Complexity and modification of the bull sperm glycocalyx during epididymal maturation

. 2024 May 31 ; 38 (10) : e23687.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38785390

Grantová podpora
VEGA2/0074/24 Ministerstvo školstva, vedy, výskumu a športu SR | Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR (Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic for the Structural Funds of EU)
SV23-22-21230 Česká Zemědělská Univerzita v Praze (Czech University of Life Sciences Prague)
APVV-19-0111 Agentúra na Podporu Výskumu a Vývoja (APVV)
GA22-31156S Grantová Agentura České Republiky (GAČR)

Mammalian spermatozoa have a surface covered with glycocalyx, consisting of heterogeneous glycoproteins and glycolipids. This complexity arises from diverse monosaccharides, distinct linkages, various isomeric glycans, branching levels, and saccharide sequences. The glycocalyx is synthesized by spermatozoa developing in the testis, and its subsequent alterations during their transit through the epididymis are a critical process for the sperm acquisition of fertilizing ability. In this study, we performed detailed analysis of the glycocalyx on the sperm surface of bull spermatozoa in relation to individual parts of the epididymis using a wide range (24) of lectins with specific carbohydrate binding preferences. Fluorescence analysis of intact sperm isolated from the bull epididymides was complemented by Western blot detection of protein extracts from the sperm plasma membrane fractions. Our experimental results revealed predominant sequential modification of bull sperm glycans with N-acetyllactosamine (LacNAc), followed by subsequent sialylation and fucosylation in a highly specific manner. Additionally, variations in the lectin detection on the sperm surface may indicate the acquisition or release of glycans or glycoproteins. Our study is the first to provide a complex analysis of the bull sperm glycocalyx modification during epididymal maturation.

Zobrazit více v PubMed

Suzuki N, Abe T, Hanzawa K, Natsuka S. Toward robust N‐glycomics of various tissue samples that may contain glycans with unknown or unexpected structures. Sci Rep. 2021;11:6334.

Varki A, Cummings RD, Esko JD, et al., eds. Essentials of Glycobiology. Cold Spring Harbor Laboratory Press; 2009.

Tumova L, Zigo M, Sutovsky P, Sedmikova M, Postlerova P. Ligands and receptors involved in the sperm‐zona pellucida interactions in mammals. Cells. 2021;10:133.

Schröter S, Osterhoff C, McArdle W, Ivell R. The glycocalyx of the sperm surface. Hum Reprod Update. 1999;5:302‐313.

Robaire B, Hinton BT, Orgebin‐Crist M‐C. Chapter 22 – the epididymis. Knobil and Neill's Physiology of Reproduction. Vol 1. Academic Press; 2006:1071‐1148.

Tecle E, Gagneux P. Sugar‐coated sperm: unraveling the functions of the mammalian sperm glycocalyx. Mol Reprod Dev. 2015;82:635‐650.

Kirchhoff C, Hale G. Cell‐to‐cell transfer of glycosylphosphatidylinositol‐anchored membrane proteins during sperm maturation. Mol Hum Reprod. 1996;2:177‐184.

Sullivan R, Frenette G, Girouard J. Epididymosomes are involved in the acquisition of new sperm proteins during epididymal transit. Asian J Andrology. 2007;9:483‐491.

Jankovičová J, Sečová P, Michalková K, Antalíková J. Tetraspanins, more than markers of extracellular vesicles in reproduction. IJMS. 2020;21:7568.

Möckl L. The emerging role of the mammalian glycocalyx in functional membrane organization and immune system regulation. Front Cell Dev Biol. 2020;8:253.

Lau KS, Partridge EA, Grigorian A, et al. Complex N‐glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell. 2007;129:123‐134.

Keppler OT, Stehling P, Herrmann M, et al. Biosynthetic modulation of sialic acid‐dependent virus‐receptor interactions of two primate polyoma viruses. J Biol Chem. 1995;270:1308‐1314.

Laughlin ST, Bertozzi CR. Metabolic labeling of glycans with azido sugars and subsequent glycan‐profiling and visualization via Staudinger ligation. Nat Protoc. 2007;2:2930‐2944.

Baskin JM, Dehnert KW, Laughlin ST, Amacher SL, Bertozzi CR. Visualizing enveloping layer glycans during zebrafish early embryogenesis. Proc Natl Acad Sci USA. 2010;107:10360‐10365.

Sharon N, Lis H. History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology. 2004;14:53R‐62R.

Rüdiger H, Gabius HJ. Plant lectins: occurrence, biochemistry, functions and applications. Glycoconj J. 2001;18:589‐613.

Lehmann F, Tiralongo E, Tiralongo J. Sialic acid‐specific lectins: occurrence, specificity and function. Cell Mol Life Sci. 2006;63:1331‐1354.

Smith DF, Cummings RD. Application of microarrays for deciphering the structure and function of the human glycome. Mol Cell Proteomics. 2013;12:902‐912.

Whelan DR, Bell TDM. Image artifacts in single molecule localization microscopy: why optimization of sample preparation protocols matters. Sci Rep. 2015;5:7924.

Bojar D, Meche L, Meng G, et al. A useful guide to lectin binding: machine‐learning directed annotation of 57 unique lectin specificities. ACS Chem Biol. 2022;17:2993‐3012.

Gervasi MG, Visconti PE. Molecular changes and signaling events occurring in spermatozoa during epididymal maturation. Andrology. 2017;5:204‐218.

Arya M, Vanha‐Perttula T. Lectin‐binding pattern of bull testis and epididymis. J Androl. 1985;6:230‐242.

Frenette G, Lessard C, Sullivan R. Polyol pathway along the bovine epididymis. Mol Reprod Dev. 2004;69:448‐456.

Frenette G, Sullivan R. Prostasome‐like particles are involved in the transfer of P25b from the bovine epididymal fluid to the sperm surface. Mol Reprod Dev. 2001;59:115‐121.

Somanath PR, Gandhi KK. Isolation and partial characterisation of the plasma and outer acrosomal membranes of goat spermatozoa. Small Rumin Res. 2004;53:67‐74.

Cummings RD. Use of lectins in analysis of glycoconjugates. Methods Enzymol. 1994;230:66‐86.

Dacheux JL, Belghazi M, Lanson Y, Dacheux F. Human epididymal secretome and proteome. Mol Cell Endocrinol. 2006;250:36‐42.

Skerget S, Rosenow MA, Petritis K, Karr TL. Sperm proteome maturation in the mouse epididymis. PLoS One. 2015;10:e0140650.

Skerrett‐Byrne DA, Anderson AL, Bromfield EG, et al. Global profiling of the proteomic changes associated with the post‐testicular maturation of mouse spermatozoa. Cell Rep. 2022;41:111655.

Belleannee C, Belghazi M, Labas V, et al. Purification and identification of sperm surface proteins and changes during epididymal maturation. Proteomics. 2011;11:1952‐1964.

Belleannée C, Labas V, Teixeira‐Gomes A‐P, Gatti JL, Dacheux J‐L, Dacheux F. Identification of luminal and secreted proteins in bull epididymis. J Proteome. 2011;74:59‐78.

Schlegel RA, Hammerstedt R, Cofer GP, Kozarsky K, Freidus D, Williamson P. Changes in the organization of the lipid bilayer of the plasma membrane during spermatogenesis and epididymal maturation. Biol Reprod. 1986;34:379‐391.

Kumar GP, Laloraya M, Agrawal P, Laloraya MM. The involvement of surface sugars of mammalian spermatozoa in epididymal maturation and in vitro sperm‐zona recognition. Andrologia. 1990;22:184‐194.

Olson GE, Danzo BJ. Surface changes in rat spermatozoa during epididymal transit. Biol Reprod. 1981;24:431‐443.

Magargee SF, Kunze E, Hammerstedt RH. Changes in lectin‐binding features of ram sperm surfaces associated with epididymal maturation and ejaculation. Biol Reprod. 1988;38:667‐685.

Bains HK, Bawa SR, Pabst MA, Sehgal S. Plasma membrane alterations of maturing goat (Capra indicus) spermatozoa: lectin‐binding and freeze‐fracture study. Cell Tissue Res. 1993;271:159‐168.

Retamal C, Urzúa J, Lorca C, López ML, Alves EW. Changes in the plasma membrane proteins of stallion spermatozoa during maturation in the epididymis. J Submicrosc Cytol Pathol. 2000;32:229‐239.

Srivastava A, Olson GE. Glycoprotein changes in the rat sperm plasma membrane during maturation in the epididymis. Mol Reprod Dev. 1991;29:357‐364.

Kitiyanant Y, Chaisalee B, Pavasuthipaisit K. Evaluation of the acrosome reaction and viability in buffalo spermatozoa using two staining methods: the effects of heparin and calcium ionophore A23187. Int J Androl. 2002;25:215‐222.

Jankovicova J, Antalikova J, Simon M, Michalkova K, Horovska L. Comparative fluorescence analysis of the bovine sperm using IVA‐520 (anti‐CD46 antibody) and lectins: probable localisation of CD46 on bovine sperm membrane. Gen Physiol Biophys. 2011;30:70‐76.

Lamb JE, Shibata S, Goldstein IJ. Purification and characterization of Griffonia simplicifolia leaf lectins. Plant Physiol. 1983;71:879‐887.

Lyer PN, Wilkinson KD, Goldstein LJ. An ‐N‐acetyl‐D‐glycosamine binding lectin from Bandeiraea simplicifolia seeds. Arch Biochem Biophys. 1976;177:330‐333.

Fàbrega A, Puigmulé M, Dacheux J‐L, Bonet S, Pinart E. Glycocalyx characterisation and glycoprotein expression of Sus domesticus epididymal sperm surface samples. Reprod Fertil Dev. 2012;24:619‐630.

Varki A. Biological roles of glycans. Glycobiology. 2017;27:3‐49.

Sato C, Kitajima K. Polysialylation and disease. Mol Asp Med. 2021;79:100892.

Fliniaux I, Marchand G, Molinaro C, et al. Diversity of sialic acids and sialoglycoproteins in gametes and at fertilization. Front Cell Dev Biol. 2022;10:982931.

Tulsiani DR, Skudlarek MD, Holland MK, Orgebin‐Crist MC. Glycosylation of rat sperm plasma membrane during epididymal maturation. Biol Reprod. 1993;48:417‐428.

Ma X, Pan Q, Feng Y, et al. Sialylation facilitates the maturation of mammalian sperm and affects its survival in female uterus. Biol Reprod. 2016;94:123.

Entlicher G, Koštíř JV, Kocourek J. Studies on phytohemagglutinins III. Isolation and characterization of hemagglutinins from the pea (Pisum sativum L.). Biochim Biophys Acta. 1970;221:272‐281.

Trowbridge IS. Isolation and chemical characterization of a mitogenic lectin from Pisum sativum. J Biol Chem. 1974;249:6004‐6012.

Wang L, Cummings RD, Smith DF, et al. Cross‐platform comparison of glycan microarray formats. Glycobiology. 2014;24:507‐517.

Tulsiani DRP. Glycan‐modifying enzymes in luminal fluid of the mammalian epididymis: an overview of their potential role in sperm maturation. Mol Cell Endocrinol. 2006;250:58‐65.

Schwarz A, Wennemuth G, Post H, Brandenburger T, Aumüller G, Wilhelm B. Vesicular transfer of membrane components to bovine epididymal spermatozoa. Cell Tissue Res. 2013;353:549‐561.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...