Upregulation of mRNA Expression of ADGRD1/GPR133 and ADGRG7/GPR128 in SARS-CoV-2-Infected Lung Adenocarcinoma Calu-3 Cells

. 2024 May 07 ; 13 (10) : . [epub] 20240507

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38786015

Grantová podpora
INTER-COST, grant no. LTC20065 The Ministry of Education, Youth and Sports of the Czech Republic
Programme EXCELES, Project No. LX22NPO5103 National Institute Virology and Bacteriology

Adhesion G protein-coupled receptors (aGPCRs) play an important role in neurodevelopment, immune defence and cancer; however, their role throughout viral infections is mostly unexplored. We have been searching for specific aGPCRs involved in SARS-CoV-2 infection of mammalian cells. In the present study, we infected human epithelial cell lines derived from lung adenocarcinoma (Calu-3) and colorectal carcinoma (Caco-2) with SARS-CoV-2 in order to analyse changes in the level of mRNA encoding individual aGPCRs at 6 and 12 h post infection. Based on significantly altered mRNA levels, we identified four aGPCR candidates-ADGRB3/BAI3, ADGRD1/GPR133, ADGRG7/GPR128 and ADGRV1/GPR98. Of these receptors, ADGRD1/GPR133 and ADGRG7/GPR128 showed the largest increase in mRNA levels in SARS-CoV-2-infected Calu-3 cells, whereas no increase was observed with heat-inactivated SARS-CoV-2 and virus-cleared conditioned media. Next, using specific siRNA, we downregulated the aGPCR candidates and analysed SARS-CoV-2 entry, replication and infectivity in both cell lines. We observed a significant decrease in the amount of SARS-CoV-2 newly released into the culture media by cells with downregulated ADGRD1/GPR133 and ADGRG7/GPR128. In addition, using a plaque assay, we observed a reduction in SARS-CoV-2 infectivity in Calu-3 cells. In summary, our data suggest that selected aGPCRs might play a role during SARS-CoV-2 infection of mammalian cells.

Zobrazit více v PubMed

Bassilana F., Nash M., Ludwig M.G. Adhesion G protein-coupled receptors: Opportunities for drug discovery. Nat. Rev. Drug Discov. 2019;18:869–884. doi: 10.1038/s41573-019-0039-y. PubMed DOI

Weston M.D., Luijendijk M.W., Humphrey K.D., Moller C., Kimberling W.J. Mutations in the VLGR1 gene implicate G-protein signaling in the pathogenesis of Usher syndrome type II. Am. J. Hum. Genet. 2004;74:357–366. doi: 10.1086/381685. PubMed DOI PMC

Piao X., Hill R.S., Bodell A., Chang B.S., Basel-Vanagaite L., Straussberg R., Dobyns W.B., Qasrawi B., Winter R.M., Innes A.M., et al. G protein-coupled receptor-dependent development of human frontal cortex. Science. 2004;303:2033–2036. doi: 10.1126/science.1092780. PubMed DOI

Boyden S.E., Desai A., Cruse G., Young M.L., Bolan H.C., Scott L.M., Eisch A.R., Long R.D., Lee C.C., Satorius C.L., et al. Vibratory Urticaria Associated with a Missense Variant in ADGRE2. N. Engl. J. Med. 2016;374:656–663. doi: 10.1056/NEJMoa1500611. PubMed DOI PMC

Lala T., Hall R.A. Adhesion G protein-coupled receptors: Structure, signaling, physiology, and pathophysiology. Physiol. Rev. 2022;102:1587–1624. doi: 10.1152/physrev.00027.2021. PubMed DOI PMC

Liebscher I., Cevheroglu O., Hsiao C.C., Maia A.F., Schihada H., Scholz N., Soave M., Spiess K., Trajkovic K., Kosloff M., et al. A guide to adhesion GPCR research. FEBS J. 2022;289:7610–7630. doi: 10.1111/febs.16258. PubMed DOI

Lin H.H., Hsiao C.C., Pabst C., Hebert J., Schoneberg T., Hamann J. Adhesion GPCRs in Regulating Immune Responses and Inflammation. Adv. Immunol. 2017;136:163–201. doi: 10.1016/bs.ai.2017.05.005. PubMed DOI

Sreepada A., Tiwari M., Pal K. Adhesion G protein-coupled receptor gluing action guides tissue development and disease. J. Mol. Med. 2022;100:1355–1372. doi: 10.1007/s00109-022-02240-0. PubMed DOI

Tseng W.Y., Stacey M., Lin H.H. Role of Adhesion G Protein-Coupled Receptors in Immune Dysfunction and Disorder. Int. J. Mol. Sci. 2023;24:5499. doi: 10.3390/ijms24065499. PubMed DOI PMC

Brelot A., Chakrabarti L.A. CCR5 Revisited: How Mechanisms of HIV Entry Govern AIDS Pathogenesis. J. Mol. Biol. 2018;430:2557–2589. doi: 10.1016/j.jmb.2018.06.027. PubMed DOI

Sodhi A., Montaner S., Gutkind J.S. Viral hijacking of G-protein-coupled-receptor signalling networks. Nat. Rev. Mol. Cell Biol. 2004;5:998–1012. doi: 10.1038/nrm1529. PubMed DOI

Maginnis M.S. Virus-Receptor Interactions: The Key to Cellular Invasion. J. Mol. Biol. 2018;430:2590–2611. doi: 10.1016/j.jmb.2018.06.024. PubMed DOI PMC

Cheng H., Lear-Rooney C.M., Johansen L., Varhegyi E., Chen Z.W., Olinger G.G., Rong L. Inhibition of Ebola and Marburg Virus Entry by G Protein-Coupled Receptor Antagonists. J. Virol. 2015;89:9932–9938. doi: 10.1128/JVI.01337-15. PubMed DOI PMC

Margulies B.J., Browne H., Gibson W. Identification of the human cytomegalovirus G protein-coupled receptor homologue encoded by UL33 in infected cells and enveloped virus particles. Virology. 1996;225:111–125. doi: 10.1006/viro.1996.0579. PubMed DOI PMC

Arvanitakis L., Geras-Raaka E., Varma A., Gershengorn M.C., Cesarman E. Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation. Nature. 1997;385:347–350. doi: 10.1038/385347a0. PubMed DOI

Isegawa Y., Ping Z., Nakano K., Sugimoto N., Yamanishi K. Human herpesvirus 6 open reading frame U12 encodes a functional beta-chemokine receptor. J. Virol. 1998;72:6104–6112. doi: 10.1128/JVI.72.7.6104-6112.1998. PubMed DOI PMC

Nakano K., Tadagaki K., Isegawa Y., Aye M.M., Zou P., Yamanishi K. Human herpesvirus 7 open reading frame U12 encodes a functional beta-chemokine receptor. J. Virol. 2003;77:8108–8115. doi: 10.1128/jvi.77.14.8108-8115.2003. PubMed DOI PMC

Paulsen S.J., Rosenkilde M.M., Eugen-Olsen J., Kledal T.N. Epstein-Barr virus-encoded BILF1 is a constitutively active G protein-coupled receptor. J. Virol. 2005;79:536–546. doi: 10.1128/JVI.79.1.536-546.2005. PubMed DOI PMC

Billstrom M.A., Johnson G.L., Avdi N.J., Worthen G.S. Intracellular signaling by the chemokine receptor US28 during human cytomegalovirus infection. J. Virol. 1998;72:5535–5544. doi: 10.1128/JVI.72.7.5535-5544.1998. PubMed DOI PMC

Casarosa P., Bakker R.A., Verzijl D., Navis M., Timmerman H., Leurs R., Smit M.J. Constitutive signaling of the human cytomegalovirus-encoded chemokine receptor US28. J. Biol. Chem. 2001;276:1133–1137. doi: 10.1074/jbc.M008965200. PubMed DOI

Fares S., Spiess K., Olesen E.T.B., Zuo J., Jackson S., Kledal T.N., Wills M.R., Rosenkilde M.M. Distinct Roles of Extracellular Domains in the Epstein-Barr Virus-Encoded BILF1 Receptor for Signaling and Major Histocompatibility Complex Class I Downregulation. mBio. 2019;10:e01707–e01718. doi: 10.1128/mBio.01707-18. PubMed DOI PMC

Guo H.G., Sadowska M., Reid W., Tschachler E., Hayward G., Reitz M. Kaposi’s sarcoma-like tumors in a human herpesvirus 8 ORF74 transgenic mouse. J. Virol. 2003;77:2631–2639. doi: 10.1128/jvi.77.4.2631-2639.2003. PubMed DOI PMC

Maussang D., Verzijl D., van Walsum M., Leurs R., Holl J., Pleskoff O., Michel D., van Dongen G.A., Smit M.J. Human cytomegalovirus-encoded chemokine receptor US28 promotes tumorigenesis. Proc. Natl. Acad. Sci. USA. 2006;103:13068–13073. doi: 10.1073/pnas.0604433103. PubMed DOI PMC

Streblow D.N., Soderberg-Naucler C., Vieira J., Smith P., Wakabayashi E., Ruchti F., Mattison K., Altschuler Y., Nelson J.A. The human cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle cell migration. Cell. 1999;99:511–520. doi: 10.1016/s0092-8674(00)81539-1. PubMed DOI

Zuo J., Currin A., Griffin B.D., Shannon-Lowe C., Thomas W.A., Ressing M.E., Wiertz E.J., Rowe M. The Epstein-Barr virus G-protein-coupled receptor contributes to immune evasion by targeting MHC class I molecules for degradation. PLoS Pathog. 2009;5:e1000255. doi: 10.1371/journal.ppat.1000255. PubMed DOI PMC

Woznik M., Rodner C., Lemon K., Rima B., Mankertz A., Finsterbusch T. Mumps virus small hydrophobic protein targets ataxin-1 ubiquitin-like interacting protein (ubiquilin 4) J. Gen. Virol. 2010;91:2773–2781. doi: 10.1099/vir.0.024638-0. PubMed DOI

Peng Y.M., van de Garde M.D., Cheng K.F., Baars P.A., Remmerswaal E.B., van Lier R.A., Mackay C.R., Lin H.H., Hamann J. Specific expression of GPR56 by human cytotoxic lymphocytes. J. Leukoc. Biol. 2011;90:735–740. doi: 10.1189/jlb.0211092. PubMed DOI

Wanjalla C.N., McDonnell W.J., Barnett L., Simmons J.D., Furch B.D., Lima M.C., Woodward B.O., Fan R., Fei Y., Baker P.G., et al. Adipose Tissue in Persons With HIV Is Enriched for CD4(+) T Effector Memory and T Effector Memory RA(+) Cells, Which Show Higher CD69 Expression and CD57, CX3CR1, GPR56 Co-expression With Increasing Glucose Intolerance. Front. Immunol. 2019;10:408. doi: 10.3389/fimmu.2019.00408. PubMed DOI PMC

Bayin N.S., Frenster J.D., Kane J.R., Rubenstein J., Modrek A.S., Baitalmal R., Dolgalev I., Rudzenski K., Scarabottolo L., Crespi D., et al. GPR133 (ADGRD1), an adhesion G-protein-coupled receptor, is necessary for glioblastoma growth. Oncogenesis. 2016;5:e263. doi: 10.1038/oncsis.2016.63. PubMed DOI PMC

Frenster J.D., Erdjument-Bromage H., Stephan G., Ravn-Boess N., Wang S., Liu W., Bready D., Wilcox J., Kieslich B., Jankovic M., et al. PTK7 is a positive allosteric modulator of GPR133 signaling in glioblastoma. Cell Rep. 2023;42:112679. doi: 10.1016/j.celrep.2023.112679. PubMed DOI PMC

Frenster J.D., Kader M., Kamen S., Sun J., Chiriboga L., Serrano J., Bready D., Golub D., Ravn-Boess N., Stephan G., et al. Expression profiling of the adhesion G protein-coupled receptor GPR133 (ADGRD1) in glioma subtypes. Neurooncol Adv. 2020;2:vdaa053. doi: 10.1093/noajnl/vdaa053. PubMed DOI PMC

Bohnekamp J., Schoneberg T. Cell adhesion receptor GPR133 couples to Gs protein. J. Biol. Chem. 2011;286:41912–41916. doi: 10.1074/jbc.C111.265934. PubMed DOI PMC

Gupte J., Swaminath G., Danao J., Tian H., Li Y., Wu X. Signaling property study of adhesion G-protein-coupled receptors. FEBS Lett. 2012;586:1214–1219. doi: 10.1016/j.febslet.2012.03.014. PubMed DOI

Liebscher I., Schon J., Petersen S.C., Fischer L., Auerbach N., Demberg L.M., Mogha A., Coster M., Simon K.U., Rothemund S., et al. A tethered agonist within the ectodomain activates the adhesion G protein-coupled receptors GPR126 and GPR133. Cell Rep. 2014;9:2018–2026. doi: 10.1016/j.celrep.2014.11.036. PubMed DOI PMC

Stephan G., Frenster J.D., Liebscher I., Placantonakis D.G. Activation of the adhesion G protein-coupled receptor GPR133 by antibodies targeting its N-terminus. J. Biol. Chem. 2022;298:101949. doi: 10.1016/j.jbc.2022.101949. PubMed DOI PMC

Lei P., Wang H., Yu L., Xu C., Sun H., Lyu Y., Li L., Zhang D.L. A correlation study of adhesion G protein-coupled receptors as potential therapeutic targets in Uterine Corpus Endometrial cancer. Int. Immunopharmacol. 2022;108:108743. doi: 10.1016/j.intimp.2022.108743. PubMed DOI

Meng D., Liu T., Ma F., Wang M. Screening the key genes of prognostic value in the microenvironment for head and neck squamous cell carcinoma. Medicine. 2021;100:e24184. doi: 10.1097/MD.0000000000024184. PubMed DOI PMC

Singh Y., Subbarao N., Jaimini A., Hathaway Q.A., Kunovac A., Erickson B., Swarup V., Singh H.N. Genome-wide expression reveals potential biomarkers in breast cancer bone metastasis. J. Integr. Bioinform. 2022;19:20210041. doi: 10.1515/jib-2021-0041. PubMed DOI PMC

Cui J., Li F., Shi Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019;17:181–192. doi: 10.1038/s41579-018-0118-9. PubMed DOI PMC

Hu B., Guo H., Zhou P., Shi Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021;19:141–154. doi: 10.1038/s41579-020-00459-7. PubMed DOI PMC

Millet J.K., Whittaker G.R. Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells. Virology. 2018;517:3–8. doi: 10.1016/j.virol.2017.12.015. PubMed DOI PMC

Tang T., Bidon M., Jaimes J.A., Whittaker G.R., Daniel S. Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antivir. Res. 2020;178:104792. doi: 10.1016/j.antiviral.2020.104792. PubMed DOI PMC

Tortorici M.A., Veesler D. Structural insights into coronavirus entry. Adv. Virus Res. 2019;105:93–116. doi: 10.1016/bs.aivir.2019.08.002. PubMed DOI PMC

Wang H., Yang P., Liu K., Guo F., Zhang Y., Zhang G., Jiang C. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Res. 2008;18:290–301. doi: 10.1038/cr.2008.15. PubMed DOI PMC

Clausen T.M., Sandoval D.R., Spliid C.B., Pihl J., Perrett H.R., Painter C.D., Narayanan A., Majowicz S.A., Kwong E.M., McVicar R.N., et al. SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. Cell. 2020;183:1043–1057. doi: 10.1016/j.cell.2020.09.033. PubMed DOI PMC

Walls A.C., Park Y.J., Tortorici M.A., Wall A., McGuire A.T., Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020;181:281–292.e6. doi: 10.1016/j.cell.2020.02.058. PubMed DOI PMC

Hoffmann M., Kleine-Weber H., Schroeder S., Kruger N., Herrler T., Erichsen S., Schiergens T.S., Herrler G., Wu N.H., Nitsche A., et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181:271–280. doi: 10.1016/j.cell.2020.02.052. PubMed DOI PMC

Belouzard S., Millet J.K., Licitra B.N., Whittaker G.R. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses. 2012;4:1011–1033. doi: 10.3390/v4061011. PubMed DOI PMC

Duan L., Zheng Q., Zhang H., Niu Y., Lou Y., Wang H. The SARS-CoV-2 Spike Glycoprotein Biosynthesis, Structure, Function, and Antigenicity: Implications for the Design of Spike-Based Vaccine Immunogens. Front. Immunol. 2020;11:576622. doi: 10.3389/fimmu.2020.576622. PubMed DOI PMC

Abdel Hameid R., Cormet-Boyaka E., Kuebler W.M., Uddin M., Berdiev B.K. SARS-CoV-2 may hijack GPCR signaling pathways to dysregulate lung ion and fluid transport. Am. J. Physiol. Lung Cell Mol. Physiol. 2021;320:L430–L435. doi: 10.1152/ajplung.00499.2020. PubMed DOI PMC

Singh Y., Gupta G., Satija S., Pabreja K., Chellappan D.K., Dua K. COVID-19 transmission through host cell directed network of GPCR. Drug Dev. Res. 2020;81:647–649. doi: 10.1002/ddr.21674. PubMed DOI PMC

Vankova E., Kasparova P., Khun J., Machkova A., Julak J., Slama M., Hodek J., Ulrychova L., Weber J., Obrova K., et al. Polylactic acid as a suitable material for 3D printing of protective masks in times of COVID-19 pandemic. PeerJ. 2020;8:e10259. doi: 10.7717/peerj.10259. PubMed DOI PMC

Reed L.J., Muench H. A simple method of estimating fifty percent endpoints. Am. J. Hyg. 1938;27:493–497.

Hejdankova Z., Vanek V., Sedlak F., Prochazka J., Diederichs A., Kereïche S., Novotna B., Budesinsky M., Birkus G., Grantz Saskova K., et al. Lipid Nanoparticles for Broad-Spectrum Nucleic Acid Delivery. Adv. Funct. Mater. 2021;31:2101391. doi: 10.1002/adfm.202101391. DOI

Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:RESEARCH0034. doi: 10.1186/gb-2002-3-7-research0034. PubMed DOI PMC

Radonic A., Thulke S., Bae H.G., Muller M.A., Siegert W., Nitsche A. Reference gene selection for quantitative real-time PCR analysis in virus infected cells: SARS corona virus, Yellow fever virus, Human Herpesvirus-6, Camelpox virus and Cytomegalovirus infections. Virol. J. 2005;2:7. doi: 10.1186/1743-422X-2-7. PubMed DOI PMC

Bouhaddou M., Reuschl A.K., Polacco B.J., Thorne L.G., Ummadi M.R., Ye C., Rosales R., Pelin A., Batra J., Jang G.M., et al. SARS-CoV-2 variants evolve convergent strategies to remodel the host response. Cell. 2023;186:4597–4614. doi: 10.1016/j.cell.2023.08.026. PubMed DOI PMC

Wyler E., Mosbauer K., Franke V., Diag A., Gottula L.T., Arsie R., Klironomos F., Koppstein D., Honzke K., Ayoub S., et al. Transcriptomic profiling of SARS-CoV-2 infected human cell lines identifies HSP90 as target for COVID-19 therapy. iScience. 2021;24:102151. doi: 10.1016/j.isci.2021.102151. PubMed DOI PMC

Mali S.S., Silva R., Gong Z., Cronce M., Vo U., Vuong C., Moayedi Y., Cox J.S., Bautista D.M. SARS-CoV-2 papain-like protease activates nociceptors to drive sneeze and pain. bioRxiv. 2024 doi: 10.1101/2024.01.10.575114. DOI

Ni Y.Y., Chen Y., Lu S.Y., Sun B.Y., Wang F., Wu X.L., Dang S.Y., Zhang G.H., Zhang H.X., Kuang Y., et al. Deletion of Gpr128 results in weight loss and increased intestinal contraction frequency. World J. Gastroenterol. 2014;20:498–508. doi: 10.3748/wjg.v20.i2.498. PubMed DOI PMC

Chen T.H., Hsu M.T., Lee M.Y., Chou C.K. Gastrointestinal Involvement in SARS-CoV-2 Infection. Viruses. 2022;14:1188. doi: 10.3390/v14061188. PubMed DOI PMC

Grieb P., Swiatkiewicz M., Prus K., Rejdak K. Hypoxia may be a determinative factor in COVID-19 progression. Curr. Res. Pharmacol. Drug Discov. 2021;2:100030. doi: 10.1016/j.crphar.2021.100030. PubMed DOI PMC

Kashani K.B. Hypoxia in COVID-19: Sign of Severity or Cause for Poor Outcomes. Mayo Clin. Proc. 2020;95:1094–1096. doi: 10.1016/j.mayocp.2020.04.021. PubMed DOI PMC

Frenster J.D., Inocencio J.F., Xu Z., Dhaliwal J., Alghamdi A., Zagzag D., Bayin N.S., Placantonakis D.G. GPR133 Promotes Glioblastoma Growth in Hypoxia. Neurosurgery. 2017;64:177–181. doi: 10.1093/neuros/nyx227. PubMed DOI PMC

Jana S., Heaven M.R., Stauft C.B., Wang T.T., Williams M.C., D’Agnillo F., Alayash A.I. HIF-1alpha-Dependent Metabolic Reprogramming, Oxidative Stress, and Bioenergetic Dysfunction in SARS-CoV-2-Infected Hamsters. Int. J. Mol. Sci. 2022;24:558. doi: 10.3390/ijms24010558. PubMed DOI PMC

Cong Y., Ren X. Coronavirus entry and release in polarized epithelial cells: A review. Rev. Med. Virol. 2014;24:308–315. doi: 10.1002/rmv.1792. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...