Utilization of a highly adaptable murine air pouch model for minimally invasive testing of the inflammatory potential of biomaterials
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38737540
PubMed Central
PMC11082294
DOI
10.3389/fbioe.2024.1367366
PII: 1367366
Knihovny.cz E-zdroje
- Klíčová slova
- air-pouch, biocompatibility, foreign body reaction, inflammatory cell infiltration, proinflammatory potential,
- Publikační typ
- časopisecké články MeSH
Introduction: The biocompatibility of an implanted material strongly determines the subsequent host immune response. After insertion into the body, each medical device causes tissue reactions. How intense and long-lasting these are is defined by the material properties. The so-called foreign body reaction is a reaction leading to the inflammation and wound healing process after implantation. The constantly expanding field of implant technology and the growing areas of application make optimization and adaptation of the materials used inevitable. Methods: In this study, modified liquid silicone rubber (LSR) and two of the most commonly used thermoplastic polyurethanes (TPU) were compared in terms of induced inflammatory response in the body. We evaluated the production of inflammatory cytokines, infiltration of inflammatory cells and encapsulation of foreign bodies in a subcutaneous air-pouch model in mice. In this model, the material is applied in a minimally invasive procedure via a cannula and in one piece, which allows material testing without destroying or crushing the material and thus studying an intact implant surface. The study design includes short-term (6 h) and long-term (10 days) analysis of the host response to the implanted materials. Air-pouch-infiltrating cells were determined by flow cytometry after 6 h and 10 days. Inflammation, fibrosis and angiogenesis markers were analyzed in the capsular tissue by qPCR after 10 days. Results: The foreign body reaction was investigated by macroscopic evaluation and scanning electron microscopy (SEM). Increased leukocyte infiltration was observed in the air-pouch after 6 h, but it markedly diminished after 10 days. After 10 days, capsule formations were observed around the materials without visible inflammatory cells. Discussion: For biocompatibility testing materials are often implanted in muscle tissue. These test methods are not sufficiently conclusive, especially for materials that are intended to come into contact with blood. Our study primarily shows that the presented model is a highly adaptable and minimally invasive test system to test the inflammatory potential of and foreign body reaction to candidate materials and offers more precise analysis options by means of flow cytometry.
Biotronik SE and Co KG Berlin Germany
Department of Parasitology Faculty of Science Charles University Prague Czechia
Institute for Biomedical Engineering University Medical Center Rostock Rostock Warnemünde Germany
Zobrazit více v PubMed
Anderson J. M., Rodriguez A., Chang D. T. (2008). Foreign body reaction to biomaterials. Semin. Immunol. 20, 86–100. 10.1016/j.smim.2007.11.004 PubMed DOI PMC
Auffarth G. U., Apple D. J. (2001). History of the development of intraocular lenses. Ophthalmologe 98, 1017–1028. 10.1007/s003470170020 PubMed DOI
Azari S., Zou L. (2013). Fouling resistant zwitterionic surface modification of reverse osmosis membranes using amino acid l-cysteine. Desalination 324, 79–86. 10.1016/j.desal.2013.06.005 DOI
Brash J. L., Horbett T. A., Latour R. A., Tengvall P. (2019). The blood compatibility challenge. Part 2: protein adsorption phenomena governing blood reactivity. Acta Biomater. 94, 11–24. 10.1016/j.actbio.2019.06.022 PubMed DOI PMC
Carnicer-Lombarte A., Chen S.-T., Malliaras G. G., Barone D. G. (2021). Foreign body reaction to implanted biomaterials and its impact in nerve neuroprosthetics. Front. Bioeng. Biotechnol. 9, 622524. 10.3389/fbioe.2021.622524 PubMed DOI PMC
Chiappini N., Seubert A., Telford J. L., Grandi G., Serruto D., Margarit I., et al. (2012). Streptococcus pyogenes SpyCEP influences host-pathogen interactions during infection in a murine air pouch model. PLoS One 7, e40411. 10.1371/journal.pone.0040411 PubMed DOI PMC
Corradetti B. (2017). The immune response to implanted materials and devices. Cham: Springer International Publishing.
Duarte D. B., Vasko M. R., Fehrenbacher J. C. (2012). Models of inflammation: carrageenan air pouch. Curr. Protoc. Pharmacol. 56, 10.1002/0471141755.ph0506s56 PubMed DOI PMC
Fabbri P., Messori M. (2017). “Surface modification of polymers,” in Modification of polymer properties (Amsterdam, Netherlands: Elsevier; ), 109–130.
Fehrenbacher J. C., McCarson K. E. (2021). Models of inflammation: carrageenan air pouch. Curr. Protoc. 1, e183. 10.1002/cpz1.183 PubMed DOI
Fortunebusinessinsights (2022). The global medical devices market is projected to grow from $495.46 billion in 2022 to $718.92 billion by 2029 at a CAGR of 5.5% in forecast period, 2022-2029 Read More at.Available at: https://www.fortunebusinessinsights.com/industry-reports/medical-devices-market-100085.
Frutiger A., Tanno A., Hwu S., Tiefenauer R. F., Vörös J., Nakatsuka N. (2021). Nonspecific binding-fundamental concepts and consequences for biosensing applications. Chem. Rev. 121, 8095–8160. 10.1021/acs.chemrev.1c00044 PubMed DOI
Geelhoed W. J., Moroni L., Rotmans J. I. (2017). Utilizing the foreign body response to grow tissue engineered blood vessels PubMed DOI PMC
Helmus M. N., Gibbons D. F., Cebon D. (2008). Biocompatibility: meeting a key functional requirement of next-generation medical devices. Toxicol. Pathol. 36, 70–80. 10.1177/0192623307310949 PubMed DOI
Hiranphinyophat S., Iwasaki Y. (2021). Controlled biointerfaces with biomimetic phosphorus-containing polymers. Sci. Technol. Adv. Mat. 22, 301–316. 10.1080/14686996.2021.1908095 PubMed DOI PMC
Hirsh S. L., McKenzie D. R., Nosworthy N. J., Denman J. A., Sezerman O. U., Bilek M. M. M. (2013). The Vroman effect: competitive protein exchange with dynamic multilayer protein aggregates. Colloids Surf. B Biointerfaces 103, 395–404. 10.1016/j.colsurfb.2012.10.039 PubMed DOI
Ishihara K. (2019). Revolutionary advances in 2-methacryloyloxyethyl phosphorylcholine polymers as biomaterials. J. Biomed. Mat. Res. A 107, 933–943. 10.1002/jbm.a.36635 PubMed DOI
Kutner N., Kunduru K. R., Rizik L., Farah S. (2021). Recent advances for improving functionality, biocompatibility, and longevity of implantable medical devices and deliverable drug delivery systems. Adv. Funct. Mat. 31, 2010929. 10.1002/adfm.202010929 DOI
Lambris J. D., Ekdahl K. N., Ricklin D., Nilsson B. (2015). Immune responses to biosurfaces. Cham: Springer International Publishing.
Londono R., Badylak S. F. (2015). “Factors which affect the host response to biomaterials,” in Host response to biomaterials (Amsterdam, Netherlands: Elsevier; ), 1–12.
Lovric V., Goldberg M. J., Heuberer P. R., Oliver R. A., Stone D., Laky B., et al. (2018). Suture wear particles cause a significant inflammatory response in a murine synovial airpouch model. J. Orthop. Surg. Res. 13, 311. 10.1186/s13018-018-1026-4 PubMed DOI PMC
Maheswari P., Barghava P., Mohan D. (2013). Preparation, morphology, hydrophilicity and performance of poly (ether-ether- sulfone) incorporated cellulose acetate ultrafiltration membranes. J. Polym. Res. 20, 74. 10.1007/s10965-013-0074-z DOI
Maxwell G. P., Gabriel A. (2009). The evolution of breast implants. Clin. Plast. Surg. 36, 1–13. 10.1016/j.cps.2008.08.001 PubMed DOI
Mukherjee S., Darzi S., Paul K., Cousins F. L., Werkmeister J. A., Gargett C. E. (2020). Electrospun nanofiber meshes with endometrial MSCs modulate foreign body response by increased angiogenesis, matrix synthesis, and anti-inflammatory gene expression in mice: implication in pelvic floor. Front. Pharmacol. 11, 353. 10.3389/fphar.2020.00353 PubMed DOI PMC
Peng F., Qiu L., Yao M., Liu L., Zheng Y., Wu S., et al. (2021). A lithium-doped surface inspires immunomodulatory functions for enhanced osteointegration through PI3K/AKT signaling axis regulation. Biomater. Sci. 9, 8202–8220. 10.1039/d1bm01075a PubMed DOI
Shi Z., Neoh K. G., Kang E. T., Poh C., Wang W. (2008). Bacterial adhesion and osteoblast function on titanium with surface-grafted chitosan and immobilized RGD peptide. J. Biomed. Mat. Res. A 86, 865–872. 10.1002/jbm.a.31648 PubMed DOI
Sombetzki M., Koslowski N., Rabes A., Seneberg S., Winkelmann F., Fritzsche C., et al. (2018). Host defense versus immunosuppression: unisexual infection with male or female schistosoma mansoni differentially impacts the immune response against invading cercariae. Front. Immunol. 9, 861. 10.3389/fimmu.2018.00861 PubMed DOI PMC
Tan X., Zhan J., Zhu Y., Cao J., Wang L., Liu S., et al. (2017). Improvement of uveal and capsular biocompatibility of hydrophobic acrylic intraocular lens by surface grafting with 2-methacryloyloxyethyl phosphorylcholine-methacrylic acid copolymer. Sci. Rep. 7, 40462. 10.1038/srep40462 PubMed DOI PMC
Tzoulaki I., Elliott P., Kontis V., Ezzati M. (2016). Worldwide exposures to cardiovascular risk factors and associated health effects: current knowledge and data gaps. Circulation 133, 2314–2333. 10.1161/CIRCULATIONAHA.115.008718 PubMed DOI
Wei R., Wu J., Li Y. (2019). Macrophage polarization following three-dimensional porous PEEK. Mat. Sci. Eng. C Mat. Biol. Appl. 104, 109948. 10.1016/j.msec.2019.109948 PubMed DOI
Woitschach F., Kloss M., Schlodder K., Borck A., Grabow N., Reisinger E. C., et al. (2021b). PubMed DOI PMC
Woitschach F., Kloss M., Schlodder K., Borck A., Grabow N., Reisinger E. C., et al. (2022). Bacterial adhesion and biofilm formation of PubMed DOI PMC
Woitschach F., Kloss M., Schlodder K., Rabes A., Mörke C., Oschatz S., et al. (2021a). The use of zwitterionic methylmethacrylat coated silicone inhibits bacterial adhesion and biofilm formation of PubMed DOI PMC
Yu K., Mei Y., Hadjesfandiari N., Kizhakkedathu J. N. (2014). Engineering biomaterials surfaces to modulate the host response. Colloids Surf. B Biointerfaces 124, 69–79. 10.1016/j.colsurfb.2014.08.009 PubMed DOI
Yunos M. Z., Harun Z., Basri H., Ismail A. F. (2014). Studies on fouling by natural organic matter (NOM) on polysulfone membranes: effect of polyethylene glycol (PEG). Desalination 333, 36–44. 10.1016/j.desal.2013.11.019 DOI
Zeplin P. H., Maksimovikj N. C., Jordan M. C., Nickel J., Lang G., Leimer A. H., et al. (2014). Spider silk coatings as a bioshield to reduce periprosthetic fibrous capsule formation. Adv. Funct. Mat. 24, 2658–2666. 10.1002/adfm.201302813 DOI
Zhang D., Chen Q., Shi C., Chen M., Ma K., Wan J., et al. (2021). Dealing with the foreign‐body response to implanted biomaterials: strategies and applications of new materials. Adv. Funct. Mat. 31, 2007226. 10.1002/adfm.202007226 DOI
Zhang X.-S., García-Contreras R., Wood T. K. (2008). PubMed DOI