P. , Zhou, X.‐A. , Li, X. , Tian, S. M. , Lin, H. J. , & Yang, Y. (2018). Longitudinal variation in energy flow networks along a large subtropical river, China. Ecological Modelling, 387, 83–95.

Wang, S. , Wang, L. , Zheng, Y. , Chen, Z.‐B. , Yang, Y. , Lin, H.‐J. , Yang, X. Q. , & Wang, T. T. (2019). Application of mass‐balance modelling to assess the effects of ecological restoration on energy flows in a subtropical reservoir, China. Science of the Total Environment, 664, 780–792. PubMed

Wang, S. , Wang, T.‐T. , Lin, H.‐J. , Stewart, S. D. , Cheng, G. , Li, W. , Yang, F. J. , Huang, W. D. , Chen, Z. B. , & Xie, S. G. (2021). Impacts of environmental factors on the food web structure, energy flows, and system attributes along a subtropical urban river in southern China. Science of the Total Environment, 794, 148673. PubMed

Wang, S. , Wang, T.‐T. , Tang, J.‐P. , Wang, L. , Yang, Y. , Lin, H.‐J. , Chang, H. Y. , Zhou, X. A. , Li, X. , & Wang, M. (2018). Longitudinal variation in fish prey utilization, trophic guilds, and indicator species along a large subtropical river, China. Ecology and Evolution, 8, 11467–11483. PubMed PMC

Wang, S. , Wang, T.‐T. , Xia, W.‐T. , Chen, Z.‐B. , Stewart, S. D. , Yang, F.‐J. , Cheng, G. , Wang, X. D. , Wang, D. Y. , & Xie, S. G. (2021). Longitudinal pattern of resource utilization by aquatic consumers along a disturbed subtropical urban river: Estimating the relative contribution of resources with stable isotope analysis. Ecology and Evolution, 11, 16763–16775. PubMed PMC

Wang, T.‐T. , Wang, X.‐D. , Wang, D.‐Y. , Fan, S.‐D. , Wang, S. , Chen, Z.‐B. , Wu, E. N. , Zhang, Y. , Jin, C. C. , Ma, Z. L. , Xia, W. T. , & Mo, L. (2023). Aquatic invertebrate diversity profiling in heterogeneous wetland habitats by environmental DNA metabarcoding. Ecological Indicators, 150, 110126.

Yao, M. , Zhang, S. , Lu, Q. , Chen, X. , Zhang, S. Y. , Kong, Y. , & Zhao, J. (2022). Fishing for fish environmental DNA: Ecological applications, methodological considerations, surveying designs, and ways forward. Molecular Ecology, 31, 5132–5164. PubMed

Zhang, S. , Lu, Q. , Wang, Y. , Wang, X. , Zhao, J. , & Yao, M. (2020). Assessment of fish communities using environmental DNA: Effect of spatial sampling design in lentic systems of different sizes. Molecular Ecology Resources, 20, 242–255. PubMed

Zou, K. , Chen, J. , Ruan, H. , Li, Z. , Guo, W. , Li, M. , & Liu, L. (2020). eDNA metabarcoding as a promising conservation tool for monitoring fish diversity in a coastal wetland of the Pearl River estuary compared to bottom trawling. Science of the Total Environment, 702, 134704. PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...