Sulfinamide Crossover Reaction

. 2024 Jun 07 ; 89 (11) : 7927-7932. [epub] 20240524

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38785122

This study unveils a new catalytic crossover reaction of sulfinamides. Leveraging mild acid catalysis, the reaction demonstrates a high tolerance to structural variations, yielding equimolar products across diverse sulfinamide substrates. Notably, small sulfinamide libraries can be selectively oxidized to sulfonamides, providing a new platform for ligand optimization and discovery in medicinal chemistry. This crossover chemotype provides a new tool for high-throughput experimentation in discovery chemistry.

Zobrazit více v PubMed

Saito T. T.; Colaiácovo M. P. Regulation of Crossover Frequency and Distribution during Meiotic Recombination. Cold Spring Harb. Symp. Quant. Biol. 2017, 82, 223–234. 10.1101/sqb.2017.82.034132. PubMed DOI PMC

Barton N. H.; Charlesworth B. Why Sex and Recombination?. Science 1998, 281 (5385), 1986–1990. 10.1126/science.281.5385.1986. PubMed DOI

Smith J. M.The Evolution of Sex; CUP Archive, 1978.

Eichenlaub-Ritter U. 8 Mechanisms of Nondisjunction in Mammalian Meiosis. Curr. Top. Dev. Biol. 1994, 29, 281–324. 10.1016/S0070-2153(08)60553-0. PubMed DOI

Zickler D.; Kleckner N. Meiotic Chromosomes: Integrating Structure and Function. Annu. Rev. Genet. 1999, 33 (1), 603–754. 10.1146/annurev.genet.33.1.603. PubMed DOI

Grubbs R. H. Olefin Metathesis. Tetrahedron 2004, 60 (34), 7117–7140. 10.1016/j.tet.2004.05.124. DOI

Schrock R. R.; Hoveyda A. H. Molybdenum and Tungsten Imido Alkylidene Complexes as Efficient Olefin-Metathesis Catalysts. Angew. Chem., Int. Ed. 2003, 42 (38), 4592–4633. 10.1002/anie.200300576. PubMed DOI

Fürstner A. Olefin Metathesis and Beyond. Angew. Chem., Int. Ed. 2000, 39 (17), 3012–3043. 10.1002/1521-3773(20000901)39:17<3012::AID-ANIE3012>3.0.CO;2-G. PubMed DOI

Giger T.; Wigger M.; Audétat S.; Benner S. A. Libraries for Receptor-Assisted Combinatorial Synthesis (RACS). The Olefin Metathesis Reaction. Synlett 1998, 1998 (6), 688–691. 10.1055/s-1998-1737. DOI

van Gerven P. C. M.; Elemans J. A. A. W.; Gerritsen J. W.; Speller S.; Nolte R. J. M.; Rowan A. E. Dynamic Combinatorial Olefin Metathesis: Templated Synthesis of Porphyrin Boxes. Chem. Commun. 2005, 41 (28), 3535–3537. 10.1039/b503619d. PubMed DOI

Nicolaou K. C.; Hughes R.; Cho S. Y.; Winssinger N.; Smethurst C.; Labischinski H.; Endermann R. Target-Accelerated Combinatorial Synthesis and Discovery of Highly Potent Antibiotics Effective Against Vancomycin-Resistant Bacteria. Angew. Chem., Int. Ed. 2000, 39 (21), 3823–3828. 10.1002/1521-3773(20001103)39:21<3823::AID-ANIE3823>3.0.CO;2-3. PubMed DOI

Black S. P.; Sanders J. K. M.; Stefankiewicz A. R. Disulfide Exchange: Exposing Supramolecular Reactivity through Dynamic Covalent Chemistry. Chem. Soc. Rev. 2014, 43 (6), 1861–1872. 10.1039/C3CS60326A. PubMed DOI

Nagy P. Kinetics and Mechanisms of Thiol-Disulfide Exchange Covering Direct Substitution and Thiol Oxidation-Mediated Pathways. Antioxid. Redox Signaling 2013, 18 (13), 1623–1641. 10.1089/ars.2012.4973. PubMed DOI PMC

Yi M. C.; Khosla C. Thiol-Disulfide Exchange Reactions in the Mammalian Extracellular Environment. Annu. Rev. Chem. Biomol. Eng. 2016, 7 (1), 197–222. 10.1146/annurev-chembioeng-080615-033553. PubMed DOI PMC

Davidson S. M. K.; Regen S. L. Nearest-Neighbor Recognition in Phospholipid Membranes. Chem. Rev. 1997, 97 (5), 1269–1280. 10.1021/cr960381s. PubMed DOI

Corbett P. T.; Leclaire J.; Vial L.; West K. R.; Wietor J.-L.; Sanders J. K. M.; Otto S. Dynamic Combinatorial Chemistry. Chem. Rev. 2006, 106 (9), 3652–3711. 10.1021/cr020452p. PubMed DOI

Frei P.; Hevey R.; Ernst B. Dynamic Combinatorial Chemistry: A New Methodology Comes of Age. Chem.—Eur. J. 2019, 25 (1), 60–73. 10.1002/chem.201803365. PubMed DOI

Huc I.; Nguyen R. Dynamic Combinatorial Chemistry. Comb. Chem. High Throughput Screen. 2001, 4 (1), 53–74. 10.2174/1386207013331273. PubMed DOI

Pollino J. M.; Stubbs L. P.; Weck M. One-Step Multifunctionalization of Random Copolymers via Self-Assembly. J. Am. Chem. Soc. 2004, 126 (2), 563–567. 10.1021/ja0372715. PubMed DOI

Gerhardt W.; Črne M.; Weck M. Multifunctionalization of Synthetic Polymer Systems through Self-Assembly. Chem.—Eur. J. 2004, 10 (24), 6212–6221. 10.1002/chem.200400538. PubMed DOI

Hamada K.; Serizawa T.; Akashi M. Template Polymerization Using Artificial Double Strands. Macromolecules 2005, 38 (16), 6759–6761. 10.1021/ma050963o. DOI

Zimmerman S. C.; Lemcoff N. G. Synthetic Hosts via Molecular Imprinting—Are Universal Synthetic Antibodies Realistically Possible?. Chem. Commun. 2004, 40 (1), 5–14. 10.1039/B304720B. PubMed DOI

Breuil P.-A. R.; Patureau F. W.; Reek J. N. H. Singly Hydrogen Bonded Supramolecular Ligands for Highly Selective Rhodium-Catalyzed Hydrogenation Reactions. Angew. Chem., Int. Ed. 2009, 48 (12), 2162–2165. 10.1002/anie.200806177. PubMed DOI

Yoshizawa M.; Tamura M.; Fujita M. Diels-Alder in Aqueous Molecular Hosts: Unusual Regioselectivity and Efficient Catalysis. Science 2006, 312 (5771), 251–254. 10.1126/science.1124985. PubMed DOI

Pluth M. D.; Bergman R. G.; Raymond K. N. Acid Catalysis in Basic Solution: A Supramolecular Host Promotes Orthoformate Hydrolysis. Science 2007, 316 (5821), 85–88. 10.1126/science.1138748. PubMed DOI

Fuchs B.; Nelson A.; Star A.; Stoddart J. F.; Vidal S. Amplification of Dynamic Chiral Crown Ether Complexes During Cyclic Acetal Formation. Angew. Chem., Int. Ed. 2003, 42 (35), 4220–4224. 10.1002/anie.200351558. PubMed DOI

Roberts S. L.; Furlan R. L. E.; Otto S.; Sanders J. K. M. Metal-Ion Induced Amplification of Three Receptors from Dynamic Combinatorial Libraries of Peptide-Hydrazones. Org. Biomol. Chem. 2003, 1 (9), 1625–1633. 10.1039/b300956d. PubMed DOI

Lüning U. Synthesizing Macrocycles under Thermodynamic Control—Dynamic Combinatorial Libraries and Templates. J. Incl. Phenom. 2004, 49 (1/2), 81–84. 10.1023/B:JIPH.0000031117.97865.b1. DOI

González-Álvarez A.; Alfonso I.; López-Ortiz F.; Aguirre Á.; García-Granda S.; Gotor V. Selective Host Amplification from a Dynamic Combinatorial Library of Oligoimines for the Syntheses of Different Optically Active Polyazamacrocycles. Eur. J. Org Chem. 2004, 2004 (5), 1117–1127. 10.1002/ejoc.200300628. DOI

Furlan R. L. E.; Ng Y.-F.; Cousins G. R. L.; Redman J. E.; Sanders J. K. M. Molecular Amplification in a Dynamic System by Ammonium Cations. Tetrahedron 2002, 58 (4), 771–778. 10.1016/S0040-4020(01)01102-4. DOI

Otto S.; Furlan R. L. E.; Sanders J. K. M. Selection and Amplification of Hosts From Dynamic Combinatorial Libraries of Macrocyclic Disulfides. Science 2002, 297 (5581), 590–593. 10.1126/science.1072361. PubMed DOI

Nasr G.; Petit E.; Supuran C. T.; Winum J.-Y.; Barboiu M. Carbonic Anhydrase II-Induced Selection of Inhibitors from a Dynamic Combinatorial Library of Schiff’s Bases. Bioorg. Med. Chem. Lett. 2009, 19 (21), 6014–6017. 10.1016/j.bmcl.2009.09.047. PubMed DOI

Sindelar M.; Wanner K. T. Library Screening by Means of Mass Spectrometry (MS) Binding Assays—Exemplarily Demonstrated for a Pseudostatic Library Addressing γ-Aminobutyric Acid (GABA) Transporter 1 (GAT1). ChemMedChem 2012, 7 (9), 1678–1690. 10.1002/cmdc.201200201. PubMed DOI

Bhat V. T.; Caniard A. M.; Luksch T.; Brenk R.; Campopiano D. J.; Greaney M. F. Nucleophilic Catalysis of Acylhydrazone Equilibration for Protein-Directed Dynamic Covalent Chemistry. Nat. Chem. 2010, 2 (6), 490–497. 10.1038/nchem.658. PubMed DOI PMC

Jabczun M.; Nosek V.; Míšek J. Complementary Strategies for Synthesis of Sulfinamides from Sulfur-Based Feedstock. Org. Biomol. Chem. 2023, 21 (14), 2950–2954. 10.1039/D3OB00050H. PubMed DOI

Liu G.; Cogan D. A.; Ellman J. A. Catalytic Asymmetric Synthesis of Tert-Butanesulfinamide. Application to the Asymmetric Synthesis of Amines. J. Am. Chem. Soc. 1997, 119 (41), 9913–9914. 10.1021/ja972012z. DOI

Ellman J. A.; Owens T. D.; Tang T. P. N-Tert-Butanesulfinyl Imines: Versatile Intermediates for the Asymmetric Synthesis of Amines. Acc. Chem. Res. 2002, 35 (11), 984–995. 10.1021/ar020066u. PubMed DOI

Datta M.; Buglass A. J. Acid-Catalyzed Hydrolysis of Some N,N-Dibenzylalkanesulfinamides in 50% Acetonitrile-Water. Phosphorus, Sulfur Silicon Relat. Elem. 2013, 188 (6), 691–700. 10.1080/10426507.2012.704105. DOI

Annunziata R.; Cinquini M.; Cozzi F. Asymmetric Induction in the Reduction of Optically Active N-Alkylidenesulphinamides by Metal Hydrides. A New, Efficient Enantioselective Route to Chiral Amines. J. Chem. Soc., Perkin Trans. 1 1982, 11 (0), 339–343. 10.1039/p19820000339. DOI

Cogan D. A.; Liu G.; Ellman J. Asymmetric Synthesis of Chiral Amines by Highly Diastereoselective 1,2-Additions of Organometallic Reagents to N-Tert-Butanesulfinyl Imines. Tetrahedron 1999, 55 (29), 8883–8904. 10.1016/S0040-4020(99)00451-2. DOI

Yu H.; Li Z.; Bolm C. Copper-Catalyzed Transsulfinamidation of Sulfinamides as a Key Step in the Preparation of Sulfonamides and Sulfonimidamides. Angew. Chem., Int. Ed. 2018, 57 (47), 15602–15605. 10.1002/anie.201810548. PubMed DOI

Wen D.; Zheng Q.; Wang C.; Tu T. Rare-Earth-Catalyzed Transsulfinamidation of Sulfinamides with Amines. Org. Lett. 2021, 23 (9), 3718–3723. 10.1021/acs.orglett.1c01106. PubMed DOI

Tsuzuki S.; Kano T. Transsulfinamidation of Sulfinamides with Amines. Org. Lett. 2023, 25 (36), 6677–6681. 10.1021/acs.orglett.3c02534. PubMed DOI

Andersen K. K.; Malver O. Substitution at Tricoordinate Sulfur(IV). Rearrangement of Sulfinanilides to Anilino Sulfoxides. J. Org. Chem. 1983, 48 (25), 4803–4807. 10.1021/jo00173a005. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...