• This record comes from PubMed

Mass Spectrometry-Based Proteomics in Clinical Diagnosis of Amyloidosis and Multiple Myeloma: A Review (2012-2024)

. 2025 Mar ; 60 (3) : e5116.

Language English Country Great Britain, England Media print

Document type Journal Article, Review

Grant support
CZ.10.03.01/00/22_003/0000003 LERCO

Proteomics is nowadays increasingly becoming part of the routine clinical practice of diagnostic laboratories, especially due to the advent of advanced mass spectrometry techniques. This review focuses on the application of proteomic analysis in the identification of pathological conditions in a hospital setting, with a particular focus on the analysis of protein biomarkers. In particular, the main purpose of the review is to highlight the challenges associated with the identification of specific disease-causing proteins, given their complex nature and the variety of posttranslational modifications (PTMs) they can undergo. PTMs, such as phosphorylation and glycosylation, play critical roles in protein function but can also lead to diseases if dysregulated. Proteomics plays an important role especially in various medical fields ranging from cardiology, internal medicine to hemato-oncology emphasizing the interdisciplinary nature of this field. Traditional methods such as electrophoretic or immunochemical methods have been mainstay in protein detection; however, these techniques are limited in terms of specificity and sensitivity. Examples include the diagnosis of multiple myeloma and the detection of its specific protein or amyloidosis, which relies heavily on these conventional methods, which sometimes lead to false positives or inadequate disease monitoring. Mass spectrometry in this respect emerges as a superior alternative, providing high sensitivity and specificity in the detection and quantification of specific protein sequences. This technique is particularly beneficial for monitoring minimal residual disease (MRD) in the diagnosis of multiple myeloma where traditional methods fall short. Furthermore mass spectrometry can provide precise typing of amyloid proteins, which is crucial for the appropriate treatment of amyloidosis. This review summarizes the opportunities for proteomic determination using mass spectrometry between 2012 and 2024, highlighting the transformative potential of mass spectrometry in clinical proteomics and encouraging its wider use in diagnostic laboratories.

See more in PubMed

Emwas A.‐H., Alghrably M., Dhahri M., et al., “Living With the Enemy: From Protein‐Misfolding Pathologies We Know, to Those We Want to Know,” Ageing Research Reviews 70 (2021): 101391, 10.1016/j.arr.2021.101391. PubMed DOI

Khoury G. A., Baliban R. C., and Floudas C. A., “Proteome‐Wide Post‐translational Modification Statistics: Frequency Analysis and Curation of the Swiss‐Prot Database,” Scientific Reports 1 (2011): 90, 10.1038/srep00090. PubMed DOI PMC

Ramazi S. and Zahiri J., “Post‐translational Modifications in Proteins: Resources, Tools and Prediction Methods,” Database 2021 (2021): baab012, 10.1093/database/baab012. PubMed DOI PMC

Guan L., Su W., Zhong J., and Qiu L., “M‐Protein Detection by Mass Spectrometry for Minimal Residual Disease in Multiple Myeloma,” Clinica Chimica Acta 552 (2024): 117623, 10.1016/j.cca.2023.117623. PubMed DOI

Gilbertson J. A., Theis J. D., Vrana J. A., et al., “A Comparison of Immunohistochemistry and Mass Spectrometry for Determining the Amyloid Fibril Protein From Formalin‐Fixed Biopsy Tissue,” Journal of Clinical Pathology 68 (2015): 314–317, 10.1136/jclinpath-2014-202722. PubMed DOI

Dasari S., Theis J. D., Vrana J. A., et al., “Amyloid Typing by Mass Spectrometry in Clinical Practice: a Comprehensive Review of 16,175 Samples,” Mayo Clinic Proceedings 95 (2020): 1852–1864, 10.1016/j.mayocp.2020.06.029. PubMed DOI

Kumar S., Dispenzieri A., Katzmann J. A., et al., “Serum Immunoglobulin Free Light‐Chain Measurement in Primary Amyloidosis: Prognostic Value and Correlations With Clinical Features,” Blood 116 (2010): 5126–5129, 10.1182/blood-2010-06-290668. PubMed DOI PMC

Gertz M. A., “Immunoglobulin Light Chain Amyloidosis: 2018 Update on Diagnosis, Prognosis, and Treatment,” American Journal of Hematology 93 (2018): 1169–1180, 10.1002/ajh.25149. PubMed DOI

Macklin A., Khan S., and Kislinger T., “Recent Advances in Mass Spectrometry Based Clinical Proteomics: Applications to Cancer Research,” Clinical Proteomics 17 (2020): 17, 10.1186/s12014-020-09283-w. PubMed DOI PMC

Noor Z., Ahn S. B., Baker M. S., Ranganathan S., and Mohamedali A., “Mass Spectrometry–Based Protein Identification in Proteomics—A Review,” Briefings in Bioinformatics 22 (2021): 1620–1638, 10.1093/bib/bbz163. PubMed DOI

Bertamini L., D'Agostino M., and Gay F., “MRD Assessment in Multiple Myeloma: Progress and Challenges,” Current Hematologic Malignancy Reports 16 (2021): 162–171, 10.1007/s11899-021-00633-5. PubMed DOI

Rozanova S., Barkovits K., Nikolov M., Schmidt C., Urlaub H., and Marcus K., “Quantitative Mass Spectrometry‐Based Proteomics: An Overview,” in Quantitative Methods in Proteomics, vol. 2228 (New York, NY: Springer US, 2021): 85–116. PubMed

Wenk D., Zuo C., Kislinger T., and Sepiashvili L., “Recent Developments in Mass‐Spectrometry‐Based Targeted Proteomics of Clinical Cancer Biomarkers,” Clinical Proteomics 21 (2024): 6, 10.1186/s12014-024-09452-1. PubMed DOI PMC

Smith B. J., Martins‐de‐Souza D., and Fioramonte M., “A Guide to Mass Spectrometry‐Based Quantitative Proteomics,” in Pre‐Clinical Models, vol. 1916 (New York, New York, NY: Springer, 2019): 3–39. PubMed

Sinha A. and Mann M., “A Beginner's Guide to Mass Spectrometry–Based Proteomics,” Biochemistry 42 (2020): 64–69, 10.1042/BIO20200057. DOI

Griffiths W. J. and Wang Y., “Mass Spectrometry: From Proteomics to Metabolomics and Lipidomics,” Chemical Society Reviews 38 (2009): 1882–1896, 10.1039/b618553n. PubMed DOI

Cox J. and Mann M., “Is Proteomics the New Genomics?,” Cell 130 (2007): 395–398, 10.1016/j.cell.2007.07.032. PubMed DOI

Aslam B., Basit M., Nisar M. A., Khurshid M., and Rasool M. H., “Proteomics: Technologies and Their Applications,” Journal of Chromatographic Science 55 (2017): 182–196, 10.1093/chromsci/bmw167. PubMed DOI

Ong S.‐E. and Mann M., “Mass Spectrometry–Based Proteomics Turns Quantitative,” Nature Chemical Biology 1 (2005): 252–262, 10.1038/nchembio736. PubMed DOI

Bantscheff M., Lemeer S., Savitski M. M., and Kuster B., “Quantitative Mass Spectrometry in Proteomics: Critical Review Update From 2007 to the Present,” Analytical and Bioanalytical Chemistry 404 (2012): 939–965, 10.1007/s00216-012-6203-4. PubMed DOI

Barnidge D. R., Dasari S., Botz C. M., et al., “Using Mass Spectrometry to Monitor Monoclonal Immunoglobulins in Patients With a Monoclonal Gammopathy,” Journal of Proteome Research 13 (2014): 1419–1427, 10.1021/pr400985k. PubMed DOI

Thoren K., Menad S., Nouadje G., and Macé S., “Isatuximab‐Specific Immunofixation Electrophoresis Assay to Remove Interference in Serum M‐Protein Measurement in Patients With Multiple Myeloma,” Journal of Applied Laboratory Medicine 9 (2024): 661–671, 10.1093/jalm/jfae028. PubMed DOI

Dunphy K., Bazou D., Henry M., et al., “Proteomic and Metabolomic Analysis of Bone Marrow and Plasma From Patients With Extramedullary Multiple Myeloma Identifies Distinct Protein and Metabolite Signatures,” Cancers 15 (2023): 3764, 10.3390/cancers15153764. PubMed DOI PMC

Chanukuppa V., Taware R., Taunk K., et al., “Proteomic Alterations in Multiple Myeloma: A Comprehensive Study Using Bone Marrow Interstitial Fluid and Serum Samples,” Frontiers in Oncology 10 (2021): 566804, 10.3389/fonc.2020.566804. PubMed DOI PMC

O'Sullivan E. M., et al., “Proteomic Identification of Saliva Proteins as Noninvasive Diagnostic Biomarkers,” in Difference Gel Electrophoresis, vol. 2596 (New York, NY: Springer US, 2023): 147–167. PubMed

Wisniowski B. and Wechalekar A., “Confirming the Diagnosis of Amyloidosis,” Acta Haematologica 143 (2020): 312–321, 10.1159/000508022. PubMed DOI

De Meyer S., Schaeverbeke J. M., Verberk I. M. W., et al., “Comparison of ELISA‐ and SIMOA‐Based Quantification of Plasma Aβ Ratios for Early Detection of Cerebral Amyloidosis,” Alzheimer's Research & Therapy 12 (2020): 162, 10.1186/s13195-020-00728-w. PubMed DOI PMC

Muchtar E., Dispenzieri A., Gertz M. A., et al., “Treatment of AL Amyloidosis: Mayo Stratification of Myeloma and Risk‐Adapted Therapy (mSMART) Consensus Statement 2020 Update,” Mayo Clinic Proceedings 96 (2021): 1546–1577, 10.1016/j.mayocp.2021.03.012. PubMed DOI

Vrana J. A., Theis J. D., Dasari S., et al., “Clinical Diagnosis and Typing of Systemic Amyloidosis in Subcutaneous fat Aspirates by Mass Spectrometry‐Based Proteomics,” Haematologica 99 (2014): 1239–1247, 10.3324/haematol.2013.102764. PubMed DOI PMC

Vrana J. A., Gamez J. D., Madden B. J., Theis J. D., H. R. Bergen, III , and Dogan A., “Classification of Amyloidosis by Laser Microdissection and Mass Spectrometry–Based Proteomic Analysis in Clinical Biopsy Specimens,” Blood 114 (2009): 4957–4959, 10.1182/blood-2009-07-230722. PubMed DOI

Abildgaard N., Rojek A. M., Møller H. E. H., et al., “Immunoelectron Microscopy and Mass Spectrometry for Classification of Amyloid Deposits,” Amyloid 27 (2020): 59–66, 10.1080/13506129.2019.1688289. PubMed DOI

Phipps W. S., Smith K. D., Yang H. Y., et al., “Tandem Mass Spectrometry–Based Amyloid Typing Using Manual Microdissection and Open‐Source Data Processing,” American Journal of Clinical Pathology 157 (2022): 748–757, 10.1093/ajcp/aqab185. PubMed DOI PMC

Theis J. D., Dasari S., Vrana J. A., Kurtin P. J., and Dogan A., “Shotgun‐Proteomics‐Based Clinical Testing for Diagnosis and Classification of Amyloidosis,” Journal of Mass Spectrometry 48 (2013): 1067–1077, 10.1002/jms.3264. PubMed DOI

Rezk T., Gilbertson J. A., Mangione P. P., et al., “The Complementary Role of Histology and Proteomics for Diagnosis and Typing of Systemic Amyloidosis,” Journal of Pathology: Clinical Research 5 (2019): 145–153, 10.1002/cjp2.126. PubMed DOI PMC

Holub D., Flodrova P., Pika T., Flodr P., Hajduch M., and Dzubak P., “Mass Spectrometry Amyloid Typing Is Reproducible Across Multiple Organ Sites,” BioMed Research International 2019 (2019): 1–9, 10.1155/2019/3689091. PubMed DOI PMC

Brambilla F., Lavatelli F., di Silvestre D., et al., “Reliable Typing of Systemic Amyloidoses Through Proteomic Analysis of Subcutaneous Adipose Tissue,” Blood 119 (2012): 1844–1847, 10.1182/blood-2011-07-365510. PubMed DOI

Gonzalez Suarez M. L., Zhang P., Nasr S. H., et al., “The Sensitivity and Specificity of the Routine Kidney Biopsy Immunofluorescence Panel Are Inferior to Diagnosing Renal Immunoglobulin‐Derived Amyloidosis by Mass Spectrometry,” Kidney International 96 (2019): 1005–1009, 10.1016/j.kint.2019.05.027. PubMed DOI

Sethi S., Vrana J. A., Theis J. D., et al., “Laser Microdissection and Mass Spectrometry–Based Proteomics Aids the Diagnosis and Typing of Renal Amyloidosis,” Kidney International 82 (2012): 226–234, 10.1038/ki.2012.108. PubMed DOI PMC

Lin P., Chen W. L., Yuan F., et al., “An UHPLC–MS/MS Method for Simultaneous Quantification of Human Amyloid beta Peptides Aβ1‐38, Aβ1‐40 and Aβ1‐42 in Cerebrospinal Fluid Using Micro‐Elution Solid Phase Extraction,” Journal of Chromatography B 1070 (2017): 82–91, 10.1016/j.jchromb.2017.10.047. PubMed DOI

Foureau D., Bhutani M., Guo F., et al., “Comparison of Mass Spectrometry and Flow Cytometry in Measuring Minimal Residual Disease in Multiple Myeloma,” Cancer Medicine 10 (2021): 6933–6936, 10.1002/cam4.4254. PubMed DOI PMC

Muccio S., Hirtz C., Descloux S., et al., “A Sensitive High‐Resolution Mass Spectrometry Method for Quantifying Intact M‐Protein Light Chains in Patients With Multiple Myeloma,” Clinica Chimica Acta 552 (2024): 117634, 10.1016/j.cca.2023.117634. PubMed DOI

Kubicki T., Dytfeld D., Barnidge D., et al., “Mass Spectrometry‐Based Assessment of M‐Protein in Peripheral Blood During Maintenance Therapy in Multiple Myeloma,” Blood Journal 144 (2024): 955–963, 10.1182/blood.2024024041. PubMed DOI PMC

Spodzieja M., Rodziewicz‐Motowidło S., and Szymanska A., “Hyphenated Mass Spectrometry Techniques in the Diagnosis of Amyloidosis,” Current Medicinal Chemistry 26 (2019): 104–120, 10.2174/0929867324666171003113019. PubMed DOI

Gupta N., Kaur H., and Wajid S., “Renal Amyloidosis: An Update on Diagnosis and Pathogenesis,” Protoplasma 257 (2020): 1259–1276, 10.1007/s00709-020-01513-0. PubMed DOI

Chen M., Li Y., Lv H., Yin P., Zhang L., and Tang P., “Quantitative Proteomics and Reverse Engineer Analysis Identified Plasma Exosome Derived Protein Markers Related to Osteoporosis,” Journal of Proteomics 228 (2020): 103940, 10.1016/j.jprot.2020.103940. PubMed DOI

Hobin K., Abou‐Zeid L., Mendizabal I. B., et al., “Investigation of the Concentration and Isotopic Composition of Cu, Fe and Zn in Human Biofluids in the Context of Alzheimer's Disease via Tandem and Multi‐collector Inductively Coupled Plasma‐Mass Spectrometry,” Journal of Trace Elements in Medicine and Biology 86 (2024): 127515, 10.1016/j.jtemb.2024.127515. PubMed DOI

Karayel O., Virreira Winter S., Padmanabhan S., et al., “Proteome Profiling of Cerebrospinal Fluid Reveals Biomarker Candidates for Parkinson's Disease,” Cell Reports Medicine 3 (2022): 100661, 10.1016/j.xcrm.2022.100661. PubMed DOI PMC

Wang X., Zhou W., Gao Z., and Lv X., “Mass Spectrometry Analysis of S‐Nitrosylation of Proteins and Its Role in Cancer, Cardiovascular and Neurodegenerative Diseases,” TrAC Trends in Analytical Chemistry 152 (2022): 116625, 10.1016/j.trac.2022.116625. DOI

Tang Y., Wang S., Zhang W., et al., “A Single‐Run, Rapid Polarity Switching Method for Simultaneous Quantification of Cardiovascular Disease‐Related Metabolites Using Liquid Chromatography–Tandem Mass Spectrometry,” International Journal of Mass Spectrometry 461 (2021): 116500, 10.1016/j.ijms.2020.116500. DOI

Cheng X., Yu W., Liu Y., Jia S., Wang D., and Hu L., “Proteomic Characterization of Urinary Exosomes With Pancreatic Cancer by Phosphatidylserine Imprinted Polymer Enrichment and Mass Spectrometry Analysis,” Journal of Proteome Research 24 (2024): 111–120, 10.1021/acs.jproteome.4c00508. PubMed DOI

Li Y., et al., “Unlocking the Future of Colorectal cancer Detection: Advances in Screening Glycosylation‐Based Biomarkers on Biological Mass Spectrometry Technology,” Journal of Chromatography. A 1738 (2024): 465501, 10.1016/j.chroma.2024.465501. PubMed DOI

Yildirim O. S., Yildiz P., Karaer A., Calleja‐Agius J., and Ozcan S., “Exploring the Protein Signature of Endometrial Cancer: A Comprehensive Review Through Diverse Samples and Mass Spectrometry‐Based Proteomics,” European Journal of Surgical Oncology (2024): 108783, 10.1016/j.ejso.2024.108783. PubMed DOI

Sarkar S., Zheng X., Clair G. C., et al., “Exploring new Frontiers in Type 1 Diabetes Through Advanced Mass‐Spectrometry‐Based Molecular Measurements,” Trends in Molecular Medicine 30 (2024): 1137–1151, 10.1016/j.molmed.2024.07.009. PubMed DOI PMC

He Z., Luo Q., Liu Z., and Gong L., “Extensive Evaluation of Sample Preparation Workflow for Gas Chromatography‐Mass Spectrometry‐Based Plasma Metabolomics and Its Application in Rheumatoid Arthritis,” Analytica Chimica Acta 1131 (2020): 136–145, 10.1016/j.aca.2020.06.029. PubMed DOI

Ebbel E. N., Leymarie N., Schiavo S., et al., “Identification of Phenylbutyrate‐Generated Metabolites in Huntington Disease Patients Using Parallel Liquid Chromatography/Electrochemical Array/Mass Spectrometry and Off‐Line Tandem Mass Spectrometry,” Analytical Biochemistry 399 (2010): 152–161, 10.1016/j.ab.2010.01.010. PubMed DOI PMC

Dagar S., Sharma M., Tsaprailis G., et al., “Ribosome Profiling and Mass Spectrometry Reveal Widespread Mitochondrial Translation Defects in a Striatal Cell Model of Huntington Disease,” Molecular & Cellular Proteomics 23 (2024): 100746, 10.1016/j.mcpro.2024.100746. PubMed DOI PMC

Zhang M., Zhang H., Yan B., Ren M., Wang W., and Zhang T., “Diagnostic Performance of Matrix‐Assisted Laser Desorption Ionization Time‐of‐Flight Mass Spectrometry (MALDI‐TOF MS) in Bronchoalveolar Lavage Fluid for Pulmonary Tuberculosis in HIV‐Infected Patients,” Journal of Clinical Tuberculosis and Other Mycobacterial Diseases 36 (2024): 100459, 10.1016/j.jctube.2024.100459. PubMed DOI PMC

Lu Y., Zhou C., Yan R., et al., “Dynamic Metabolic Profiles for HBeAg Seroconversion in Chronic Hepatitis B (CHB) Patients by Gas Chromatography‐Mass Spectrometry (GC‐MS),” Journal of Pharmaceutical and Biomedical Analysis 206 (2021): 114349, 10.1016/j.jpba.2021.114349. PubMed DOI

Uddin R. and Downard K. M., “Subtyping of Hepatitis C Virus With High Resolution Mass Spectrometry,” Clinical Mass Spectrometry 4‐5 (2017): 19–24, 10.1016/j.clinms.2017.08.003. PubMed DOI PMC

Jain D., Green J. A., Bastacky S., Theis J. D., and Sethi S., “Membranoproliferative Glomerulonephritis: The Role for Laser Microdissection and Mass Spectrometry,” American Journal of Kidney Diseases 63 (2014): 324–328, 10.1053/j.ajkd.2013.09.007. PubMed DOI

Anderson N. L. and Anderson N. G., “The Human Plasma Proteome,” Molecular & Cellular Proteomics 1 (2002): 845–867, 10.1074/mcp.R200007-MCP200. PubMed DOI

Wang Z., Hill S., Luther J. M., Hachey D. L., and Schey K. L., “Proteomic Analysis of Urine Exosomes by Multidimensional Protein Identification Technology (MudPIT),” Proteomics 12 (2012): 329–338, 10.1002/pmic.201100477. PubMed DOI PMC

Dytfeld D., Luczak M., Szczepaniak T., et al., “Comparative Proteomic Profiling of Sera From Patients With Refractory Multiple Myeloma Reveals Pathways and Biomarkers Predicting Response to Bortezomib‐Based Therapy,” Blood 128 (2016): 2092, 10.1182/blood.V128.22.2092.2092. PubMed DOI

Sipe J. D., Benson M. D., Buxbaum J. N., et al., “Amyloid Fibril Protein Nomenclature: 2012 Recommendations From the Nomenclature Committee of the International Society of Amyloidosis,” Amyloid 19 (2012): 167–170, 10.3109/13506129.2012.734345. PubMed DOI

Ihne S., Morbach C., Sommer C., Geier A., Knop S., and Störk S., “Amyloidosis—The Diagnosis and Treatment of an Underdiagnosed Disease,” Deutsches Ärzteblatt International 117 (2020): 159–166, 10.3238/arztebl.2020.0159. PubMed DOI PMC

Rajkumar S. V., “Multiple Myeloma: 2020 Update on Diagnosis, Risk‐Stratification and Management,” American Journal of Hematology 95 (2020): 548–567, 10.1002/ajh.25791. PubMed DOI

Landgren O., Kyle R. A., Pfeiffer R. M., et al., “Monoclonal Gammopathy of Undetermined Significance (MGUS) Consistently Precedes Multiple Myeloma: a Prospective Study,” Blood 113 (2009): 5412–5417, 10.1182/blood-2008-12-194241. PubMed DOI PMC

Nevone A., Girelli M., Mangiacavalli S., et al., “An N‐Glycosylation Hotspot in Immunoglobulin κ Light Chains Is Associated With AL Amyloidosis,” Leukemia 36 (2022): 2076–2085, 10.1038/s41375-022-01599-w. PubMed DOI

Barnidge D., Troske D., North S., Wallis G., Perkins M., and Harding S., “Endogenous Monoclonal Immunoglobulins Analyzed Using the EXENT® Solution and LC‐MS,” Journal of Mass Spectrometry and Advances in the Clinical Lab 32 (2024): 31–40, 10.1016/j.jmsacl.2024.02.002. PubMed DOI PMC

Li K., Barnidge D., Krevvata M., Perkins M. C., Verona R., and Zudaire E., “Comparison of the Analytical Performance of EXENT®, a Mass Spectrometry‐Based Assessment of M‐Protein, to SPEP and NGS‐Based MRD in Multiple Myeloma Patient Samples,” Blood 140 (2022): 12446–12447, 10.1182/blood-2022-160249. DOI

Berlanga O., Birtwistle J., Allen S., Malin G., and Lakos G., “B‐371 Two Cases of Multiple Myeloma Achieving Complete Remission but Presenting Residual M‐Protein by the EXENT® Solution,” Clinical Chemistry 69 (2023): hvad097.680, 10.1093/clinchem/hvad097.680. DOI

Allen S., Birtwistle J., Berlanga O., Malin G., and Lakos G., “B‐180 the EXENT® Solution Provides Evidence for High Prevalence of Multiple M‐Proteins in Monoclonal Gammopathies,” Clinical Chemistry 69 (2023): hvad097.511, 10.1093/clinchem/hvad097.511. DOI

Vignon M., Bastide A., Attina A., et al., “Multiplexed LC‐MS/MS Quantification of Salivary RNA Modifications in Periodontitis,” Journal of Periodontal Research 58 (2023): 959–967, 10.1111/jre.13155. PubMed DOI

Foulon N., Goonatilleke E., MacCoss M. J., Emrick M. A., and Hoofnagle A. N., “Multiplexed Quantification of Insulin and C‐Peptide by LC‐MS/MS Without the Use of Antibodies,” Journal of Mass Spectrometry and Advances in the Clinical Lab 25 (2022): 19–26, 10.1016/j.jmsacl.2022.06.003. PubMed DOI PMC

Panigrahi A., Zhang L., Benicky J., Sanda M., Ahn J., and Goldman R., “A Multiplexed Microflow LC–MS/MS‐PRM Assay for Serologic Quantification of IgG N‐ and HPX O‐ Glycoforms in Liver Fibrosis,” Scientific Reports 13 (2023): 606, 10.1038/s41598-023-27382-0. PubMed DOI PMC

Kang L., Weng N., and Jian W., “LC–MS Bioanalysis of Intact Proteins and Peptides,” Biomedical Chromatography 34 (2020): e4633, 10.1002/bmc.4633. PubMed DOI

Liu L., Zhang L., Zheng X., Liu X., Liu W., and Wu J., “LC–MS/MS‐Based Multiplex Antibacterial Platform for Therapeutic Drug Monitoring in Intensive Care Unit Patients,” Frontiers in Pharmacology 14 (2023): 1116071, 10.3389/fphar.2023.1116071. PubMed DOI PMC

Kuzyk M. A., Smith D., Yang J., et al., “Multiple Reaction Monitoring‐Based, Multiplexed, Absolute Quantitation of 45 Proteins in Human Plasma,” Molecular & Cellular Proteomics 8 (2009): 1860–1877, 10.1074/mcp.M800540-MCP200. PubMed DOI PMC

Gallien S., Duriez E., Crone C., Kellmann M., Moehring T., and Domon B., “Targeted Proteomic Quantification on Quadrupole‐Orbitrap Mass Spectrometer,” Molecular & Cellular Proteomics 11 (2012): 1709–1723, 10.1074/mcp.O112.019802. PubMed DOI PMC

Qu M., An B., Shen S., et al., “Qualitative and Quantitative Characterization of Protein Biotherapeutics With Liquid Chromatography Mass Spectrometry,” Mass Spectrometry Reviews 36 (2017): 734–754, 10.1002/mas.21500. PubMed DOI

Meyer J. G., “Fast Proteome Identification and Quantification from Data‐Dependent Acquisition–Tandem Mass Spectrometry (DDA MS/MS) Using Free Software Tools,” Methods and Protocols 2, no. 1 (2019): 8, 10.3390/mps2010008. PubMed DOI PMC

Doerr A., “DIA Mass Spectrometry,” Nature Methods 12 (2015): 35, 10.1038/nmeth.3234. DOI

Barkovits K., Linden A., Galozzi S., et al., “Characterization of Cerebrospinal Fluid via Data‐Independent Acquisition Mass Spectrometry,” Journal of Proteome Research 17 (2018): 3418–3430, 10.1021/acs.jproteome.8b00308. PubMed DOI

Krasny L. and Huang P. H., “Data‐Independent Acquisition Mass Spectrometry (DIA‐MS) for Proteomic Applications in Oncology,” Molecular Omics 17 (2021): 29–42, 10.1039/D0MO00072H. PubMed DOI

Iwasaki M., Nishimura R., Yamakawa T., Miyamoto Y., Tabata T., and Narita M., “Differences in Uniquely Identified Peptides Between ddaPASEF and diaPASEF,” Cells 13 (2024): 1848, 10.3390/cells13221848. PubMed DOI PMC

Kelstrup C. D., Young C., Lavallee R., Nielsen M. L., and Olsen J. V., “Optimized Fast and Sensitive Acquisition Methods for Shotgun Proteomics on a Quadrupole Orbitrap Mass Spectrometer,” Journal of Proteome Research 11 (2012): 3487–3497, 10.1021/pr3000249. PubMed DOI

Szigetvari P. D., Patil S., Birkeland E., Kleppe R., and Haavik J., “The Effects of Phenylalanine and Tyrosine Levels on Dopamine Production in rat PC12 Cells. Implications for Treatment of Phenylketonuria, Tyrosinemia Type 1 and Comorbid Neurodevelopmental Disorders,” Neurochemistry International 171 (2023): 105629, 10.1016/j.neuint.2023.105629. PubMed DOI

Zong R., Liu Y., Zhang M., et al., “β‐Catenin Disruption Decreases Macrophage Exosomal α‐SNAP and Impedes Treg Differentiation in Acute Liver Injury,” JCI Insight 10 (2024): e182515, 10.1172/jci.insight.182515. PubMed DOI PMC

Peng B., “N‐Glycan Profiling of Medulloblastoma in Patients at Different Proteome Subtypes of Disease,” (2023).

Cioanca A. V., Wooff Y., Aggio‐Bruce R., Sekar R., Dietrich C., and Natoli R., “Multiomic Integration Reveals Neuronal‐Extracellular Vesicle Coordination of Gliotic Responses in Degeneration,” Journal of Extracellular Vesicles 12 (2023): e12393, 10.1002/jev2.12393. PubMed DOI PMC

Al Tarrass M., “Décryptage des modifications précoces du phosphoprotéome en réponse à BMP9 et BMP10 dans les cellules endothéliales,” (2023).

Aguilan J. T., Lim J., Racine‐Brzostek S., et al., “Effect of Dynamic Exclusion and the Use of FAIMS, DIA and MALDI‐Mass Spectrometry Imaging With ion Mobility on Amyloid Protein Identification,” Clinical Proteomics 21 (2024): 47, 10.1186/s12014-024-09500-w. PubMed DOI PMC

Hu A., Noble W. S., and Wolf‐Yadlin A., “Technical Advances in Proteomics: New Developments in Data‐Independent Acquisition,” F1000Res 5 (2016): 419, 10.12688/f1000research.7042.1. PubMed DOI PMC

Jiang Y., DeBord D., Vitrac H., et al., “The Future of Proteomics Is up in the Air: Can Ion Mobility Replace Liquid Chromatography for High Throughput Proteomics?,” Journal of Proteome Research 23 (2024): 1871–1882, 10.1021/acs.jproteome.4c00248. PubMed DOI PMC

McMillen J., Gutierrez D. B., Judd A. M., Spraggins J., and Caprioli R. M., “Tryptic Peptide Signal Enhancement via MALDI IMS Post‐ionization (MALDI‐2) From Thin Tissue Sections,” ChemRxiv, (2020), 10.26434/chemrxiv.13483302.v1. DOI

Aftab W., Lahiri S., and Imhof A., “ImShot: An Open‐Source Software for Probabilistic Identification of Proteins In Situ and Visualization of Proteomics Data,” Molecular & Cellular Proteomics 21 (2022): 100242, 10.1016/j.mcpro.2022.100242. PubMed DOI PMC

Umapathy V. R., Natarajan P. M., and Swamikannu B., “Review Insights on Salivary Proteomics Biomarkers in Oral Cancer Detection and Diagnosis,” Molecules 28 (2023): 5283, 10.3390/molecules28135283. PubMed DOI PMC

Tomioka R., Ogata K., and Ishihama Y., “Quantitation of Host Cell Proteins by Capillary LC/IMS/MS/MS in Combination With Rapid Digestion on Immobilized Trypsin Column Under Native Conditions,” Mass Spectrometry 13, no. 1 (2024): A0152–A0152, 10.5702/massspectrometry.A0152. PubMed DOI PMC

Dasari S., Kohlhagen M. C., Dispenzieri A., et al., “Detection of Plasma Cell Disorders by Mass Spectrometry: A Comprehensive Review of 19,523 Cases,” Mayo Clinic Proceedings 97 (2022): 294–307, 10.1016/j.mayocp.2021.07.024. PubMed DOI

Liang Y., Acor H., McCown M., et al., “Fully Automated Sample Processing and Analysis Workflow for Low‐Input Proteome Profiling,” Analytical Chemistry 93 (2021): 1658–1666, 10.1021/acs.analchem.0c04240. PubMed DOI PMC

Müller T., Kalxdorf M., Longuespée R., Kazdal D. N., Stenzinger A., and Krijgsveld J., “Automated Sample Preparation With SP 3 for low‐Input Clinical Proteomics,” Molecular Systems Biology 16 (2020): e9111, 10.15252/msb.20199111. PubMed DOI PMC

Messner C. B., Demichev V., Wendisch D., et al., “Ultra‐High‐Throughput Clinical Proteomics Reveals Classifiers of COVID‐19 Infection,” Cell Systems 11 (2020): 11–24.e4, 10.1016/j.cels.2020.05.012. PubMed DOI PMC

Smit N. P. M., Ruhaak L. R., Romijn F. P. H. T. M., Pieterse M. M., van der Burgt Y. E. M., and Cobbaert C. M., “The Time Has Come for Quantitative Protein Mass Spectrometry Tests That Target Unmet Clinical Needs,” Journal of the American Society for Mass Spectrometry 32 (2021): 636–647, 10.1021/jasms.0c00379. PubMed DOI PMC

Perkins D. N., Pappin D. J. C., Creasy D. M., and Cottrell J. S., “Probability‐Based Protein Identification by Searching Sequence Databases Using Mass Spectrometry Data,” Electrophoresis 20 (1999): 3551–3567, 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2. PubMed DOI

Eng J. K., McCormack A. L., and Yates J. R., “An Approach to Correlate Tandem Mass Spectral Data of Peptides With Amino Acid Sequences in a Protein Database,” Journal of the American Society for Mass Spectrometry 5 (1994): 976–989, 10.1016/1044-0305(94)80016-2. PubMed DOI

Craig R. and Beavis R. C., “TANDEM: Matching Proteins With Tandem Mass Spectra,” Bioinformatics 20 (2004): 1466–1467, 10.1093/bioinformatics/bth092. PubMed DOI

Ma B., Zhang K., Hendrie C., et al., “PEAKS: Powerful Software for Peptide De Novo Sequencing by Tandem Mass Spectrometry,” Rapid Communications in Mass Spectrometry 17 (2003): 2337–2342, 10.1002/rcm.1196. PubMed DOI

Frank A. and Pevzner P., “PepNovo: De Novo Peptide Sequencing via Probabilistic Network Modeling,” Analytical Chemistry 77 (2005): 964–973, 10.1021/ac048788h. PubMed DOI

Fischer B., Roth V., Roos F., et al., “NovoHMM: A Hidden Markov Model for De Novo Peptide Sequencing,” Analytical Chemistry 77 (2005): 7265–7273, 10.1021/ac0508853. PubMed DOI

Aebersold R. and Mann M., “Mass Spectrometry‐Based Proteomics,” Nature 422 (2003): 198–207, 10.1038/nature01511. PubMed DOI

Domon B. and Aebersold R., “Mass Spectrometry and Protein Analysis,” Science 312 (2006): 212–217, 10.1126/science.1124619. PubMed DOI

Chen C., Hou J., Tanner J. J., and Cheng J., “Bioinformatics Methods for Mass Spectrometry‐Based Proteomics Data Analysis,” International Journal of Molecular Sciences 21 (2020): 2873, 10.3390/ijms21082873. PubMed DOI PMC

The UniProt Consortium , “UniProt: a Worldwide Hub of Protein Knowledge,” Nucleic Acids Research 47 (2019): D506–D515, 10.1093/nar/gky1049. PubMed DOI PMC

Elias J. E., Haas W., Faherty B. K., and Gygi S. P., “Comparative Evaluation of Mass Spectrometry Platforms Used in Large‐Scale Proteomics Investigations,” Nature Methods 2 (2005): 667–675, 10.1038/nmeth785. PubMed DOI

Colinge J., Masselot A., Giron M., Dessingy T., and Magnin J., “OLAV: Towards High‐Throughput Tandem Mass Spectrometry Data Identification,” Proteomics 3 (2003): 1454–1463, 10.1002/pmic.200300485. PubMed DOI

Kapp E. A., Schütz F., Connolly L. M., et al., “An Evaluation, Comparison, and Accurate Benchmarking of Several Publicly Available MS/MS Search Algorithms: Sensitivity and Specificity Analysis,” Proteomics 5 (2005): 3475–3490, 10.1002/pmic.200500126. PubMed DOI

Choi H. and Nesvizhskii A. I., “False Discovery Rates and Related Statistical Concepts in Mass Spectrometry‐Based Proteomics,” Journal of Proteome Research 7 (2008): 47–50, 10.1021/pr700747q. PubMed DOI

Jeong J. S., Jiang L., Albino E., et al., “Rapid Identification of Monospecific Monoclonal Antibodies Using a Human Proteome Microarray,” Molecular & Cellular Proteomics 11 (2012): O111.016253, 10.1074/mcp.O111.016253. PubMed DOI PMC

McIlwain S., Tamura K., Kertesz‐Farkas A., et al., “Crux: Rapid Open Source Protein Tandem Mass Spectrometry Analysis,” Journal of Proteome Research 13 (2014): 4488–4491, 10.1021/pr500741y. PubMed DOI PMC

Hernandez P., Müller M., and Appel R. D., “Automated Protein Identification by Tandem Mass Spectrometry: Issues and Strategies,” Mass Spectrometry Reviews 25 (2006): 235–254, 10.1002/mas.20068. PubMed DOI

Cox J. and Mann M., “MaxQuant Enables High Peptide Identification Rates, Individualized p.p.b.‐Range Mass Accuracies and Proteome‐Wide Protein Quantification,” Nature Biotechnology 26 (2008): 1367–1372, 10.1038/nbt.1511. PubMed DOI

Sethi S., Theis J. D., Leung N., et al., “Mass Spectrometry–Based Proteomic Diagnosis of Renal Immunoglobulin Heavy Chain Amyloidosis,” Clinical Journal of the American Society of Nephrology 5, no. 12 (2010): 2180–2187, 10.2215/CJN.02890310. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...