Vitamin K Status Based on K1, MK-4, MK-7, and Undercarboxylated Prothrombin Levels in Adolescent and Adult Patients with Cystic Fibrosis: A Cross-Sectional Study
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
JAK0000079
Poznan University of Medical Sciences
PubMed
38732584
PubMed Central
PMC11085146
DOI
10.3390/nu16091337
PII: nu16091337
Knihovny.cz E-zdroje
- Klíčová slova
- cystic fibrosis, gastroenterology, liquid chromatography, pancreatic insufficiency, vitamin K1, vitamin K2,
- MeSH
- cystická fibróza * krev MeSH
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- nedostatek vitaminu K krev MeSH
- nutriční stav MeSH
- potravní doplňky MeSH
- protrombin * analýza MeSH
- průřezové studie MeSH
- vitamin K 1 * aplikace a dávkování krev MeSH
- vitamin K 2 * krev analogy a deriváty MeSH
- vitamin K krev MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- menaquinone 7 MeSH Prohlížeč
- menatetrenone MeSH Prohlížeč
- protrombin * MeSH
- vitamin K 1 * MeSH
- vitamin K 2 * MeSH
- vitamin K MeSH
The available evidence on vitamin K status in cystic fibrosis (CF) is scarce, lacking data on vitamin K2 (menaquinones-MK). Therefore, we assessed vitamin K1, MK-4 and MK-7 concentrations (LC-MS/MS) in 63 pancreatic insufficient and modulator naïve CF patients, and compared to 61 healthy subjects (HS). Vitamin K1 levels did not differ between studied groups. MK-4 concentrations were higher (median <1st-3rd quartile>: 0.778 <0.589-1.086> vs. 0.349 <0.256-0.469>, p < 0.0001) and MK-7 levels lower (0.150 <0.094-0.259> vs. 0.231 <0.191-0.315>, p = 0.0007) in CF patients than in HS. MK-7 concentrations were higher in CF patients receiving K1 and MK-7 supplementation than in those receiving vitamin K1 alone or no supplementation. Moreover, vitamin K1 concentrations depended on the supplementation regime. Based on multivariate logistic regression analysis, we have found that MK-7 supplementation dose has been the only predictive factor for MK-7 levels. In conclusion, vitamin K1 levels in CF are low if not currently supplemented. MK-4 concentrations in CF patients supplemented with large doses of vitamin K1 are higher than in HS. MK-7 levels in CF subjects not receiving MK-7 supplementation, with no regard to vitamin K1 supplementation, are low. There do not seem to be any good clinical predictive factors for vitamin K status.
Zobrazit více v PubMed
Shearer M.J., Fu X., Booth S.L. Vitamin K nutrition, metabolism, and requirements: Current concepts and future research. Adv. Nutr. 2012;3:182–195. doi: 10.3945/an.111.001800. PubMed DOI PMC
Hatziparasides G., Loukou I., Moustaki M., Douros K. Vitamin K and cystic fibrosis: A gordian knot that deserves our attention. Respir. Med. 2019;155:36–42. doi: 10.1016/j.rmed.2019.07.005. PubMed DOI
Sokol R.J., Durie P.R. Recommendations for management of liver and biliary tract disease in cystic fibrosis. Cystic Fibrosis Foundation Hepatobiliary Disease Consensus Group. J. Pediatr. Gastroenterol. Nutr. 1999;28:S1–S13. doi: 10.1097/00005176-199900001-00001. PubMed DOI
Kapple M., Espach C., Schweiger-Kabesch A., Lang T., Hartl D., Hector A., Glasmacher C., Griese M. Ursodeoxycholic acid therapy in cystic fibrosis liver disease-a retrospective long-term follow-up case-control study. Aliment. Pharmacol. Ther. 2012;36:266–273. doi: 10.1111/j.1365-2036.2012.05177.x. PubMed DOI
Bertolaso C., Groleau V., Schall J.I., Maqbool A., Mascarenhas M., Latham N.E., Dougherty K.A., Stallings V.A. Fat-soluble vitamins in cystic fibrosis and pancreatic insufficiency: Efficacy of a nutrition intervention. J. Pediatr. Gastroenterol. Nutr. 2014;58:443–448. doi: 10.1097/MPG.0000000000000272. PubMed DOI PMC
Turck D., Braegger C.P., Colombo C., Declercq D., Morton A., Pancheva R., Robberecht E., Stern M., Strandvik B., Wolfe S., et al. ESPEN-ESPGHAN-ECFS guidelines on nutrition care for infants, children, and adults with cystic fibrosis. Clin. Nutr. 2016;35:557–577. doi: 10.1016/j.clnu.2016.03.004. PubMed DOI
Krzyżanowska P., Pogorzelski A., Skorupa W., Moczko J., Grebowiec P., Walkowiak J. Exogenous and endogenous determinants of vitamin K status in cystic fibrosis. Sci. Rep. 2015;5:srep12000. doi: 10.1038/srep12000. PubMed DOI PMC
Shea M.K., Booth S.L. Concepts and Controversies in Evaluating Vitamin K Status in Population-Based Studies. Nutrients. 2016;8:8. doi: 10.3390/nu8010008. PubMed DOI PMC
Mosler K., von Kries R., Vermeer C., Saupe J., Schmitz T., Schuster A. Assessment of vitamin K deficiency in CF—How much sophistication is useful? J. Cyst. Fibros. 2003;2:91–96. doi: 10.1016/S1569-1993(03)00025-0. PubMed DOI
Choonara I.A., Winn M.J., Park B.K. Plasma vitamin K1 concentrations in cystic fibrosis. Arch. Dis. Child. 1989;64:732–734. doi: 10.1136/adc.64.5.732. PubMed DOI PMC
Cornelissen E.A., van Lieburg A.F., Motohara K., van Oostrom C.G. Vitamin K status in cystic fibrosis. Acta Paediatr. 1992;81:658–661. doi: 10.1111/j.1651-2227.1992.tb12327.x. PubMed DOI
Beker L.T., Ahrens R.A., Fink R.J., O’Brien M.E., Davidson K.W., Sokoll L.J., Sadowski J.A. Effect of vitamin K1 supplementation on vitamin K status in cystic fibrosis patients. J. Pediatr. Gastroenterol. Nutr. 1997;24:512–517. doi: 10.1097/00005176-199705000-00003. PubMed DOI
Conway S.P., Wolfe S.P., Brownlee K.G., White H., Oldroyd B., Truscott J.G., Harvey J.M., Shearer M.J. Vitamin K status among children with cystic fibrosis and its relationship to bone mineral density and bone turnover. Pediatrics. 2005;115:1325–1331. doi: 10.1542/peds.2004-1242. PubMed DOI
Nicolaidou P., Stavrinadis I., Loukou I., Papadopoulou A., Georgouli H., Douros K., Priftis K.N., Gourgiotis D., Matsinos Y.G., Doudounakis S. The effect of vitamin K supplementation on biochemical markers of bone formation in children and adolescents with cystic fibrosis. Eur. J. Pediatr. 2006;165:540–545. doi: 10.1007/s00431-006-0132-1. PubMed DOI
Drury D., Grey V.L., Ferland G., Gundberg C., Lands L.C. Efficacy of high dose phylloquinone in correcting vitamin K deficiency in cystic fibrosis. J. Cyst. Fibros. 2008;7:457–459. doi: 10.1016/j.jcf.2008.04.001. PubMed DOI
Siwamogsatham O., Dong W., Binongo J.N., Chowdhury R., Alvarez J.A., Feinman S.J., Enders J., Tangpricha V. Relationship Between Fat-Soluble Vitamin Supplementation and Blood Concentrations in Adolescent and Adult Patients With Cystic Fibrosis. Nutr. Clin. Pract. 2014;29:491–497. doi: 10.1177/0884533614530170. PubMed DOI PMC
Konieczna L., Kaźmierska K., Roszkowska A., Szlagatys-Sidorkiewicz A., Bączek T. The LC-MS method for the simultaneous analysis of selected fat-soluble vitamins and their metabolites in serum samples obtained from pediatric patients with cystic fibrosis. J. Pharm. Biomed. Anal. 2016;124:374–381. doi: 10.1016/j.jpba.2016.03.021. PubMed DOI
Bergeron C., Potter K.J., Boudreau V., Ouliass B., Bonhoure A., Lacombe J., Mailhot M., Lavoie A., Ferron M., Ferland G., et al. Low vitamin K status in adults with cystic fibrosis is associated with reduced body mass index, insulin secretion, and increased pseudomonal colonization. Appl. Physiol. Nutr. Metab. 2023;48:321–330. doi: 10.1139/apnm-2022-0163. PubMed DOI
Hirota Y., Tsugawa N., Nakagawa K., Suhara Y., Tanaka K., Uchino Y., Takeuchi A., Sawada N., Kamao M., Wada A., et al. Menadione (vitamin K3) is a catabolic product of oral phylloquinone (vitamin K1) in the intestine and a circulating precursor of tissue menaquinone-4 (vitamin K2) in rats. J. Biol. Chem. 2013;288:33071–33080. doi: 10.1074/jbc.M113.477356. PubMed DOI PMC
Castellani C., Southern K.W., Brownlee K., Roelse J.D., Duff A., Farrell M., Mehta A., Munck A., Pollitt R., Sermet-Gaudelus I., et al. European best practice guidelines for cystic fibrosis neonatal screening. J. Cyst. Fibros. 2009;8:153–173. doi: 10.1016/j.jcf.2009.01.004. PubMed DOI
Farrell P.M., White T.B., Ren C.L., Hempstead S.E., Accurso F., Derichs N., Howenstine M., McColley S.A., Rock M., Rosenfeld M., et al. Diagnosis of Cystic Fibrosis: Consensus Guidelines from the Cystic Fibrosis Foundation. J. Pediatr. 2017;181S:S4–S15. doi: 10.1016/j.jpeds.2016.09.064. PubMed DOI
Walkowiak J. Faecal elastase-1: Clinical value in the assessment of exocrine pancreatic function in children. Eur. J. Pediatr. 2000;159:869–870. doi: 10.1007/s004310000536. PubMed DOI
Walkowiak J. Assessment of maldigestion in cystic fibrosis. J. Pediatr. 2004;145:285–287. doi: 10.1016/j.jpeds.2004.06.033. PubMed DOI
Dunovska K., Klapkova E., Sopko B., Cepova J., Prusa R. LC-MS/MS quantitative analysis of phylloquinone, menaquinone-4 and menaquinone-7 in the human serum of a healthy population. PeerJ. 2019;7:e7695. doi: 10.7717/peerj.7695. PubMed DOI PMC
von Elm E., Altman D.G., Egger M., Pocock S.J., Gøtzsche P.C., Vandenbroucke J.P. STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008;61:344–349. doi: 10.1016/j.jclinepi.2007.11.008. PubMed DOI
Krzyżanowska P., Drzymała-Czyż S., Pogorzelski A., Duś-Żuchowska M., Skorupa W., Bober L., Sapiejka E., Oralewska B., Rohovyk N., Moczko J., et al. Vitamin K status in cystic fibrosis patients with liver cirrhosis. Dig. Liver Dis. 2017;49:672–675. doi: 10.1016/j.dld.2017.01.155. PubMed DOI
Mahdinia E., Demirci A., Berenjian A. Production and application of menaquinone-7 (vitamin K2): A new perspective. World J. Microbiol. Biotechnol. 2017;33:2. doi: 10.1007/s11274-016-2169-2. PubMed DOI
Jadhav N., Ajgaonkar S., Saha P., Gurav P., Pandey A., Basudkar V., Gada Y., Panda S., Jadhav S., Mehta D., et al. Molecular Pathways and Roles for Vitamin K2-7 as a Health-Beneficial Nutraceutical: Challenges and Opportunities. Front. Pharmacol. 2022;13:896920. doi: 10.3389/fphar.2022.896920. PubMed DOI PMC
Forli L., Bollerslev J., Simonsen S., Isaksen G.A., Kvamsdal K.E., Godang K., Gadeholt G., Pripp A.H., Bjortuft O. Dietary vitamin K2 supplement improves bone status after lung and heart transplantation. Transplantation. 2010;89:458–464. doi: 10.1097/TP.0b013e3181c46b69. PubMed DOI
Rønn S.H., Harsløf T., Pedersen S.B., Langdahl B.L. Vitamin K2 (menaquinone-7) prevents age-related deterioration of trabecular bone microarchitecture at the tibia in postmenopausal women. Eur. J. Endocrinol. 2016;175:541–549. doi: 10.1530/EJE-16-0498. PubMed DOI
Zhang Y., Liu Z., Duan L., Ji Y., Yang S., Zhang Y., Li H., Wang Y., Wang P., Chen J., et al. Effect of Low-Dose Vitamin K2 Supplementation on Bone Mineral Density in Middle-Aged and Elderly Chinese: A Randomized Controlled Study. Calcif. Tissue Int. 2020;106:476–485. doi: 10.1007/s00223-020-00669-4. PubMed DOI
Caluwé R., Vandecasteele S., Van Vlem B., Vermeer C., De Vriese A.S. Vitamin K2 supplementation in haemodialysis patients: A randomized dose-finding study. Nephrol. Dial. Transplant. 2014;29:1385–1390. doi: 10.1093/ndt/gft464. PubMed DOI
Knapen M.H., Braam L.A., Drummen N.E., Bekers O., Hoeks A.P., Vermeer C. Menaquinone-7 supplementation improves arterial stiffness in healthy postmenopausal women. A double-blind randomised clinical trial. Thromb. Haemost. 2015;113:1135–1144. doi: 10.1160/TH14-08-0675. PubMed DOI
Eelderink C., Kremer D., Riphagen I.J., Knobbe T.J., Schurgers L.J., Pasch A., Mulder D.J., Corpeleijn E., Navis G., Bakker S.J.L., et al. Effect of vitamin K supplementation on serum calcification propensity and arterial stiffness in vitamin K-deficient kidney transplant recipients: A double-blind, randomized, placebo-controlled clinical trial. Am. J. Transplant. 2023;23:520–530. doi: 10.1016/j.ajt.2022.12.015. PubMed DOI
Abdel-Rahman M.S., Alkady E.A., Ahmed S. Menaquinone-7 as a novel pharmacological therapy in the treatment of rheumatoid arthritis: A clinical study. J. Pharmacol. 2015;761:273–278. doi: 10.1016/j.ejphar.2015.06.014. PubMed DOI
Ozaki I., Zhang H., Mizuta T., Ide Y., Eguchi Y., Yasutake T., Sakamaki T., Pestell R.G., Yamamoto K. Menatetrenone, a vitamin K2 analogue, inhibits hepatocellular carcinoma cell growth by suppressing cyclin D1 expression through inhibition of nuclear factor kappaB activation. Clin. Cancer Res. 2007;13:2236–2245. doi: 10.1158/1078-0432.CCR-06-2308. PubMed DOI
Xia J., Matsuhashi S., Hamajima H., Iwane S., Takahashi H., Eguchi Y., Mizuta T., Fujimoto K., Kuroda S., Ozaki I. The role of PKC isoforms in the inhibition of NF-kappaB activation by vitamin K2 in human hepatocellular carcinoma cells. J. Nutr. Biochem. 2012;23:1668–1675. doi: 10.1016/j.jnutbio.2011.11.010. PubMed DOI
Sibayama-Imazu T., Fujisawa Y., Masuda Y., Aiuchi T., Nakajo S., Itabe H., Nakaya K. Induction of apoptosis in PA-1 ovarian cancer cells by vitamin K2 is associated with an increase in the level of TR3/Nur77 and its accumulation in mitochondria and nuclei. J. Cancer Res. Clin. Oncol. 2008;134:803–812. doi: 10.1007/s00432-007-0349-z. PubMed DOI
Showalter S.L., Wang Z., Costantino C.L., Witkiewicz A.K., Yeo C.J., Brody J.R., Carr B.I. Naturally occurring K vitamins inhibit pancreatic cancer cell survival through a caspase-dependent pathway. J. Gastroenterol. Hepatol. 2010;25:738–744. doi: 10.1111/j.1440-1746.2009.06085.x. PubMed DOI
Enomoto M., Tsuchida A., Miyazawa K., Yokoyama T., Kawakita H., Tokita H., Naito M., Itoh M., Ohyashiki K., Aoki T. Vitamin K2-induced cell growth inhibition via autophagy formation in cholangiocellular carcinoma cell lines. Int. J. Mol. Med. 2007;20:801–808. doi: 10.3892/ijmm.20.6.801. PubMed DOI
Miyazawa K., Yaguchi M., Funato K., Gotoh A., Kawanishi Y., Nishizawa Y., You A., Ohyashiki K. Apoptosis/differentiation-inducing effects of vitamin K2 on HL-60 cells: Dichotomous nature of vitamin K2 in leukemia cells. Leukemia. 2001;15:1111–1117. doi: 10.1038/sj.leu.2402155. PubMed DOI
Hadipour E., Tayarani-Najaran Z., Fereidoni M. Vitamin K2 Protects PC12 Cells against Aβ (1-42) and H2O2-Induced Apoptosis via P38 MAP Kinase Pathway. Nutr. Neurosci. 2020;23:343–352. doi: 10.1080/1028415X.2018.1504428. PubMed DOI
Rahimi Sakak F., Moslehi N., Niroomand M., Mirmiran P. Glycemic control improvement in individuals with type 2 diabetes with vitamin K2 supplementation: A randomized controlled trial. Eur. J. Nutr. 2021;60:2495–2506. doi: 10.1007/s00394-020-02419-6. PubMed DOI
Pan M.H., Maresz K., Lee P.S., Wu J.C., Ho C.T., Popko J., Mehta D.S., Stohs S.J., Badmaev V. Inhibition of TNF-α, IL-1α, and IL-1β by Pretreatment of Human Monocyte Derived Macrophages with Menaquinone-7 and Cell Activation with TLR Agonists In Vitro. J. Med. Food. 2016;19:663–669. doi: 10.1089/jmf.2016.0030. PubMed DOI
Mehta D.S., Dound Y.A., Jadhav S.S., Bhave A.A., Devale M., Vaidya A.D.B. A Novel Potential Role of Vitamin K2-7 in Relieving Peripheral Neuropathy. J. Pharmacol. Pharmacother. 2018;9:180–185. doi: 10.4103/jpp.JPP_72_18. DOI
Conway S.P. Vitamin K in cystic fibrosis. J. R. Soc. Med. 2004;97:48–51. PubMed PMC
Maqbool A., Stallings V.A. Update on fat-soluble vitamins cystic fibrosis. Curr. Opin. Pulm. Med. 2008;14:574–581. doi: 10.1097/MCP.0b013e3283136787. PubMed DOI
Borowitz D., Baker R.D., Stallings V. Consensus report on nutrition for paediatric patients with cystic fibrosis. J. Pediatr. Gastroenterol. Nutr. 2002;35:246–259. doi: 10.1097/00005176-200209000-00004. PubMed DOI
Sinaasappel M., Stern M., Littlewood J., Wolfe S., Steinkamp G., Heijerman H.G., Robberecht E., Döring G. Nutrition in patients with cystic fibrosis: A European Consensus. J. Cyst. Fibros. 2002;1:51–75. doi: 10.1016/s1569-1993(02)00032-2. PubMed DOI
Jagannath V.A., Thaker V., Chang A.B., Price A.I. Vitamin K supplementation for cystic fibrosis. Cochrane Database Syst. Rev. 2020;6:CD008482. doi: 10.1002/14651858.CD008482.pub6. PubMed DOI PMC
Rashid M., Durie P., Andrew M., Kalnins D., Shin J., Corey M., Tullis E., Pencharz P.B. Prevalence of vitamin K deficiency in cystic fibrosis. Am. J. Clin. Nutr. 1999;70:378–382. doi: 10.1093/ajcn/70.3.378. PubMed DOI
van Hoorn J.H., Hendriks J.J., Vermeer C., Forget P.P. Vitamin K supplementation in cystic fibrosis. Arch. Dis. Child. 2003;88:974–975. doi: 10.1136/adc.88.11.974. PubMed DOI PMC
Thijssen H.H., Vervoort L.M., Schurgers L.J., Shearer M.J. Menadione is a metabolite of oral vitamin K. Br. J. Nutr. 2006;95:260–266. doi: 10.1079/bjn20051630. PubMed DOI
Okano T., Shimomura Y., Yamane M., Suhara Y., Kamao M., Sugiura M., Nakagawa K. Conversion of phylloquinone (Vitamin K1) into menaquinone-4 (Vitamin K2) in mice: Two possible routes for menaquinone-4 accumulation in cerebra of mice. J. Biol. Chem. 2008;283:11270–11279. doi: 10.1074/jbc.M702971200. PubMed DOI
Shearer M.J., Okano T. Key Pathways and Regulators of Vitamin K Function and Intermediary Metabolism. Annu. Rev. Nutr. 2018;38:127–151. doi: 10.1146/annurev-nutr-082117-051741. PubMed DOI
Fewtrell M.S., Benden C., Williams J.E., Chomtho S., Ginty F., Nigdikar S.V., Jaffe A. Undercarboxylated osteocalcin and bone mass in 8-12 year old children with cystic fibrosis. J. Cyst. Fibros. 2008;7:307–312. doi: 10.1016/j.jcf.2007.11.006. PubMed DOI
Dougherty K.A., Schall J.I., Stallings V.A. Suboptimal vitamin K status despite supplementation in children and young adults with cystic fibrosis. Am. J. Clin. Nutr. 2010;92:660–667. doi: 10.3945/ajcn.2010.29350. PubMed DOI PMC
Krzyżanowska P., Drzymala-Czyż S., Rohovyk N., Bober L., Moczko J., Rachel M., Walkowiak J. Prevalence of vitamin K deficiency and associated factors in non-supplemented cystic fibrosis patients. Arch. Argent. Pediatr. 2018;116:e19–e25. doi: 10.5546/aap.2018.eng.e19. PubMed DOI
Hergenroeder G.E., Faino A., Bridges G., Bartlett L.E., Cogen J.D., Green N., McNamara S., Nichols D.P., Ramos K.J. The impact of elexacaftor/tezacaftor/ivacaftor on fat-soluble vitamin levels in people with cystic fibrosis. J. Cyst. Fibros. 2023;22:1048–1053. doi: 10.1016/j.jcf.2023.08.002. PubMed DOI PMC
Petersen M.C., Begnel L., Wallendorf M., Litvin M. Effect of elexacaftor-tezacaftor-ivacaftor on body weight and metabolic parameters in adults with cystic fibrosis. J. Cyst. Fibros. 2022;21:265–271. doi: 10.1016/j.jcf.2021.11.012. PubMed DOI PMC