Lipopolysaccharide pretreatment increases the sensitivity of the TRPV1 channel and promotes an anti-inflammatory phenotype of capsaicin-activated macrophages
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.2.69/0.0/0.0/19_073/0016935
Grant Schemes at CU
LM2023050
Vinicna Microscopy Core Facility co-financed by the Czech-BioImaging large RI project
CZ.02.1.01/0.0/0.0/16_019/0000759
Ministry of Education of the Czech Republic
204072
UNCE
PubMed
38790047
PubMed Central
PMC11127439
DOI
10.1186/s12950-024-00391-0
PII: 10.1186/s12950-024-00391-0
Knihovny.cz E-zdroje
- Klíčová slova
- Capsaicin, Inflammation, Macrophages, TRPV1,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The transient receptor potential vanilloid 1 (TRPV1) is well-established in neuronal function, yet its role in immune reactions remains enigmatic. The conflicting data on its inflammatory role, suggesting both pro-inflammatory and anti-inflammatory effects upon TRPV1 stimulation in immune cells, adds complexity. To unravel TRPV1 immunomodulatory mechanisms, we investigated how the TRPV1 agonist capsaicin influences lipopolysaccharide (LPS)-induced pro-inflammatory macrophage phenotypes. RESULTS: Changes in the surface molecules, cytokine production, and signaling cascades linked to the phenotype of M1 or M2 macrophages of the J774 macrophage cell line and bone marrow-derived macrophages, treated with capsaicin before or after the LPS-induced inflammatory reaction were determined. The functional capacity of macrophages was also assessed by infecting the stimulated macrophages with the intracellular parasite Leishmania mexicana. CONCLUSION: Our findings reveal that TRPV1 activation yields distinct macrophage responses influenced by the inflammatory context. LPS pre-treatment followed by capsaicin activation prompted increased calcium influx, accompanied by a shift toward an anti-inflammatory M2b-like polarization state.
Zobrazit více v PubMed
Jardín I, López JJ, Diez R, Sánchez-Collado J, Cantonero C, Albarrán L, et al. TRPs Pain Sensation Front Physiol. 2017;8:392. doi: 10.3389/fphys.2017.00392. PubMed DOI PMC
Gouin O, L’Herondelle K, Lebonvallet N, le Gall-Ianotto C, Sakka M, Buhé V, et al. TRPV1 and TRPA1 in cutaneous neurogenic and chronic inflammation: pro-inflammatory response induced by their activation and their sensitization. Protein Cell. 2017;8(9):644. doi: 10.1007/s13238-017-0395-5. PubMed DOI PMC
Lee L-Y, Gu Q. Role of TRPV1 in inflammation-induced airway hypersensitivity. Curr Opin Pharmacol. 2009;9(3):243. doi: 10.1016/j.coph.2009.02.002. PubMed DOI PMC
Christie S, Wittert GA, Li H, Page AJ. Involvement of TRPV1 channels in Energy Homeostasis. Front Endocrinol (Lausanne) 2018;9:420. doi: 10.3389/fendo.2018.00420. PubMed DOI PMC
Long W, Fatehi M, Soni S, Panigrahi R, Philippaert K, Yu Y, et al. Vitamin D is an endogenous partial agonist of the transient receptor potential vanilloid 1 channel. J Physiol. 2020;598(19):4321–38. doi: 10.1113/JP279961. PubMed DOI PMC
Yu X, Yu M, Liu Y, Yu S. TRP channel functions in the gastrointestinal tract. Semin Immunopathol. 2016;38(3):385–96. doi: 10.1007/s00281-015-0528-y. PubMed DOI
Diaz-Garcia CM, Morales-Lázaro SL, Sánchez-Soto C, Velasco M, Rosenbaum T, Hiriart M. Role for the TRPV1 Channel in insulin secretion from pancreatic Beta cells. J Membrane Biology 2014. 2014;247(6):6. PubMed
Jeske NA. Peripheral scaffolding and signaling pathways in Inflammatory Pain. Prog Mol Biol Transl Sci. 2015;131:31–52. doi: 10.1016/bs.pmbts.2014.11.016. PubMed DOI
Jara-Oseguera A, Simon SA, Rosenbaum T. TRPV1: on the road to pain relief. Curr Mol Pharmacol. 2008;1(3):255–69. doi: 10.2174/1874467210801030255. PubMed DOI PMC
Andresen MC. Understanding diverse TRPV1 signaling - an update. F1000Res. 2019;8:F1000 Faculty Rev-1978. PubMed PMC
Luo X, Chen O, Wang Z, Bang S, Ji J, Lee SH, et al. IL-23/IL-17A/TRPV1 axis produces mechanical pain via macrophage-sensory neuron crosstalk in female mice. Neuron. 2021;109(17):2691–e27065. doi: 10.1016/j.neuron.2021.06.015. PubMed DOI PMC
Vardanyan A, Wang R, Vanderah TW, Ossipov MH, Lai J, Porreca F, et al. TRPV1 receptor in expression of Opioid-Induced Hyperalgesia. J Pain. 2009;10(3):243–52. doi: 10.1016/j.jpain.2008.07.004. PubMed DOI PMC
Zhou Q, Yang L, Larson S, Basra S, Merwat S, Tan A, et al. Decreased miR-199 augments visceral pain in patients with IBS through translational upregulation of TRPV1. Gut. 2016;65(5):797–805. doi: 10.1136/gutjnl-2013-306464. PubMed DOI PMC
Billeter AT, Hellmann JL, Bhatnagar A, Polk HC. Transient receptor potential ion channels: powerful regulators of cell function. Ann Surg. 2014;259(2):229–35. doi: 10.1097/SLA.0b013e3182a6359c. PubMed DOI
Caterina MJ, Julius D. The Vanilloid receptor: a Molecular Gateway to the Pain Pathway. Annu Rev Neurosci. 2001;24:487–517. doi: 10.1146/annurev.neuro.24.1.487. PubMed DOI
Bertin S, Aoki-Nonaka Y, de Jong PR, Nohara LL, Xu H, Stanwood SR, et al. The ion channel TRPV1 regulates the activation and proinflammatory properties of CD4 + T cells. Nat Immunol. 2014;15(11):1055–63. doi: 10.1038/ni.3009. PubMed DOI PMC
Ninomiya Y, Tanuma SI, Tsukimoto M. Differences in the effects of four TRPV1 channel antagonists on lipopolysaccharide-induced cytokine production and COX-2 expression in murine macrophages. Biochem Biophys Res Commun. 2017;484(3):668–74. doi: 10.1016/j.bbrc.2017.01.173. PubMed DOI
Wang Y, Wang DH. TRPV1 ablation aggravates inflammatory responses and organ damage during endotoxic shock. Clin Vaccine Immunol. 2013;20(7):1008–15. doi: 10.1128/CVI.00674-12. PubMed DOI PMC
Froghi S, Grant CR, Tandon R, Quaglia A, Davidson B, Fuller B. New insights on the role of TRP Channels in Calcium Signalling and Immunomodulation: review of pathways and implications for clinical practice. Clin Rev Allergy Immunol. 2021;60(2):271–92. doi: 10.1007/s12016-020-08824-3. PubMed DOI PMC
Amantini C, Farfariello V, Cardinali C, Morelli MB, Marinelli O, Nabissi M, et al. The TRPV1 ion channel regulates thymocyte differentiation by modulating autophagy and proteasome activity. Oncotarget. 2017;8(53):90766. doi: 10.18632/oncotarget.21798. PubMed DOI PMC
Nevius E, Srivastava PK, Basu S. Oral ingestion of Capsaicin, the pungent component of Chili pepper, enhances a discreet population of macrophages and confers protection from autoimmune diabetes. Mucosal Immunol. 2012;5(1):76–86. doi: 10.1038/mi.2011.50. PubMed DOI
Santoni G, Morelli MB, Amantini C, Santoni M, Nabissi M, Marinelli O, et al. Immuno-transient receptor potential Ion channels: the role in monocyte- and macrophage-mediated inflammatory responses. Front Immunol. 2018;9:1273. doi: 10.3389/fimmu.2018.01273. PubMed DOI PMC
Duo L, Wu T, Ke Z, Hu L, Wang C, Teng G, et al. Gain of function of Ion Channel TRPV1 exacerbates experimental colitis by promoting dendritic cell activation. Mol Ther Nucleic Acids. 2020;22:924–36. doi: 10.1016/j.omtn.2020.10.006. PubMed DOI PMC
Li L, Chen C, Chiang C, Xiao T, Chen Y, Zhao Y, et al. The impact of TRPV1 on Cancer Pathogenesis and Therapy: a systematic review. Int J Biol Sci. 2021;17(8):2034–49. doi: 10.7150/ijbs.59918. PubMed DOI PMC
Jiang X, Wang C, Ke Z, Duo L, Wu T, Wang W, et al. The ion channel TRPV1 gain-of-function reprograms the immune microenvironment to facilitate colorectal tumorigenesis. Cancer Lett. 2022;527:95–106. doi: 10.1016/j.canlet.2021.12.012. PubMed DOI
Liu L, Simon SA. Modulation of IA currents by capsaicin in rat trigeminal ganglion neurons. J Neurophysiol. 2003;89:1387–401. doi: 10.1152/jn.00210.2002. PubMed DOI
Correll CC, Phelps PT, Anthes JC, Umland S, Greenfeder S. Cloning and pharmacological characterization of mouse TRPV1. Neurosci Lett. 2004;370:55–60. doi: 10.1016/j.neulet.2004.07.058. PubMed DOI
Chen J, Li L, Li Y, Liang X, Sun Q, Yu H, Zhong J, Ni Y, Chen J, Zhao Z, Gao P, Wang B, Liu D, Zhu Z, Yan Z. Activation of TRPV1 channel by dietary capsaicin improves visceral fat remodeling through connexin43-mediated Ca2 + influx. Cardiovasc Diabetol. 2015;14:22. doi: 10.1186/s12933-015-0183-6. PubMed DOI PMC
Pacakova L, Harant K, Volf P, Lestinova T. Three types of Leishmania mexicana amastigotes: Proteome comparison by quantitative proteomic analysis. Front Cell Infect Microbiol. 2022;12:1517. doi: 10.3389/fcimb.2022.1022448. PubMed DOI PMC
Chamberlain LM, Holt-Casper D, Gonzalez-Juarrero M, Grainger DW. Extended culture of macrophages from different sources and maturation results in a common M2 phenotype. J Biomed Mater Res A. 2015;103(9):2864–74. doi: 10.1002/jbm.a.35415. PubMed DOI PMC
Jin Y, Liu Y, Nelin LD. Extracellular signal-regulated kinase mediates expression of arginase II but not inducible nitric-oxide synthase in lipopolysaccharide-stimulated macrophages. J Biol Chem. 2015;290(4):2099–111. doi: 10.1074/jbc.M114.599985. PubMed DOI PMC
Wainstein E, Seger R. The dynamic subcellular localization of ERK: mechanisms of translocation and role in various organelles. Curr Opin Cell Biol. 2016;39:15–20. doi: 10.1016/j.ceb.2016.01.007. PubMed DOI
Lewis CV, Vinh A, Diep H, Samuel CS, Drummond GR, Kemp-Harper BK. Distinct Redox Signalling following macrophage activation influences profibrotic activity. J Immunol Res. 2019;2019:1278301. doi: 10.1155/2019/1278301. PubMed DOI PMC
Jones AE, Divakaruni AS. Macrophage activation as an archetype of mitochondrial repurposing. Mol Aspects Med. 2020;71:100838. doi: 10.1016/j.mam.2019.100838. PubMed DOI PMC
Stevens MT, Nagaria BD, Britton WJ, Saunders BM. Macrophages of different tissue origin exhibit distinct inflammatory responses to mycobacterial infection. Immunol Cell Biol. 2021;99(10):1085–92. doi: 10.1111/imcb.12493. PubMed DOI
Bogdan C. Macrophages as host, effector and immunoregulatory cells in leishmaniasis: impact of tissue micro-environment and metabolism. Cytokine X. 2020;2(4):100041. doi: 10.1016/j.cytox.2020.100041. PubMed DOI PMC
Podešvová L, Huang H, Yurchenko V. Inducible protein stabilization system in Leishmania mexicana. Mol Biochem Parasitol. 2017;214:62–4. doi: 10.1016/j.molbiopara.2017.03.008. PubMed DOI
Bujak JK, Kosmala D, Szopa IM, Majchrzak K, Bednarczyk P. Inflammation, Cancer and Immunity—Implication of TRPV1 Channel. Front Oncol. 2019;9:1087. doi: 10.3389/fonc.2019.01087. PubMed DOI PMC
Xiao T, Sun M, Kang J, Zhao C. Transient receptor potential Vanilloid1 (TRPV1) Channel opens Sesame of T cell responses and T cell-mediated inflammatory diseases. Front Immunol. 2022;13:2205. PubMed PMC
Chamberlain LM, Godek ML, Gonzalez-Juarrero M, Grainger DW. Phenotypic non-equivalence of murine (monocyte-) macrophage cells in biomaterial and inflammatory models. J Biomed Mater Res A. 2009;88(4):858–71. doi: 10.1002/jbm.a.31930. PubMed DOI PMC
Shaul YD, Seger R. The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim Biophys Acta Mol Cell Res. 2007;1773(8):1213–26. doi: 10.1016/j.bbamcr.2006.10.005. PubMed DOI
Bouhamdan M, Bauerfeld C, Talreja J, Beuret L, Charron J, Samavati L. MEK1 dependent and independent ERK activation regulates IL-10 and IL-12 production in bone marrow derived macrophages. Cell Signal. 2015;27(10):2068–76. doi: 10.1016/j.cellsig.2015.07.015. PubMed DOI PMC
Min H, Cho WH, Lee H, Choi B, Kim YJ, Lee HK, et al. Association of TRPV1 and TLR4 through the TIR domain potentiates TRPV1 activity by blocking activation-induced desensitization. Mol Pain. 2018 Jan-Dec;14:1744806918812636. PubMed PMC
Canton M, Sánchez-Rodríguez R, Spera I, Venegas FC, Favia M, Viola A, et al. Reactive oxygen species in macrophages: sources and targets. Front Immunol. 2021;12:4077. doi: 10.3389/fimmu.2021.734229. PubMed DOI PMC
Edwards JP, Zhang X, Frauwirth KA, Mosser DM. Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol. 2006;80(6):1298. doi: 10.1189/jlb.0406249. PubMed DOI PMC
Fernandes ES, Liang L, Smillie S-J, Kaiser F, Purcell R, Rivett DW, et al. TRPV1 deletion enhances local inflammation and accelerates the onset of systemic inflammatory response syndrome. J Immunol. 2012;188(11):5741–51. doi: 10.4049/jimmunol.1102147. PubMed DOI
Clark N, Keeble J, Fernandes ES, Starr A, Liang L, Sugden D, de Winter P, Brain SD. The transient receptor potential vanilloid 1 (TRPV1) receptor protects against the onset of sepsis after endotoxin. FASEB J. 2007;21(13):3747–55. doi: 10.1096/fj.06-7460com. PubMed DOI
Torres-Narváez JC, Pérez-Torres I, Castrejón-Téllez V, Varela-López E, Oidor-Chan VH, Guarner-Lans V, Vargas-González Á, Martínez-Memije R, Flores-Chávez P, Cervantes-Yañez EZ, Soto-Peredo CA, Pastelín-Hernández G. Del Valle-Mondragón L. The role of the activation of the TRPV1 receptor and of nitric oxide in changes in endothelial and cardiac function and biomarker levels in hypertensive rats. Int J Environ Res Public Health. 2019;16(19):3576. doi: 10.3390/ijerph16193576. PubMed DOI PMC
Kobayashi Y. The regulatory role of nitric oxide in proinflammatory cytokine expression during the induction and resolution of inflammation. J Leukoc Biol. 2010;88(6):1157–62. doi: 10.1189/jlb.0310149. PubMed DOI
Atri C, Guerfali FZ, Laouini D. Role of human macrophage polarization in inflammation during infectious diseases. Int J Mol Sci 2018. 2018;19(6):1801. PubMed PMC
Wang Lxun, Zhang S xi, Wu Hjuan, Rong X, lu, Guo J. M2b macrophage polarization and its roles in diseases. J Leukoc Biol. 2019;106(2):345–58. PubMed PMC
Ito I, Asai A, Suzuki S, Kobayashi M, Suzuki F. M2b macrophage polarization accompanied with reduction of long noncoding RNA GAS5. Biochem Biophys Res Commun. 2017;493(1):170–5. doi: 10.1016/j.bbrc.2017.09.053. PubMed DOI
Bujak JK, Kosmala D, Majchrzak-Kuligowska K, Bednarczyk P. Functional expression of TRPV1 Ion Channel in the Canine Peripheral Blood mononuclear cells. Int J Mol Sci. 2021;22(6):3177. doi: 10.3390/ijms22063177. PubMed DOI PMC
Bassi MS, Gentile A, Iezzi E, Zagaglia S, Musella A, Simonelli I, et al. Transient receptor potential vanilloid 1 modulates central inflammation in multiple sclerosis. Front Neurol. 2019;10:30. doi: 10.3389/fneur.2019.00030. PubMed DOI PMC
Tomiotto-Pellissier F, Bortoleti BT da S, Assolini JP, Gonçalves MD, Carloto ACM, Miranda-Sapla MM, et al. Macrophage polarization in Leishmaniasis: broadening Horizons. Front Immunol. 2018;9:2529. PubMed PMC