Lower-extremity inter-joint coordination variability in active individuals with transtibial amputation and healthy males during gait

. 2024 May 22 ; 14 (1) : 11668. [epub] 20240522

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38778165
Odkazy

PubMed 38778165
PubMed Central PMC11111844
DOI 10.1038/s41598-024-62655-2
PII: 10.1038/s41598-024-62655-2
Knihovny.cz E-zdroje

This study was aimed to compare the variability of inter-joint coordination in the lower-extremities during gait between active individuals with transtibial amputation (TTAs) and healthy individuals (HIs). Fifteen active male TTAs (age: 40.6 ± 16.24 years, height: 1.74 ± 0.09 m, and mass: 71.2 ± 8.87 kg) and HIs (age: 37.25 ± 13.11 years, height: 1.75 ± 0.06 m, and mass: 74 ± 8.75 kg) without gait disabilities voluntarily participated in the study. Participants walked along a level walkway covered with Vicon motion capture system, and their lower-extremity kinematics data were recorded during gait. The spatiotemporal gait parameters, lower-extremity joint range of motion (ROM), and their coordination and variability were calculated and averaged to report a single value for each parameter based on biomechanical symmetry assumption in the lower limbs of HIs. Additionally, these parameters were separately calculated and reported for the intact limb (IL) and the prosthesis limb (PL) in TTAs individuals. Finally, a comparison was made between the averaged values in HIs and those in the IL and PL of TTAs subjects. The results showed that the IL had a significantly lower stride length than that of the PL and averaged value in HIs, and the IL had a significantly lower knee ROM and greater stance-phase duration than that of HIs. Moreover, TTAs showed different coordination patterns in pelvis-to-hip, hip-to-knee, and hip-to-ankle couplings in some parts of the gait cycle. It concludes that the active TTAs with PLs walked with more flexion of the knee and hip, which may indicate a progressive walking strategy and the differences in coordination patterns suggest active TTA individuals used different neuromuscular control strategies to adapt to their amputation. Researchers can extend this work by investigating variations in these parameters across diverse patient populations, including different amputation etiologies and prosthetic designs. Moreover, Clinicians can use the findings to tailor rehabilitation programs for TTAs, emphasizing joint flexibility and coordination.

Zobrazit více v PubMed

Goodney PP, et al. Regional intensity of vascular care and lower extremity amputation rates. J. Vasc. Surg. 2013;57:1471–1480.e3. doi: 10.1016/j.jvs.2012.11.068. PubMed DOI PMC

Moisan G, Miramand L, Younesian H, Legrand T, Turcot K. Assessment of biomechanical deficits in individuals with a trans-tibial amputation during level gait using one-dimensional statistical parametric mapping. Gait Post. 2021;87:130–135. doi: 10.1016/j.gaitpost.2021.04.033. PubMed DOI

Highsmith MJ, et al. Low back pain in persons with lower extremity amputation: A systematic review of the literature. Spine J. 2019;19:552–563. doi: 10.1016/j.spinee.2018.08.011. PubMed DOI

Orekhov G, Matt-Robinson A, Hazelwood SJ, Klisch SM. Knee joint biomechanics in transtibial amputees in gait, cycling, and elliptical training. PLoS One. 2019;14:2260. doi: 10.1371/journal.pone.0226060. PubMed DOI PMC

Koelewijn AD, van den Bogert AJ. Joint contact forces can be reduced by improving joint moment symmetry in below-knee amputee gait simulations. Gait Post. 2016;49:219–225. doi: 10.1016/j.gaitpost.2016.07.007. PubMed DOI

Beyaert C, Grumillier C, Martinet N, Paysant J, André JM. Compensatory mechanism involving the knee joint of the intact limb during gait in unilateral below-knee amputees. Gait Post. 2008;28:278–284. doi: 10.1016/j.gaitpost.2007.12.073. PubMed DOI

Heitzmann DWW, et al. Benefits of an increased prosthetic ankle range of motion for individuals with a trans-tibial amputation walking with a new prosthetic foot. Gait Post. 2018;64:174–180. doi: 10.1016/j.gaitpost.2018.06.022. PubMed DOI

Nakajima H, Yamamoto S, Katsuhira J. Effects of diabetic peripheral neuropathy on gait in vascular trans-tibial amputees. Clin. Biomech. 2018;56:84–89. doi: 10.1016/j.clinbiomech.2018.05.005. PubMed DOI

Müller R, Tronicke L, Abel R, Lechler K. Prosthetic push-off power in trans-tibial amputee level ground walking: A systematic review. PLoS One. 2019;14:225. doi: 10.1371/journal.pone.0225032. PubMed DOI PMC

Isakov E, Burger H, Krajnik J, Gregoric M, Marincek C. Knee muscle activity during ambulation of trans-tibial amputees. J. Rehabil. Med. 2001;33:196–199. doi: 10.1080/165019701750419572. PubMed DOI

Vickers DR, Palk C, McIntosh AS, Beatty KT. Elderly unilateral transtibial amputee gait on an inclined walkway: A biomechanical analysis. Gait Post. 2008;27:518–529. doi: 10.1016/j.gaitpost.2007.06.008. PubMed DOI

Hafer JF, Boyer KA. Variability of segment coordination using a vector coding technique: Reliability analysis for treadmill walking and running. Gait Post. 2017;51:222–227. doi: 10.1016/j.gaitpost.2016.11.004. PubMed DOI

Newell KM. Coordination, control and skill. Adv. Psychol. 1985;27:295–317. doi: 10.1016/S0166-4115(08)62541-8. DOI

Chang Y, et al. Changes in spatiotemporal parameters and lower limb coordination during prosthetic gait training in unilateral transfemoral amputees. Int. J. Precis. Eng. Manuf. 2022;23:361. doi: 10.1007/s12541-021-00605-y. DOI

Hu M, et al. Sprinting performance of individuals with unilateral transfemoral amputation: Compensation strategies for lower limb coordination. R. Soc. Open Sci. 2023;10:3. doi: 10.1098/rsos.221198. PubMed DOI PMC

Lathouwers E, et al. Continuous relative phases of walking with an articulated passive ankle–foot prosthesis in individuals with a unilateral transfemoral and transtibial amputation: An explorative case–control study. Biomed. Eng. Online. 2023;22:1. doi: 10.1186/s12938-023-01074-2. PubMed DOI PMC

Hu M, He Y, Hisano G, Hobara H, Kobayashi T. Coordination of lower limb during gait in individuals with unilateral transfemoral amputation. IEEE Trans. Neural Syst. Rehabil. Eng. 2023;31:3835. doi: 10.1109/TNSRE.2023.3316749. PubMed DOI

Russell-Esposito E, Wilken JM. The relationship between pelvis–trunk coordination and low back pain in individuals with transfemoral amputations. Gait Post. 2014;40:640–646. doi: 10.1016/j.gaitpost.2014.07.019. PubMed DOI

Hamill J, Palmer C, Van Emmerik REA. Coordinative variability and overuse injury. Sports Med. Arthrosc. Rehabil. Therapy Technol. 2012;4:1. doi: 10.1186/1758-2555-4-45. PubMed DOI PMC

Batten HR, McPhail SM, Mandrusiak AM, Varghese PN, Kuys SS. Gait speed as an indicator of prosthetic walking potential following lower limb amputation. Prosthet. Orthot. Int. 2019;43:196–203. doi: 10.1177/0309364618792723. PubMed DOI

Svoboda Z, Janura M, Cabell L, Elfmark M. Variability of kinetic variables during gait in unilateral transtibial amputees. Prosthet. Orthot. Int. 2012;36:230. doi: 10.1177/0309364612439572. PubMed DOI

Alijanpour E, Abbasi A, Needham RA, Naemi R. Spine and pelvis coordination variability in rowers with and without chronic low back pain during rowing. J. Biomech. 2021;120:110356. doi: 10.1016/j.jbiomech.2021.110356. PubMed DOI

Needham R, Naemi R, Chockalingam N. Quantifying lumbar-pelvis coordination during gait using a modified vector coding technique. J. Biomech. 2014;47:1020–1026. doi: 10.1016/j.jbiomech.2013.12.032. PubMed DOI

Rueda FM, et al. Knee and hip internal moments and upper-body kinematics in the frontal plane in unilateral transtibial amputees. Gait Post. 2013;37:436–439. doi: 10.1016/j.gaitpost.2012.08.019. PubMed DOI

Sagawa Y, et al. Biomechanics and physiological parameters during gait in lower-limb amputees: A systematic review. Gait Post. 2011;33:511–526. doi: 10.1016/j.gaitpost.2011.02.003. PubMed DOI

Nolan L, et al. Adjustments in gait symmetry with walking speed in trans-femoral and trans-tibial amputees. Gait Post. 2003;17:142–151. doi: 10.1016/S0966-6362(02)00066-8. PubMed DOI

Bateni H, Olney SJ. Kinematic and kinetic variations of below-knee amputee gait. J. Prosthet. Orthot. 2002;14:2–10. doi: 10.1097/00008526-200203000-00003. DOI

Powers CM, Rao S, Perry J. Knee kinetics in trans-tibial amputee gait. Gait Post. 1998;8:1–7. doi: 10.1016/S0966-6362(98)00016-2. PubMed DOI

Schmid-Zalaudek K, et al. Kinetic gait parameters in unilateral lower limb amputations and normal gait in able-bodied: Reference values for clinical application. J. Clin. Med. 2022;11:2683. doi: 10.3390/jcm11102683. PubMed DOI PMC

Gard SA, Childress DS. The effect of pelvic list on the vertical displacement of the trunk during normal walking. Gait Post. 1997;5:233–238. doi: 10.1016/S0966-6362(96)01089-2. DOI

Su PF, Gard SA, Lipschutz RD, Kuiken TA. Gait characteristics of persons with bilateral transtibial amputations. J. Rehabil. Res. Dev. 2007;44:491–501. doi: 10.1682/JRRD.2006.10.0135. PubMed DOI

Lemaire ED, Fisher FR. Osteoarthritis and elderly amputee gait. Arch. Phys. Med. Rehabil. 1994;75:1094–1099. doi: 10.1016/0003-9993(94)90084-1. PubMed DOI

Lloyd CH, Stanhope SJ, Davis IS, Royer TD. Strength asymmetry and osteoarthritis risk factors in unilateral trans-tibial, amputee gait. Gait Post. 2010;32:296–300. doi: 10.1016/j.gaitpost.2010.05.003. PubMed DOI

Sadeghi H, Allard P, Duhaime M. Muscle power compensatory mechanisms in below-knee amputee gait. Am. J. Phys. Med. Rehabil. 2001;80:25–32. doi: 10.1097/00002060-200101000-00007. PubMed DOI

Major MJ, Twiste M, Kenney LPJ, Howard D. The effects of prosthetic ankle stiffness on ankle and knee kinematics, prosthetic limb loading, and net metabolic cost of trans-tibial amputee gait. Clin. Biomech. 2014;29:98–104. doi: 10.1016/j.clinbiomech.2013.10.012. PubMed DOI

Vanicek N, Strike S, McNaughton L, Polman R. Gait patterns in transtibial amputee fallers vs. non-fallers: Biomechanical differences during level walking. Gait Post. 2009;29:415–420. doi: 10.1016/j.gaitpost.2008.10.062. PubMed DOI

Sadeghi H, et al. Lower-extremity intra-joint coordination and its variability between fallers and non-fallers during gait. Appl. Sci. Switzerl. 2021;11:2840. doi: 10.3390/app11062840. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...