Vitamin K Status Based on K1, MK-4, MK-7, and Undercarboxylated Prothrombin Levels in Adolescent and Adult Patients with Cystic Fibrosis: A Cross-Sectional Study

. 2024 Apr 29 ; 16 (9) : . [epub] 20240429

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38732584

Grantová podpora
JAK0000079 Poznan University of Medical Sciences

The available evidence on vitamin K status in cystic fibrosis (CF) is scarce, lacking data on vitamin K2 (menaquinones-MK). Therefore, we assessed vitamin K1, MK-4 and MK-7 concentrations (LC-MS/MS) in 63 pancreatic insufficient and modulator naïve CF patients, and compared to 61 healthy subjects (HS). Vitamin K1 levels did not differ between studied groups. MK-4 concentrations were higher (median <1st-3rd quartile>: 0.778 <0.589-1.086> vs. 0.349 <0.256-0.469>, p < 0.0001) and MK-7 levels lower (0.150 <0.094-0.259> vs. 0.231 <0.191-0.315>, p = 0.0007) in CF patients than in HS. MK-7 concentrations were higher in CF patients receiving K1 and MK-7 supplementation than in those receiving vitamin K1 alone or no supplementation. Moreover, vitamin K1 concentrations depended on the supplementation regime. Based on multivariate logistic regression analysis, we have found that MK-7 supplementation dose has been the only predictive factor for MK-7 levels. In conclusion, vitamin K1 levels in CF are low if not currently supplemented. MK-4 concentrations in CF patients supplemented with large doses of vitamin K1 are higher than in HS. MK-7 levels in CF subjects not receiving MK-7 supplementation, with no regard to vitamin K1 supplementation, are low. There do not seem to be any good clinical predictive factors for vitamin K status.

Zobrazit více v PubMed

Shearer M.J., Fu X., Booth S.L. Vitamin K nutrition, metabolism, and requirements: Current concepts and future research. Adv. Nutr. 2012;3:182–195. doi: 10.3945/an.111.001800. PubMed DOI PMC

Hatziparasides G., Loukou I., Moustaki M., Douros K. Vitamin K and cystic fibrosis: A gordian knot that deserves our attention. Respir. Med. 2019;155:36–42. doi: 10.1016/j.rmed.2019.07.005. PubMed DOI

Sokol R.J., Durie P.R. Recommendations for management of liver and biliary tract disease in cystic fibrosis. Cystic Fibrosis Foundation Hepatobiliary Disease Consensus Group. J. Pediatr. Gastroenterol. Nutr. 1999;28:S1–S13. doi: 10.1097/00005176-199900001-00001. PubMed DOI

Kapple M., Espach C., Schweiger-Kabesch A., Lang T., Hartl D., Hector A., Glasmacher C., Griese M. Ursodeoxycholic acid therapy in cystic fibrosis liver disease-a retrospective long-term follow-up case-control study. Aliment. Pharmacol. Ther. 2012;36:266–273. doi: 10.1111/j.1365-2036.2012.05177.x. PubMed DOI

Bertolaso C., Groleau V., Schall J.I., Maqbool A., Mascarenhas M., Latham N.E., Dougherty K.A., Stallings V.A. Fat-soluble vitamins in cystic fibrosis and pancreatic insufficiency: Efficacy of a nutrition intervention. J. Pediatr. Gastroenterol. Nutr. 2014;58:443–448. doi: 10.1097/MPG.0000000000000272. PubMed DOI PMC

Turck D., Braegger C.P., Colombo C., Declercq D., Morton A., Pancheva R., Robberecht E., Stern M., Strandvik B., Wolfe S., et al. ESPEN-ESPGHAN-ECFS guidelines on nutrition care for infants, children, and adults with cystic fibrosis. Clin. Nutr. 2016;35:557–577. doi: 10.1016/j.clnu.2016.03.004. PubMed DOI

Krzyżanowska P., Pogorzelski A., Skorupa W., Moczko J., Grebowiec P., Walkowiak J. Exogenous and endogenous determinants of vitamin K status in cystic fibrosis. Sci. Rep. 2015;5:srep12000. doi: 10.1038/srep12000. PubMed DOI PMC

Shea M.K., Booth S.L. Concepts and Controversies in Evaluating Vitamin K Status in Population-Based Studies. Nutrients. 2016;8:8. doi: 10.3390/nu8010008. PubMed DOI PMC

Mosler K., von Kries R., Vermeer C., Saupe J., Schmitz T., Schuster A. Assessment of vitamin K deficiency in CF—How much sophistication is useful? J. Cyst. Fibros. 2003;2:91–96. doi: 10.1016/S1569-1993(03)00025-0. PubMed DOI

Choonara I.A., Winn M.J., Park B.K. Plasma vitamin K1 concentrations in cystic fibrosis. Arch. Dis. Child. 1989;64:732–734. doi: 10.1136/adc.64.5.732. PubMed DOI PMC

Cornelissen E.A., van Lieburg A.F., Motohara K., van Oostrom C.G. Vitamin K status in cystic fibrosis. Acta Paediatr. 1992;81:658–661. doi: 10.1111/j.1651-2227.1992.tb12327.x. PubMed DOI

Beker L.T., Ahrens R.A., Fink R.J., O’Brien M.E., Davidson K.W., Sokoll L.J., Sadowski J.A. Effect of vitamin K1 supplementation on vitamin K status in cystic fibrosis patients. J. Pediatr. Gastroenterol. Nutr. 1997;24:512–517. doi: 10.1097/00005176-199705000-00003. PubMed DOI

Conway S.P., Wolfe S.P., Brownlee K.G., White H., Oldroyd B., Truscott J.G., Harvey J.M., Shearer M.J. Vitamin K status among children with cystic fibrosis and its relationship to bone mineral density and bone turnover. Pediatrics. 2005;115:1325–1331. doi: 10.1542/peds.2004-1242. PubMed DOI

Nicolaidou P., Stavrinadis I., Loukou I., Papadopoulou A., Georgouli H., Douros K., Priftis K.N., Gourgiotis D., Matsinos Y.G., Doudounakis S. The effect of vitamin K supplementation on biochemical markers of bone formation in children and adolescents with cystic fibrosis. Eur. J. Pediatr. 2006;165:540–545. doi: 10.1007/s00431-006-0132-1. PubMed DOI

Drury D., Grey V.L., Ferland G., Gundberg C., Lands L.C. Efficacy of high dose phylloquinone in correcting vitamin K deficiency in cystic fibrosis. J. Cyst. Fibros. 2008;7:457–459. doi: 10.1016/j.jcf.2008.04.001. PubMed DOI

Siwamogsatham O., Dong W., Binongo J.N., Chowdhury R., Alvarez J.A., Feinman S.J., Enders J., Tangpricha V. Relationship Between Fat-Soluble Vitamin Supplementation and Blood Concentrations in Adolescent and Adult Patients With Cystic Fibrosis. Nutr. Clin. Pract. 2014;29:491–497. doi: 10.1177/0884533614530170. PubMed DOI PMC

Konieczna L., Kaźmierska K., Roszkowska A., Szlagatys-Sidorkiewicz A., Bączek T. The LC-MS method for the simultaneous analysis of selected fat-soluble vitamins and their metabolites in serum samples obtained from pediatric patients with cystic fibrosis. J. Pharm. Biomed. Anal. 2016;124:374–381. doi: 10.1016/j.jpba.2016.03.021. PubMed DOI

Bergeron C., Potter K.J., Boudreau V., Ouliass B., Bonhoure A., Lacombe J., Mailhot M., Lavoie A., Ferron M., Ferland G., et al. Low vitamin K status in adults with cystic fibrosis is associated with reduced body mass index, insulin secretion, and increased pseudomonal colonization. Appl. Physiol. Nutr. Metab. 2023;48:321–330. doi: 10.1139/apnm-2022-0163. PubMed DOI

Hirota Y., Tsugawa N., Nakagawa K., Suhara Y., Tanaka K., Uchino Y., Takeuchi A., Sawada N., Kamao M., Wada A., et al. Menadione (vitamin K3) is a catabolic product of oral phylloquinone (vitamin K1) in the intestine and a circulating precursor of tissue menaquinone-4 (vitamin K2) in rats. J. Biol. Chem. 2013;288:33071–33080. doi: 10.1074/jbc.M113.477356. PubMed DOI PMC

Castellani C., Southern K.W., Brownlee K., Roelse J.D., Duff A., Farrell M., Mehta A., Munck A., Pollitt R., Sermet-Gaudelus I., et al. European best practice guidelines for cystic fibrosis neonatal screening. J. Cyst. Fibros. 2009;8:153–173. doi: 10.1016/j.jcf.2009.01.004. PubMed DOI

Farrell P.M., White T.B., Ren C.L., Hempstead S.E., Accurso F., Derichs N., Howenstine M., McColley S.A., Rock M., Rosenfeld M., et al. Diagnosis of Cystic Fibrosis: Consensus Guidelines from the Cystic Fibrosis Foundation. J. Pediatr. 2017;181S:S4–S15. doi: 10.1016/j.jpeds.2016.09.064. PubMed DOI

Walkowiak J. Faecal elastase-1: Clinical value in the assessment of exocrine pancreatic function in children. Eur. J. Pediatr. 2000;159:869–870. doi: 10.1007/s004310000536. PubMed DOI

Walkowiak J. Assessment of maldigestion in cystic fibrosis. J. Pediatr. 2004;145:285–287. doi: 10.1016/j.jpeds.2004.06.033. PubMed DOI

Dunovska K., Klapkova E., Sopko B., Cepova J., Prusa R. LC-MS/MS quantitative analysis of phylloquinone, menaquinone-4 and menaquinone-7 in the human serum of a healthy population. PeerJ. 2019;7:e7695. doi: 10.7717/peerj.7695. PubMed DOI PMC

von Elm E., Altman D.G., Egger M., Pocock S.J., Gøtzsche P.C., Vandenbroucke J.P. STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008;61:344–349. doi: 10.1016/j.jclinepi.2007.11.008. PubMed DOI

Krzyżanowska P., Drzymała-Czyż S., Pogorzelski A., Duś-Żuchowska M., Skorupa W., Bober L., Sapiejka E., Oralewska B., Rohovyk N., Moczko J., et al. Vitamin K status in cystic fibrosis patients with liver cirrhosis. Dig. Liver Dis. 2017;49:672–675. doi: 10.1016/j.dld.2017.01.155. PubMed DOI

Mahdinia E., Demirci A., Berenjian A. Production and application of menaquinone-7 (vitamin K2): A new perspective. World J. Microbiol. Biotechnol. 2017;33:2. doi: 10.1007/s11274-016-2169-2. PubMed DOI

Jadhav N., Ajgaonkar S., Saha P., Gurav P., Pandey A., Basudkar V., Gada Y., Panda S., Jadhav S., Mehta D., et al. Molecular Pathways and Roles for Vitamin K2-7 as a Health-Beneficial Nutraceutical: Challenges and Opportunities. Front. Pharmacol. 2022;13:896920. doi: 10.3389/fphar.2022.896920. PubMed DOI PMC

Forli L., Bollerslev J., Simonsen S., Isaksen G.A., Kvamsdal K.E., Godang K., Gadeholt G., Pripp A.H., Bjortuft O. Dietary vitamin K2 supplement improves bone status after lung and heart transplantation. Transplantation. 2010;89:458–464. doi: 10.1097/TP.0b013e3181c46b69. PubMed DOI

Rønn S.H., Harsløf T., Pedersen S.B., Langdahl B.L. Vitamin K2 (menaquinone-7) prevents age-related deterioration of trabecular bone microarchitecture at the tibia in postmenopausal women. Eur. J. Endocrinol. 2016;175:541–549. doi: 10.1530/EJE-16-0498. PubMed DOI

Zhang Y., Liu Z., Duan L., Ji Y., Yang S., Zhang Y., Li H., Wang Y., Wang P., Chen J., et al. Effect of Low-Dose Vitamin K2 Supplementation on Bone Mineral Density in Middle-Aged and Elderly Chinese: A Randomized Controlled Study. Calcif. Tissue Int. 2020;106:476–485. doi: 10.1007/s00223-020-00669-4. PubMed DOI

Caluwé R., Vandecasteele S., Van Vlem B., Vermeer C., De Vriese A.S. Vitamin K2 supplementation in haemodialysis patients: A randomized dose-finding study. Nephrol. Dial. Transplant. 2014;29:1385–1390. doi: 10.1093/ndt/gft464. PubMed DOI

Knapen M.H., Braam L.A., Drummen N.E., Bekers O., Hoeks A.P., Vermeer C. Menaquinone-7 supplementation improves arterial stiffness in healthy postmenopausal women. A double-blind randomised clinical trial. Thromb. Haemost. 2015;113:1135–1144. doi: 10.1160/TH14-08-0675. PubMed DOI

Eelderink C., Kremer D., Riphagen I.J., Knobbe T.J., Schurgers L.J., Pasch A., Mulder D.J., Corpeleijn E., Navis G., Bakker S.J.L., et al. Effect of vitamin K supplementation on serum calcification propensity and arterial stiffness in vitamin K-deficient kidney transplant recipients: A double-blind, randomized, placebo-controlled clinical trial. Am. J. Transplant. 2023;23:520–530. doi: 10.1016/j.ajt.2022.12.015. PubMed DOI

Abdel-Rahman M.S., Alkady E.A., Ahmed S. Menaquinone-7 as a novel pharmacological therapy in the treatment of rheumatoid arthritis: A clinical study. J. Pharmacol. 2015;761:273–278. doi: 10.1016/j.ejphar.2015.06.014. PubMed DOI

Ozaki I., Zhang H., Mizuta T., Ide Y., Eguchi Y., Yasutake T., Sakamaki T., Pestell R.G., Yamamoto K. Menatetrenone, a vitamin K2 analogue, inhibits hepatocellular carcinoma cell growth by suppressing cyclin D1 expression through inhibition of nuclear factor kappaB activation. Clin. Cancer Res. 2007;13:2236–2245. doi: 10.1158/1078-0432.CCR-06-2308. PubMed DOI

Xia J., Matsuhashi S., Hamajima H., Iwane S., Takahashi H., Eguchi Y., Mizuta T., Fujimoto K., Kuroda S., Ozaki I. The role of PKC isoforms in the inhibition of NF-kappaB activation by vitamin K2 in human hepatocellular carcinoma cells. J. Nutr. Biochem. 2012;23:1668–1675. doi: 10.1016/j.jnutbio.2011.11.010. PubMed DOI

Sibayama-Imazu T., Fujisawa Y., Masuda Y., Aiuchi T., Nakajo S., Itabe H., Nakaya K. Induction of apoptosis in PA-1 ovarian cancer cells by vitamin K2 is associated with an increase in the level of TR3/Nur77 and its accumulation in mitochondria and nuclei. J. Cancer Res. Clin. Oncol. 2008;134:803–812. doi: 10.1007/s00432-007-0349-z. PubMed DOI

Showalter S.L., Wang Z., Costantino C.L., Witkiewicz A.K., Yeo C.J., Brody J.R., Carr B.I. Naturally occurring K vitamins inhibit pancreatic cancer cell survival through a caspase-dependent pathway. J. Gastroenterol. Hepatol. 2010;25:738–744. doi: 10.1111/j.1440-1746.2009.06085.x. PubMed DOI

Enomoto M., Tsuchida A., Miyazawa K., Yokoyama T., Kawakita H., Tokita H., Naito M., Itoh M., Ohyashiki K., Aoki T. Vitamin K2-induced cell growth inhibition via autophagy formation in cholangiocellular carcinoma cell lines. Int. J. Mol. Med. 2007;20:801–808. doi: 10.3892/ijmm.20.6.801. PubMed DOI

Miyazawa K., Yaguchi M., Funato K., Gotoh A., Kawanishi Y., Nishizawa Y., You A., Ohyashiki K. Apoptosis/differentiation-inducing effects of vitamin K2 on HL-60 cells: Dichotomous nature of vitamin K2 in leukemia cells. Leukemia. 2001;15:1111–1117. doi: 10.1038/sj.leu.2402155. PubMed DOI

Hadipour E., Tayarani-Najaran Z., Fereidoni M. Vitamin K2 Protects PC12 Cells against Aβ (1-42) and H2O2-Induced Apoptosis via P38 MAP Kinase Pathway. Nutr. Neurosci. 2020;23:343–352. doi: 10.1080/1028415X.2018.1504428. PubMed DOI

Rahimi Sakak F., Moslehi N., Niroomand M., Mirmiran P. Glycemic control improvement in individuals with type 2 diabetes with vitamin K2 supplementation: A randomized controlled trial. Eur. J. Nutr. 2021;60:2495–2506. doi: 10.1007/s00394-020-02419-6. PubMed DOI

Pan M.H., Maresz K., Lee P.S., Wu J.C., Ho C.T., Popko J., Mehta D.S., Stohs S.J., Badmaev V. Inhibition of TNF-α, IL-1α, and IL-1β by Pretreatment of Human Monocyte Derived Macrophages with Menaquinone-7 and Cell Activation with TLR Agonists In Vitro. J. Med. Food. 2016;19:663–669. doi: 10.1089/jmf.2016.0030. PubMed DOI

Mehta D.S., Dound Y.A., Jadhav S.S., Bhave A.A., Devale M., Vaidya A.D.B. A Novel Potential Role of Vitamin K2-7 in Relieving Peripheral Neuropathy. J. Pharmacol. Pharmacother. 2018;9:180–185. doi: 10.4103/jpp.JPP_72_18. DOI

Conway S.P. Vitamin K in cystic fibrosis. J. R. Soc. Med. 2004;97:48–51. PubMed PMC

Maqbool A., Stallings V.A. Update on fat-soluble vitamins cystic fibrosis. Curr. Opin. Pulm. Med. 2008;14:574–581. doi: 10.1097/MCP.0b013e3283136787. PubMed DOI

Borowitz D., Baker R.D., Stallings V. Consensus report on nutrition for paediatric patients with cystic fibrosis. J. Pediatr. Gastroenterol. Nutr. 2002;35:246–259. doi: 10.1097/00005176-200209000-00004. PubMed DOI

Sinaasappel M., Stern M., Littlewood J., Wolfe S., Steinkamp G., Heijerman H.G., Robberecht E., Döring G. Nutrition in patients with cystic fibrosis: A European Consensus. J. Cyst. Fibros. 2002;1:51–75. doi: 10.1016/s1569-1993(02)00032-2. PubMed DOI

Jagannath V.A., Thaker V., Chang A.B., Price A.I. Vitamin K supplementation for cystic fibrosis. Cochrane Database Syst. Rev. 2020;6:CD008482. doi: 10.1002/14651858.CD008482.pub6. PubMed DOI PMC

Rashid M., Durie P., Andrew M., Kalnins D., Shin J., Corey M., Tullis E., Pencharz P.B. Prevalence of vitamin K deficiency in cystic fibrosis. Am. J. Clin. Nutr. 1999;70:378–382. doi: 10.1093/ajcn/70.3.378. PubMed DOI

van Hoorn J.H., Hendriks J.J., Vermeer C., Forget P.P. Vitamin K supplementation in cystic fibrosis. Arch. Dis. Child. 2003;88:974–975. doi: 10.1136/adc.88.11.974. PubMed DOI PMC

Thijssen H.H., Vervoort L.M., Schurgers L.J., Shearer M.J. Menadione is a metabolite of oral vitamin K. Br. J. Nutr. 2006;95:260–266. doi: 10.1079/bjn20051630. PubMed DOI

Okano T., Shimomura Y., Yamane M., Suhara Y., Kamao M., Sugiura M., Nakagawa K. Conversion of phylloquinone (Vitamin K1) into menaquinone-4 (Vitamin K2) in mice: Two possible routes for menaquinone-4 accumulation in cerebra of mice. J. Biol. Chem. 2008;283:11270–11279. doi: 10.1074/jbc.M702971200. PubMed DOI

Shearer M.J., Okano T. Key Pathways and Regulators of Vitamin K Function and Intermediary Metabolism. Annu. Rev. Nutr. 2018;38:127–151. doi: 10.1146/annurev-nutr-082117-051741. PubMed DOI

Fewtrell M.S., Benden C., Williams J.E., Chomtho S., Ginty F., Nigdikar S.V., Jaffe A. Undercarboxylated osteocalcin and bone mass in 8-12 year old children with cystic fibrosis. J. Cyst. Fibros. 2008;7:307–312. doi: 10.1016/j.jcf.2007.11.006. PubMed DOI

Dougherty K.A., Schall J.I., Stallings V.A. Suboptimal vitamin K status despite supplementation in children and young adults with cystic fibrosis. Am. J. Clin. Nutr. 2010;92:660–667. doi: 10.3945/ajcn.2010.29350. PubMed DOI PMC

Krzyżanowska P., Drzymala-Czyż S., Rohovyk N., Bober L., Moczko J., Rachel M., Walkowiak J. Prevalence of vitamin K deficiency and associated factors in non-supplemented cystic fibrosis patients. Arch. Argent. Pediatr. 2018;116:e19–e25. doi: 10.5546/aap.2018.eng.e19. PubMed DOI

Hergenroeder G.E., Faino A., Bridges G., Bartlett L.E., Cogen J.D., Green N., McNamara S., Nichols D.P., Ramos K.J. The impact of elexacaftor/tezacaftor/ivacaftor on fat-soluble vitamin levels in people with cystic fibrosis. J. Cyst. Fibros. 2023;22:1048–1053. doi: 10.1016/j.jcf.2023.08.002. PubMed DOI PMC

Petersen M.C., Begnel L., Wallendorf M., Litvin M. Effect of elexacaftor-tezacaftor-ivacaftor on body weight and metabolic parameters in adults with cystic fibrosis. J. Cyst. Fibros. 2022;21:265–271. doi: 10.1016/j.jcf.2021.11.012. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...