Longitudinal pattern of resource utilization by aquatic consumers along a disturbed subtropical urban river: Estimating the relative contribution of resources with stable isotope analysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34938471
PubMed Central
PMC8668758
DOI
10.1002/ece3.8304
PII: ECE38304
Knihovny.cz E-zdroje
- Klíčová slova
- MixSIAR, carbon source, diet assimilation, food web, periphyton, submerged hydrophyte,
- Publikační typ
- časopisecké články MeSH
The utilization of food resources by aquatic consumers reflects the structure and functioning of river food webs. In lotic water systems, where food availability and predator-prey relationships vary with gradient changes in physical conditions, understanding diet assimilation by local communities is important for ecosystem conservation. In the subtropical Liuxi River, southern China, the relative contribution of basal resources to the diet assimilation of functional feeding groups (FFGs) was determined by stable carbon (13C) and nitrogen (15N) isotope analyses. The output of Bayesian mixing models showed that diatom-dominated periphyton (epilithic biofilm), aquatic C3 plants (submerged hydrophytes), and suspended particulate organic matter (SPOM) associated with terrestrial C3 plants contributed the most to the diet assimilation of FFGs in the upper, middle, and lower reaches, respectively. The relative contribution of consumer diet assimilation was weighted by the biomass (wet weight, g/m2) of each FFG to reflect resource utilization at the assemblage level. From the upper to the lower reaches, the spatial variation in the diet assimilation of fish and invertebrate assemblages could be summarized as a longitudinal decrease in periphyton (from 57%-76% to <3%) and an increase in SPOM (from <7% to 51%-68%) with a notable midstream increase in aquatic C3 plants (23%-48%). These results indicate that instream consumers in the Liuxi River rely more on autochthonous production (e.g., periphyton and submerged hydrophytes) than on terrestrially derived allochthonous matter (e.g., terrestrial plants). The pattern of resource utilization by consumers in the mid-upper Liuxi River is consistent with findings from other open subtropical and neotropical rivers and provides evidence for the riverine productivity model. Our study indicates that protecting inherent producers in rivers (e.g., periphyton and submerged hydrophytes) and restoring their associated habitats (e.g., riffles with cobble substrate) are conducive to aquatic ecosystem management.
Cawthron Institute Nelson New Zealand
China Water Resources Pearl River Planning Surveying and Designing Co Ltd Guangzhou China
College of Ecology and Environment Hainan University Haikou China
Zobrazit více v PubMed
Aarts, B. G. W. , & Nienhuis, P. H. (2003). Fish zonations and guilds as the basis for assessment of ecological integrity of large rivers. Hydrobiologia, 500, 157–178. 10.1023/A:1024638726162 DOI
Borcard, D. , Gillet, F. , & Legendre, P. (2011). Numerical ecology with R. Springer.
Buchheister, A. , & Latour, R. J. (2015). Diets and trophic‐guild structure of a diverse fish assemblage in Chesapeake Bay, U.S.A. Journal of Fish Biology, 86, 967–992. 10.1111/jfb.12621 PubMed DOI
Bunn, S. E. , Davies, P. M. , & Winning, M. (2003). Sources of organic carbon supporting the food web of an arid zone floodplain river. Freshwater Biology, 48, 619–635. 10.1046/j.1365-2427.2003.01031.x DOI
Carabel, S. , Godínez‐Domínguez, E. , Verísimo, P. , Fernández, L. , & Freire, J. (2006). An assessment of sample processing methods for stable isotope analyses of marine food webs. Journal of Experimental Marine Biology and Ecology, 336, 254–261. 10.1016/j.jembe.2006.06.001 DOI
Chang, H.‐Y. , Wu, S.‐H. , Shao, K.‐T. , Kao, W.‐Y. , Maa, C.‐J. , Jan, R.‐Q. , Liu, L.‐L. , Tzeng, C.‐S. , Hwang, J.‐S. , Hsieh, H.‐L. , Kao, S.‐J. , Chen, Y.‐K. , & Lin, H.‐J. (2012). Longitudinal variation in food sources and their use by aquatic fauna along a subtropical river in Taiwan. Freshwater Biology, 57, 1839–1853. 10.1111/j.1365-2427.2012.02843.x DOI
Delong, M. D. , & Thorp, J. H. (2006). Significance of instream autotrophs in trophic dynamics of the Upper Mississippi River. Oecologia, 147, 76–85. 10.1007/s00442-005-0241-y PubMed DOI
Finlay, J. C. (2001). Stable‐carbon‐isotope ratios of river biota: Implications for energy flow in lotic food webs. Ecology, 82, 1052–1064. https://doi.org/10.1890/0012‐9658(2001)082[1052:SCIROR]2.0.CO;2
Finlay, J. C. (2004). Patterns and controls of lotic algal stable carbon isotope ratios. Limnology and Oceanography, 49, 850–861. 10.4319/lo.2004.49.3.0850 DOI
Fry, B. (1991). Stable isotope diagrams of freshwater food webs. Ecology, 72, 2293–2297. 10.2307/1941580 DOI
Grace, J. B. , Anderson, T. M. , Olff, H. , & Scheiner, S. M. (2010). On the specification of structural equation models for ecological systems. Ecological Monographs, 80, 67–87. 10.1890/09-0464.1 DOI
Herwig, B. R. , Soluk, D. A. , Dettmers, J. M. , & Wahl, D. H. (2004). Trophic structure and energy flow in backwater lakes of two large floodplain rivers assessed using stable isotopes. Canadian Journal of Fisheries and Aquatic Sciences, 61, 12–22. 10.1139/f03-139 DOI
Hoeinghaus, D. J. , Winemiller, K. O. , & Agostinho, A. A. (2007). Landscape‐scale hydrologic characteristics differentiate patterns of carbon flow in large‐river food webs. Ecosystems, 10, 1019–1033. 10.1007/s10021-007-9075-2 DOI
Jardine, T. D. , Pettit, N. E. , Warfe, D. M. , Pusey, B. J. , Ward, D. P. , Douglas, M. M. , Davies, P. M. , & Bunn, S. E. (2012). Consumer‐resource coupling in wet‐dry tropical rivers. Journal of Animal Ecology, 81, 310–322. 10.1111/j.1365-2656.2011.01925.x PubMed DOI
Jepsen, D. B. , & Winemiller, K. O. (2007). Basin geochemistry and isotopic ratios of fishes and basal production sources in four neotropical rivers. Ecology of Freshwater Fish, 16, 267–281. 10.1111/j.1600-0633.2006.00218.x DOI
Junk, W. (1999). The flood pulse concept of large rivers: Learning from the tropics. Large Rivers, 11, 261–280. 10.1127/lr/11/1999/261 DOI
Kaymak, N. , Winemiller, K. , Akin, S. , Altuner, Z. , Polat, F. , & Dal, T. (2018). Spatial and temporal variation in food web structure of an impounded river in Anatolia. Marine and Freshwater Research, 69, 1453–1471. 10.1071/MF17270 DOI
Lau, D. C. P. , Leung, K. M. Y. , & Dudgeon, D. (2009). What does stable isotope analysis reveal about trophic relationships and the relative importance of allochthonous and autochthonous resources in tropical streams? A synthetic study from Hong Kong. Freshwater Biology, 54, 127–141. 10.1111/j.1365-2427.2008.02099.x DOI
Lewis, W. M. , Hamilton, S. K. , Rodríguez, M. A. , Saunders, J. F. , & Lasi, M. A. (2001). Foodweb analysis of the Orinoco floodplain based on production estimates and stable isotope data. Journal of the North American Benthological Society, 20, 241–254. 10.2307/1468319 DOI
March, J. G. , & Pringle, C. M. (2003). Food web structure and basal resource utilization along a tropical island stream continuum, Puerto Rico. Biotropica, 35, 84–93. 10.1111/j.1744-7429.2003.tb00265.x DOI
Medeiros, E. S. , & Arthington, A. H. (2011). Allochthonous and autochthonous carbon sources for fish in floodplain lagoons of an Australian dryland river. Environmental Biology of Fishes, 90, 1–17. 10.1007/s10641-010-9706-x DOI
Morse, J. C. , Yang, L.‐F. , & Tian, L.‐X. (1994). Aquatic insects of China useful for monitoring water quality. Hohai University Press.
Neres‐Lima, V. , Brito, E. F. , Krsulović, F. A. , Detweiler, A. M. , Hershey, A. E. , & Moulton, T. P. (2016). High importance of autochthonous basal food source for the food web of a Brazilian tropical stream regardless of shading. International Review of Hydrobiology, 101, 132–142. 10.1002/iroh.201601851 DOI
Parnell, A. C. , Inger, R. , Bearhop, S. , & Jackson, A. L. (2010). Source partitioning using stable isotopes: Coping with too much variation. PLoS One, 5, e9672. 10.1371/journal.pone.0009672 PubMed DOI PMC
Peterson, B. J. , & Fry, B. (1987). Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics, 18, 293–320. 10.1146/annurev.es.18.110187.001453 DOI
Pingram, M. A. , Collier, K. J. , Hamilton, D. P. , David, B. O. , & Hicks, B. J. (2012a). Carbon sources supporting large river food webs: A review of ecological theories and evidence from stable isotopes. Freshwater Reviews, 5, 85–104. 10.1608/FRJ-5.2.476 DOI
Pingram, M. A. , Collier, K. J. , Hamilton, D. P. , Hicks, B. J. , & David, B. O. (2012b). Spatial and temporal patterns of carbon flow in a temperate, large river food web. Hydrobiologia, 729, 107–131. 10.1007/s10750-012-1408-2 DOI
Post, D. M. , Layman, C. A. , Arrington, D. A. , Takimoto, G. , Quattrochi, J. , & Montaña, C. G. (2007). Getting to the fat of the matter: Models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia, 152, 179–189. 10.1007/s00442-006-0630-x PubMed DOI
Rounick, J. , & Hicks, B. J. (1985). The stable carbon isotope ratios of fish and their invertebrate prey in four New Zealand rivers. Freshwater Biology, 15, 207–214. 10.1111/j.1365-2427.1985.tb00193.x DOI
Thorp, J. H. , & Delong, M. D. (1994). The riverine productivity model: An heuristic view of carbon sources and organic processing in large river ecosystems. Oikos, 70, 305–308. 10.2307/3545642 DOI
Thorp, J. H. , & Delong, M. D. (2002). Dominance of autochthonous autotrophic carbon in food webs of heterotrophic rivers. Oikos, 96, 543–550. 10.1034/j.1600-0706.2002.960315.x DOI
Thorp, J. H. , Delong, M. D. , Greenwood, K. S. , & Casper, A. F. (1998). Isotopic analysis of three food web theories in constricted and floodplain regions of a large river. Oecologia, 117, 551–563. 10.1007/s004420050692 PubMed DOI
Thorp, J. H. , Thoms, M. C. , & Delong, M. D. (2006). The riverine ecosystem synthesis: Biocomplexity in river networks across space and time. River Research and Applications, 22, 123–147. 10.1002/rra.901 DOI
Vannote, R. L. , Minshall, G. W. , Cummins, K. W. , Sedell, J. R. , & Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130–137. 10.1139/f80-017 DOI
Wang, S. , Wang, L. , Chang, H.‐Y. , Li, F. , Tang, J.‐P. , Zhou, X.‐A. , Li, X. , Tian, S.‐M. , Lin, H.‐J. , & Yang, Y. (2018a). Longitudinal variation in energy flow networks along a large subtropical river, China. Ecological Modelling, 387, 83–95. 10.1016/j.ecolmodel.2018.08.019 DOI
Wang, S. , Wang, T.‐T. , Tang, J.‐P. , Wang, L. , Yang, Y. , Lin, H.‐J. , Chang, H.‐Y. , Zhou, X.‐A. , Li, X. , & Wang, M. (2018b). Longitudinal variation in fish prey utilization, trophic guilds, and indicator species along a large subtropical river, China. Ecology and Evolution, 8, 11467–11483. 10.1002/ece3.4577 PubMed DOI PMC
Wang, S. , Tang, J.‐P. , Su, L.‐H. , Fan, J.‐J. , Chang, H.‐Y. , Wang, T.‐T. , Wang, L. , Lin, H.‐J. , & Yang, Y. (2019). Fish feeding groups, food selectivity, and diet shifts associated with environmental factors and prey availability along a large subtropical river, China. Aquatic Sciences, 81, 31. 10.1007/s00027-019-0628-1 DOI
Wang, S. , Luo, B.‐K. , Qin, Y.‐J. , Su, L.‐H. , Stewart, S. D. , Wang, T.‐T. , Tang, J.‐P. , He, B.‐D. , Zhang, J.‐H. , Lin, H.‐J. , & Yang, Y. (2020a). Consumer‐diet discrimination of δ 13C and δ 15N: Source‐ and feeding‐oriented patterns based on gut content analysis in a large subtropical river of China. River Research and Applications, 36, 1124–1136.
Wang, S. , Su, L.‐H. , Luo, B.‐K. , Qin, Y.‐J. , Stewart, S. D. , Tang, J.‐P. , Wang, T.‐T. , Yang, Y. , & Cheng, G. (2020b). Stable isotopes reveal effects of natural drivers and anthropogenic pressures on isotopic niches of invertebrate communities in a large subtropical river of China. Environmental Science and Pollution Research, 27, 36132–36146. 10.1007/s11356-020-09252-8 PubMed DOI
Wang, S. , Luo, B.‐K. , Qin, Y.‐J. , Zhao, J.‐G. , Wang, T.‐T. , Stewart, S. D. , Yang, Y. , Chen, Z.‐B. , & Qiu, H.‐X. (2020c). Fish isotopic niches associated with environmental indicators and human disturbance along a disturbed large subtropical river in China. Science of The Total Environment, 750, 141667. 10.1016/j.scitotenv.2020.141667 PubMed DOI
Wang, S. , Wang, T.‐T. , Lin, H.‐J. , Stewart, S. D. , Cheng, G. , Li, W. , Yang, F.‐J. , Huang, W.‐D. , Chen, Z.‐B. , & Xie, S.‐G. (2021). Impacts of environmental factors on the food web structure, energy flows, and system attributes along a subtropical urban river in southern China. Science of The Total Environment, 794, 148673. 10.1016/j.scitotenv.2021.148673 PubMed DOI
Welcomme, R. L. , Winemiller, K. O. , & Cowx, I. G. (2006). Fish environmental guilds as a tool for assessment of ecological condition of rivers. River Research and Applications, 22, 377–396. 10.1002/rra.914 DOI
Wu, Y. (2016). Periphyton: Functions and application in environmental remediation. Elsevier.
Zeni, J. O. , & Casatti, L. (2014). The influence of habitat homogenization on the trophic structure of fish fauna in tropical streams. Hydrobiologia, 726, 259–270. 10.1007/s10750-013-1772-6 DOI