Analysis of Surface Expression of NMDAR Subunits in Primary Hippocampal Neurons
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural
- Klíčová slova
- Colocalization, Fluorescence immunostaining, Fluorescence microscopy, Glutamate receptor, ImageJ analysis, Lentivirus, Primary hippocampal neurons, Surface expression,
- MeSH
- exprese genu MeSH
- hipokampus * metabolismus cytologie MeSH
- krysa rodu Rattus MeSH
- kultivované buňky MeSH
- Lentivirus genetika MeSH
- lidé MeSH
- neurony * metabolismus MeSH
- podjednotky proteinů metabolismus genetika MeSH
- primární buněčná kultura metody MeSH
- receptory N-methyl-D-aspartátu * metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- N-methyl D-aspartate receptor subtype 2A MeSH Prohlížeč
- podjednotky proteinů MeSH
- receptory N-methyl-D-aspartátu * MeSH
The expression and activity of ionotropic glutamate receptors control signal transduction at the excitatory synapses in the CNS. The NMDAR comprises two obligatory GluN1 subunits and two GluN2 or GluN3 subunits in different combinations. Each GluN subunit consists of four domains: the extracellular amino-terminal and agonist-binding domains, the transmembrane domain, and the intracellular C-terminal domain (CTD). The CTD interaction with various classes of intracellular proteins is critical for trafficking and synaptic localization of NMDARs. Amino acid mutations or the inclusion of premature stop codons in the CTD could contribute to the emergence of neurodevelopmental and neuropsychiatric disorders. Here, we describe the method of preparing primary hippocampal neurons and lentiviral particles expressing GluN subunits that can be used as a model to study cell surface expression and synaptic localization of NMDARs. We also show a simple method of fluorescence immunostaining of eGFP-tagged GluN2 subunits and subsequent microscopy technique and image analysis to study the effects of disease-associated mutations in the CTDs of GluN2A and GluN2B subunits.
Institute of Experimental Medicine of the Czech Academy of Sciences Prague Czech Republic
Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Nadler JV (2012) Plasticity of glutamate synaptic mechanisms. In: Noebels JL, Avoli M, Rogawski MA et al (eds) Jasper’s basic mech epilepsies [Internet], 4th edn. National Center for Biotechnology Information, Bethesda. PMID: 22787612
Vyklicky V, Korinek M, Smejkalova T et al (2014) Structure, function, and pharmacology of NMDA receptor channels. Physiol Res 63(Suppl 1):S191–S203. https://doi.org/10.33549/physiolres.932678 PubMed DOI
Hansen KB, Wollmuth LP, Bowie D et al (2021) Structure, function, and pharmacology of glutamate receptor ion channels. Pharmacol Rev 73:298–487. https://doi.org/10.1124/PHARMREV.120.000131 PubMed DOI PMC
Andersson O, Stenqvist A, Attersand A, Von Euler G (2001) Nucleotide sequence, genomic organization, and chromosomal localization of genes encoding the human NMDA receptor subunits NR3A and NR3B. Genomics 78:178–184. https://doi.org/10.1006/geno.2001.6666 PubMed DOI
Goebel DJ, Poosch MS (1999) NMDA receptor subunit gene expression in the rat brain: a quantitative analysis of endogenous mRNA levels of NR1 Com, NR2A, NR2B, NR2C. Mol Brain Res 69:164–170. https://doi.org/10.1016/s0169-328x(99)00100-x PubMed DOI
Coultrap SJ, Nixon KM, Alvestad RM et al (2005) Differential expression of NMDA receptor subunits and splice variants among the CA1, CA3 and dentate gyrus of the adult rat. Mol Brain Res 135:104–111. https://doi.org/10.1016/j.molbrainres.2004.12.005 PubMed DOI
Pandis C, Sotiriou E, Kouvaras E (2006) Differential expression of NMDA and AMPA receptor subunits in rat dorsal and venral hippocampus. Neuroscience 140:163–175. https://doi.org/10.1016/j.neuroscience.2006.02.003 PubMed DOI
Monyer H, Burnashev N, Laurie DJ et al (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12:529–540. https://doi.org/10.1016/0896-6273(94)90210-0
Sanz-Clemente A, Nicoll RA, Roche KW (2013) Diversity in NMDA receptor composition. Neuroscience 19:62–75. https://doi.org/10.1177/1073858411435129 DOI
Lau CG, Zukin RS (2007) NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci 8:413–426. https://doi.org/10.1038/nrn2153 PubMed DOI
Sans N, Prybylowski K, Petralia RS et al (2003) NMDA receptor trafficking through an interaction between PDZ proteins and the exocyst complex. Nat Cell Biol 5:520–530. https://doi.org/10.1038/ncb990 PubMed DOI
Horak M, Chang K, Wenthold RJ (2008) Masking of the endoplasmic reticulum retention signals during assembly of the NMDA receptor. J Neurosci 28:3500–3509. https://doi.org/10.1523/JNEUROSCI.5239-07.2008 PubMed DOI PMC
Horak M, Wenthold RJ, Horak M, Wenthold RJ (2009) Different roles of C-terminal cassettes in the trafficking of full-length NR1 subunits to the cell surface. J Biol Chem 284(15):9683–9691. https://doi.org/10.1074/jbc.M807050200 PubMed DOI PMC
Standley S, Petralia RS, Gravell M et al (2012) Trafficking of the NMDAR2B receptor subunit distal cytoplasmic tail from endoplasmic reticulum to the synapse. PLoS One 7(6):e39585. https://doi.org/10.1371/journal.pone.0039585 PubMed DOI PMC
Jeyifous O, Waites CL, Specht CG et al (2009) SAP97 and CASK mediate sorting of NMDA receptors through a previously unknown secretory pathway. Nat Neurosci 12:1011–1019. https://doi.org/10.1038/nn.2362 PubMed DOI PMC
Fan X, Jin WY, Wang YT (2014) The NMDA receptor complex: a multifunctional machine at the glutamatergic synapse. Front Cell Neurosci 8:1–9. https://doi.org/10.3389/fncel.2014.00160 DOI
Ishchenko Y, Carrizales MG, Koleske AJ (2021) Neuropharmacology regulation of the NMDA receptor by its cytoplasmic domains: (how) is the tail wagging the dog? Neuropharmacology 195:108634. https://doi.org/10.1016/j.neuropharm.2021.108634 PubMed DOI PMC
Roche KW, Standley S, Mccallum J et al (2001) Molecular determinants of NMDA receptor internalization. Nat Neurosci 4:794–802. https://doi.org/10.1038/90498 PubMed DOI
Rossi P, Sola E, Taglietti V et al (2002) NMDA receptor 2 (NR2) C-terminal control of NR open probability regulates synaptic transmission and plasticity at a cerebellar synapse. J Neurosci 22:9687–9697. https://doi.org/10.1523/JNEUROSCI.22-22-09687.2002 PubMed DOI PMC
Stanic J, Carta M, Eberini I et al (2015) Rabphilin 3A retains NMDA receptors at synaptic sites through interaction with GluN2A/PSD-95 complex. Nat Commun 6:1–16. https://doi.org/10.1038/ncomms10181 DOI
Lin Y, Jover-Mengual T, Wong J et al (2006) PSD-95 and PKC converge in regulating NMDA receptor trafficking and gating. Proc Natl Acad Sci USA 103:19902–19907. https://doi.org/10.1073/pnas.0609924104 PubMed DOI PMC
Maki BA, Aman TK, Amico-Ruvio SA et al (2012) C-terminal domains of N-methyl-D-aspartic acid receptor modulate unitary channel conductance and gating. J Biol Chem 287:36071–36080. https://doi.org/10.1074/jbc.M112.390013 PubMed DOI PMC
Lemke JR, Lal D, Reinthaler EM et al (2013) Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes. Nat Genet 45:1067–1072. https://doi.org/10.1038/ng.2728 PubMed DOI
Platzer K, Yuan H, Schütz H et al (2017) GRIN2B encephalopathy: novel findings on phenotype, variant clustering, functional consequences and treatment aspects. J Med Genet 54:460–470. https://doi.org/10.1136/jmedgenet-2016-104509 PubMed DOI
Tarabeux J, Kebir O, Gauthier J et al (2011) Rare mutations in N-methyl-D-aspartate glutamate receptors in autism spectrum disorders and schizophrenia. Transl Psychiatry 1:e55–e55. https://doi.org/10.1038/tp.2011.52 PubMed DOI PMC
Burnashev N, Szepetowski P (2015) NMDA receptor subunit mutations in neurodevelopmental disorders. Curr Opin Pharmacol 20:73–82. https://doi.org/10.1016/j.coph.2014.11.008 PubMed DOI
Warnet XL, Bakke Krog H, Sevillano-Quispe OG et al (2021) The C-terminal domains of the NMDA receptor: how intrinsically disordered tails affect signalling, plasticity and disease. Eur J Neurosci 54(8):6713–9739. https://doi.org/10.1111/ejn.14842
García-Recio A, Santos-Gómez A, Soto D et al (2021) GRIN database: a unified and manually curated repertoire of GRIN variants. Hum Mutat 42:8–18. https://doi.org/10.1002/humu.24141 PubMed DOI
Swanger SA, Chen W, Wells G et al (2016) Mechanistic insight into NMDA receptor dysregulation by rare variants in the GluN2A and GluN2B agonist binding domains. Am J Hum Genet 1–20. https://doi.org/10.1016/j.ajhg.2016.10.002
Vyklicky V, Krausova B, Cerny J, Ladislav M (2018) Surface expression, function, and pharmacology of disease-associated mutations in the membrane domain of the human. Front Cell Neurosci 11:1–20. https://doi.org/10.3389/fnmol.2018.00110 DOI
Lichnerova K, Kaniakova M, Park SP et al (2015) Two N-glycosylation sites in the GluN1 subunit are essential for releasing N-methyl-D-aspartate (NMDA) receptors from the endoplasmic reticulum. J Biol Chem 290:18379–18390. https://doi.org/10.1074/jbc.M115.656546 PubMed DOI PMC
Skrenkova K, Song J, Kortus S et al (2020) The pathogenic S688Y mutation in the ligand – binding domain of the GluN1 subunit regulates the properties of NMDA receptors. Sci Rep 1–15. https://doi.org/10.1038/s41598-020-75646-w
Kolcheva M, Ladislav M, Netolicky J et al (2023) Neuropharmacology the pathogenic N650K variant in the GluN1 subunit regulates the trafficking, conductance, and pharmacological properties of NMDA receptors. Neuropharmacology 222:109297. https://doi.org/10.1016/j.neuropharm.2022.109297 PubMed DOI
Horak M, Suh YH (2016) Chapter 3: counting NMDA receptors at the cell surface. In: Ionotropic glutamate receptor technologies, Neuromethods, vol 106, pp 31–44. https://doi.org/10.1007/978-1-4939-2812-5 DOI
Mota Vieira M, Nguyen TA, Wu K et al (2020) An epilepsy-associated GRIN2A rare variant disrupts CaMKIIα phosphorylation of GluN2A and NMDA receptor trafficking. Cell Rep 32:108104. https://doi.org/10.1016/j.celrep.2020.108104 PubMed DOI
Parr-Brownlie LC, Bosch-Bouju C, Schoderboeck L, Sizemore RJ, Abraham WC, Hughes SM (2015) Lentiviral vectors as tools to understand central nervous system biology in mammalian model organisms. Front Mol Biosci 8:1–12. https://doi.org/10.3389/fnmol.2015.00014 DOI
Vicario-Abejón C (2004) Long-term culture of hippocampal neurons. Curr Protoc Neurosci 26:3.2.1–3.2.13. https://doi.org/10.1002/0471142301.ns0302s26 DOI
García-Nafría J, Watson JF, Greger IH (2016) IVA cloning: a single-tube universal cloning system exploiting bacterial In Vivo Assembly. Sci Rep 6:1–12. https://doi.org/10.1038/srep27459 DOI
Characterization of Mice Carrying a Neurodevelopmental Disease-Associated GluN2B(L825V) Variant