Expression of Selected miRNAs in Undifferentiated Carcinoma with Osteoclast-like Giant Cells (UCOGC) of the Pancreas: Comparison with Poorly Differentiated Pancreatic Ductal Adenocarcinoma
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Cooperatio Medical Diagnostics and Basic Medical Sciences
Charles University
PubMed
38790924
PubMed Central
PMC11117927
DOI
10.3390/biomedicines12050962
PII: biomedicines12050962
Knihovny.cz E-zdroje
- Klíčová slova
- ductal adenocarcinoma, miRNA, pancreas, undifferentiated carcinoma with osteoclast-like giant cells,
- Publikační typ
- časopisecké články MeSH
Undifferentiated carcinoma with osteoclast-like giant cells (UCOGC) of the pancreas represents a rare subtype of pancreatic ductal adenocarcinoma (PDAC). Despite a distinct morphology and specific clinical behavior, UCOGCs exhibit unexpected similarities in regard to DNA mutational profiles with conventional PDAC. Treating pancreatic ductal adenocarcinoma is particularly challenging, with limited prospects for cure. As with many other malignant neoplasms, the exploration of microRNAs (miRNAs, miRs) in regulating the biological characteristics of pancreatic cancer is undergoing extensive investigation to enhance tumor diagnostics and unveil the therapeutic possibilities. Herein, we evaluated the expression of miR-21, -96, -148a, -155, -196a, -210, and -217 in UCOGCs and poorly differentiated (grade 3, G3) PDACs. The expression of miR-21, miR-155, and miR-210 in both UCOGCs and G3 PDACs was significantly upregulated compared to the levels in normal tissue, while the levels of miR-148a and miR-217 were downregulated. We did not find any significant differences between cancerous and normal tissues for the expression of miR-96 and miR-196a in G3 PDACs, whereas miR-196a was slightly, but significantly, downregulated in UCOGCs. On the other hand, we have not observed significant differences in the expression of the majority of miRNAs between UCOGC and G3 PDAC, with the exception of miR-155. UCOGC samples demonstrated lower mean levels of miR-155 in comparison with those in G3 PDACs.
Zobrazit více v PubMed
Hruban R.H., Adsay N.V., Esposito I., Fukushima N., Furukawa T., Klöppel G., Maitra A., Notohara K., Offerhaus G.J.A., Ohike N., et al. WHO Classification of Tumours Editorial Board. Digestive System Tumours. International Agency for Research on Cancer; Lyon, France: 2019. Pancreatic ductal adenocarcinoma; pp. 329–330.
Muraki T., Reid M.D., Basturk O., Jang K.T., Bedolla G., Bagci P., Mittal P., Memis B., Katabi N., Bandyopadhyay S., et al. Undifferentiated Carcinoma with Osteoclastic Giant Cells of the Pancreas: Clinicopathologic Analysis of 38 Cases Highlights a More Protracted Clinical Course than Currently Appreciated. Am. J. Surg. Pathol. 2016;40:1203–1216. doi: 10.1097/PAS.0000000000000689. PubMed DOI PMC
Sommers S.C., Meissner W.A. Unusual Carcinomas of the Pancreas. AMA Arch. Pathol. 1954;58:101–111. PubMed
Rosai J. Carcinoma of Pancreas Simulating Giant Cell Tumor of Bone. Electron-Microscopic Evidence of Its Acinar Cell Origin. Cancer. 1968;22:333–344. doi: 10.1002/1097-0142(196808)22:2<333::aid-cncr2820220210>3.0.co;2-a. PubMed DOI
Luchini C., Cros J., Pea A., Pilati C., Veronese N., Rusev B., Capelli P., Mafficini A., Nottegar A., Brosens L.A.A., et al. PD-1, PD-L1, and CD163 in Pancreatic Undifferentiated Carcinoma with Osteoclast-like Giant Cells: Expression Patterns and Clinical Implications. Hum. Pathol. 2018;81:157–165. doi: 10.1016/j.humpath.2018.07.006. PubMed DOI
Bazzichetto C., Luchini C., Conciatori F., Vaccaro V., Di Cello I., Mattiolo P., Falcone I., Ferretti G., Scarpa A., Cognetti F., et al. Morphologic and Molecular Landscape of Pancreatic Cancer Variants as the Basis of New Therapeutic Strategies for Precision Oncology. Int. J. Mol. Sci. 2020;21:8841. doi: 10.3390/ijms21228841. PubMed DOI PMC
Mugaanyi J., Lu C., Huang J., Lu C. Undifferentiated Pancreatic Carcinomas, Clinical Features and Therapeutic Options: What We Know. Cancers. 2022;14:6102. doi: 10.3390/cancers14246102. PubMed DOI PMC
Hrudka J., Kalinová M., Ciprová V., Moravcová J., Dvořák R., Matěj R. Undifferentiated Carcinoma with Osteoclast-like Giant Cells of the Pancreas: Molecular Genetic Analysis of 13 Cases. Int. J. Mol. Sci. 2024;25:3285. doi: 10.3390/ijms25063285. PubMed DOI PMC
Ali Syeda Z., Langden S.S.S., Munkhzul C., Lee M., Song S.J. Regulatory Mechanism of MicroRNA Expression in Cancer. Int. J. Mol. Sci. 2020;21:1723. doi: 10.3390/ijms21051723. PubMed DOI PMC
Shang R., Lee S., Senavirathne G., Lai E.C. microRNAs in Action: Biogenesis, Function and Regulation. Nat. Rev. Genet. 2023;24:816–833. doi: 10.1038/s41576-023-00611-y. PubMed DOI PMC
O’Brien J., Hayder H., Zayed Y., Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018;9:402. doi: 10.3389/fendo.2018.00402. PubMed DOI PMC
Sassen S., Miska E.A., Caldas C. MicroRNA—Implications for Cancer. Virchows Archiv. 2008;452:1–10. doi: 10.1007/s00428-007-0532-2. PubMed DOI PMC
Iorio M.V., Croce C.M. MicroRNA Dysregulation in Cancer: Diagnostics, Monitoring and Therapeutics. A Comprehensive Review. EMBO Mol. Med. 2012;4:143–159. doi: 10.1002/emmm.201100209. PubMed DOI PMC
Moriyama T., Ohuchida K., Mizumoto K., Yu J., Sato N., Nabae T., Takahata S., Toma H., Nagai E., Tanaka M. MicroRNA-21 Modulates Biological Functions of Pancreatic Cancer Cells Including Their Proliferation, Invasion, and Chemoresistance. Mol. Cancer Ther. 2009;8:1067–1074. doi: 10.1158/1535-7163.MCT-08-0592. PubMed DOI
Hu G., Tao F., Wang W., Ji K. Prognostic Value of microRNA-21 in Pancreatic Ductal Adenocarcinoma: A Meta-Analysis. World J. Surg. Oncol. 2016;14:82. doi: 10.1186/s12957-016-0842-4. PubMed DOI PMC
Daoud A.Z., Mulholland E.J., Cole G., McCarthy H.O. MicroRNAs in Pancreatic Cancer: Biomarkers, Prognostic, and Therapeutic Modulators. BMC Cancer. 2019;19:1130. doi: 10.1186/s12885-019-6284-y. PubMed DOI PMC
Szabo A., Gurlich R., Liberko M., Soumarova R., Vernerova Z., Mandys V., Popov A. Expression of Selected microRNAs in Pancreatic Ductal Adenocarcinoma: Is There a Relation to Tumor Morphology, Progression and Patient’s Outcome? Neoplasma. 2020;67:1170–1181. doi: 10.4149/neo_2020_200123N87. PubMed DOI
Popov A., Mandys V. Senescence-Associated miRNAs and Their Role in Pancreatic Cancer. Pathol. Oncol. Res. 2022;28:1610156. doi: 10.3389/pore.2022.1610156. PubMed DOI PMC
Prinz C., Fehring L., Frese R. MicroRNAs as Indicators of Malignancy in Pancreatic Ductal Adenocarcinoma (PDAC) and Cystic Pancreatic Lesions. Cells. 2022;11:2374. doi: 10.3390/cells11152374. PubMed DOI PMC
Shenouda S.K., Alahari S.K. MicroRNA Function in Cancer: Oncogene or a Tumor Suppressor? Cancer Metastasis Rev. 2009;28:369–378. doi: 10.1007/s10555-009-9188-5. PubMed DOI
Zhang B., Pan X., Cobb G., Anderson T. microRNAs as Oncogenes and Tumor Suppressors. Dev. Biol. 2007;302:1–12. doi: 10.1016/j.ydbio.2006.08.028. PubMed DOI
Eun J.L., Gusev Y., Jiang J., Nuovo G.J., Lerner M.R., Frankel W.L., Morgan D.L., Postier R.G., Brackett D.J., Schmittgen T.D. Expression Profiling Identifies microRNA Signature in Pancreatic Cancer. Int. J. Cancer. 2007;120:1046–1054. doi: 10.1002/ijc.22394. PubMed DOI PMC
Zhang Y., Li M., Wang H., Fisher W.E., Lin P.H., Yao Q., Chen C. Profiling of 95 MicroRNAs in Pancreatic Cancer Cell Lines and Surgical Specimens by Real-Time PCR Analysis. World J. Surg. 2009;33:698–709. doi: 10.1109/SPAWC.2012.6292881. PubMed DOI PMC
Negoi I., Hostiuc S., Sartelli M., Negoi R.I., Beuran M. MicroRNA-21 as a Prognostic Biomarker in Patients with Pancreatic Cancer—A Systematic Review and Meta-Analysis. Am. J. Surg. 2017;214:515–524. doi: 10.1016/j.amjsurg.2017.03.049. PubMed DOI
Jamieson N.B., Morran D.C., Morton J.P., Ali A., Dickson E.J., Carter C.R., Sansom O.J., Evans T.R.J., McKay C.J., Oien K.A. MicroRNA Molecular Profiles Associated with Diagnosis, Clinicopathologic Criteria, and Overall Survival in Patients with Resectable Pancreatic Ductal Adenocarcinoma. Clin. Cancer Res. 2012;18:534–545. doi: 10.1158/1078-0432.CCR-11-0679. PubMed DOI
Kong X., Du Y., Wang G., Gao J., Gong Y., Li L., Zhang Z., Zhu J., Jing Q., Qin Y., et al. Detection of Differentially Expressed microRNAs in Serum of Pancreatic Ductal Adenocarcinoma Patients: miR-196a Could Be a Potential Marker for Poor Prognosis. Dig. Dis. Sci. 2011;56:602–609. doi: 10.1007/s10620-010-1285-3. PubMed DOI
Papaconstantinou I.G., Manta A., Gazouli M., Lyberopoulou A., Lykoudis P.M., Polymeneas G., Voros D. Expression of microRNAs in Patients with Pancreatic Cancer and Its Prognostic Significance. Pancreas. 2013;42:67–71. doi: 10.1097/MPA.0b013e3182592ba7. PubMed DOI
Bloomston M., Frankel W.L., Petrocca F., Volinia S., Alder H., Hagan J.P., Liu C.G., Bhatt D., Taccioli C., Croce C.M. MicroRNA Expression Patterns to Differentiate Pancreatic Adenocarcinoma from Normal Pancreas and Chronic Pancreatitis. JAMA. 2007;297:1901–1908. doi: 10.1001/jama.297.17.1901. PubMed DOI
Hong T.H., Park I.Y. MicroRNA Expression Profiling of Diagnostic Needle Aspirates from Surgical Pancreatic Cancer Specimens. Ann. Surg. Treat. Res. 2014;87:290. doi: 10.4174/astr.2014.87.6.290. PubMed DOI PMC
Wang J., Chen J., Chang P., LeBlanc A., Li D., Abbruzzesse J.L., Frazier M.L., Killary A.M., Sen S. MicroRNAs in Plasma of Pancreatic Ductal Adenocarcinoma Patients as Novel Blood-Based Biomarkers of Disease. Cancer Prev. Res. 2009;2:807–813. doi: 10.1158/1940-6207.CAPR-09-0094. PubMed DOI PMC
Greither T., Grochola L.F., Udelnow A., Lautenschläger C., Würl P., Taubert H. Elevated Expression of microRNAs 155, 203, 210 and 222 in Pancreatic Tumors Is Associated with Poorer Survival. Int. J. Cancer. 2010;126:73–80. doi: 10.1002/ijc.24687. PubMed DOI
Delpu Y., Lulka H., Sicard F., Saint-Laurent N., Lopez F., Hanoun N., Buscail L., Cordelier P., Torrisani J. The Rescue of miR-148a Expression in Pancreatic Cancer: An Inappropriate Therapeutic Tool. PLoS ONE. 2013;8:e55513. doi: 10.1371/journal.pone.0055513. PubMed DOI PMC
Feng J., Yu J., Pan X., Li Z., Chen Z., Zhang W., Wang B., Yang L., Xu H., Zhang G., et al. HERG1 Functions as an Oncogene in Pancreatic Cancer and Is Downregulated by miR-96. Oncotarget. 2014;5:5832–5844. doi: 10.18632/oncotarget.2200. PubMed DOI PMC
Hrudka J., Lawrie K., Waldauf P., Ciprová V., Moravcová J., Matěj R. Negative Prognostic Impact of PD-L1 Expression in Tumor Cells of Undifferentiated (Anaplastic) Carcinoma with Osteoclast-like Giant Cells of the Pancreas: Study of 13 Cases Comparing Ductal Pancreatic Carcinoma and Review of the Literature. Virchows Arch. 2020;477:687–696. doi: 10.1007/s00428-020-02830-8. PubMed DOI
Pfaffl M.W. A New Mathematical Model for Relative Quantification in Real-Time RT-PCR. Nucleic Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC
Du Rieu M.C., Torrisani J., Selves J., Al Saati T., Souque A., Dufresne M., Tsongalis G.J., Suriawinata A.A., Carrère N., Buscail L., et al. MicroRNA-21 Is Induced Early in Pancreatic Ductal Adenocarcinoma Precursor Lesions. Clin. Chem. 2010;56:603–612. doi: 10.1373/clinchem.2009.137364. PubMed DOI
Qi L., Bart J., Tan L.P., Platteel I., van der Sluis T., Huitema S., Harms G., Fu L., Hollema H., van den Berg A. Expression of miR-21 and Its Targets (PTEN, PDCD4, TM1) in Flat Epithelial Atypia of the Breast in Relation to Ductal Carcinoma in Situ and Invasive Carcinoma. BMC Cancer. 2009;9:163. doi: 10.1186/1471-2407-9-163. PubMed DOI PMC
Habbe N., Koorstra J.B.M., Mendell J.T., Offerhaus G.J., Ji K.R., Feldmann G., Mullendore M.E., Goggins M.G., Hong S.M., Maitra A. MicroRNA miR-155 Is a Biomarker of Early Pancreatic Neoplasia. Cancer Biol. Ther. 2009;8:340–346. doi: 10.4161/cbt.8.4.7338. PubMed DOI PMC
Gironella M., Seux M., Xie M.-J., Cano C., Tomasini R., Gommeaux J., Garcia S., Nowak J., Yeung M.L., Jeang K.-T., et al. Tumor Protein 53-Induced Nuclear Protein 1 Expression Is Repressed by miR-155, and Its Restoration Inhibits Pancreatic Tumor Development. Proc. Natl. Acad. Sci. USA. 2007;104:16170–16175. doi: 10.1073/pnas.0703942104. PubMed DOI PMC
Yu S., Lu Z., Liu C., Meng Y., Ma Y., Zhao W., Liu J., Yu J., Chen J. miRNA-96 Suppresses KRAS and Functions as a Tumor Suppressor Gene in Pancreatic Cancer. Cancer Res. 2010;70:6015–6025. doi: 10.1158/0008-5472.CAN-09-4531. PubMed DOI
Zhao W.-G., Yu S.-N., Lu Z.-H., Ma Y.-H., Gu Y.-M., Chen J. The miR-217 microRNA Functions as a Potential Tumor Suppressor in Pancreatic Ductal Adenocarcinoma by Targeting KRAS. Carcinogenesis. 2010;31:1726–1733. doi: 10.1093/carcin/bgq160. PubMed DOI
Szafranska A.E., Davison T.S., John J., Cannon T., Sipos B., Maghnouj A., Labourier E., Hahn S.A. MicroRNA Expression Alterations Are Linked to Tumorigenesis and Non-Neoplastic Processes in Pancreatic Ductal Adenocarcinoma. Oncogene. 2007;26:4442–4452. doi: 10.1038/sj.onc.1210228. PubMed DOI
Szafranska A.E., Doleshal M., Edmunds H.S., Gordon S., Luttges J., Munding J.B., Barth R.J., Gutmann E.J., Suriawinata A.A., Pipas J.M., et al. Analysis of microRNAs in Pancreatic Fine-Needle Aspirates Can Classify Benign and Malignant Tissues. Clin. Chem. 2008;54:1716–1724. doi: 10.1373/clinchem.2008.109603. PubMed DOI PMC
Link A., Becker V., Goel A., Wex T., Malfertheiner P. Feasibility of Fecal microRNAs as Novel Biomarkers for Pancreatic Cancer. PLoS ONE. 2012;7:e42933. doi: 10.1371/journal.pone.0042933. PubMed DOI PMC
Molberg K.H., Heffess C., Delgado R., Albores-Saavedra J. Undifferentiated Carcinoma with Osteoclast-like Giant Cells of the Pancreas and Periampullary Region. Cancer. 1998;82:1279–1287. doi: 10.1002/(SICI)1097-0142(19980401)82:7<1279::AID-CNCR10>3.0.CO;2-3. PubMed DOI
Paal E., Thompson L.D., Frommelt R.A., Przygodzki R.M., Heffess C.S. A Clinicopathologic and Immunohistochemical Study of 35 Anaplastic Carcinomas of the Pancreas with a Review of the Literature. Ann. Diagn. Pathol. 2001;5:129–140. doi: 10.1053/adpa.2001.25404. PubMed DOI
Rosai and Ackerman’s Surgical Pathology—2 Volume Set—11th Edition. [(accessed on 23 May 2023)]. Available online: https://www.elsevier.com/books/rosai-and-ackermans-surgical-pathology-2-volume-set/goldblum/978-0-323-26339-9.
Dworak O., Wittekind C., Koerfgen H.P., Gall F.P. Osteoclastic Giant Cell Tumor of the Pancreas. An Immunohistological Study and Review of the Literature. Pathol. Res. Pract. 1993;189:228–234. doi: 10.1016/S0344-0338(11)80101-9. PubMed DOI
Reid M.D., Muraki T., HooKim K., Memis B., Graham R.P., Allende D., Shi J., Schaeffer D.F., Singh R., Basturk O., et al. Cytologic Features and Clinical Implications of Undifferentiated Carcinoma with Osteoclastic Giant Cells of the Pancreas: An Analysis of 15 Cases. Cancer Cytopathol. 2017;125:563–575. doi: 10.1002/cncy.21859. PubMed DOI
Lehrke H.D., Graham R.P., McWilliams R.R., Lam-Himlin D.M., Smyrk T.C., Jenkins S., Dong H., Zhang L. Undifferentiated Pancreatic Carcinomas Display Enrichment for Frequency and Extent of PD-L1 Expression by Tumor Cells. Am. J. Clin. Pathol. 2017;148:441–449. doi: 10.1093/ajcp/aqx092. PubMed DOI
Besaw R.J., Terra A.R., Malvar G.L., Chapman T.R., Hertan L.M., Schlechter B.L. Durable Response to PD-1 Blockade in a Patient with Metastatic Pancreatic Undifferentiated Carcinoma with Osteoclast-Like Giant Cells. J. Natl. Compr. Canc. Netw. 2021;19:247–252. doi: 10.6004/jnccn.2021.7001. PubMed DOI
Obayashi M., Shibasaki Y., Koakutsu T., Hayashi Y., Shoji T., Hirayama K., Yamazaki M., Takayanagi Y., Shibata H., Nakamura M., et al. Pancreatic Undifferentiated Carcinoma with Osteoclast-like Giant Cells Curatively Resected after Pembrolizumab Therapy for Lung Metastases: A Case Report. BMC Gastroenterol. 2020;20:220. doi: 10.1186/s12876-020-01362-4. PubMed DOI PMC
Mattiolo P., Fiadone G., Paolino G., Chatterjee D., Bernasconi R., Piccoli P., Parolini C., El Aidi M., Sperandio N., Malleo G., et al. Epithelial-Mesenchymal Transition in Undifferentiated Carcinoma of the Pancreas with and without Osteoclast-like Giant Cells. Virchows Arch. 2021;478:319–326. doi: 10.1007/s00428-020-02889-3. PubMed DOI PMC
Sakakida T., Ishikawa T., Doi T., Morita R., Kataoka S., Miyake H., Yamaguchi K., Moriguchi M., Sogame Y., Yasuda H., et al. Genomic Landscape and Clinical Features of Rare Subtypes of Pancreatic Cancer: Analysis with the National Database of Japan. J. Gastroenterol. 2023;58:575–585. doi: 10.1007/s00535-023-01986-9. PubMed DOI PMC
Bergmann F., Moldenhauer G., Herpel E., Gaida M.M., Strobel O., Werner J., Esposito I., Müerköster S.S., Schirmacher P., Kern M.A. Expression of L1CAM, COX-2, EGFR, c-KIT and Her2/Neu in Anaplastic Pancreatic Cancer: Putative Therapeutic Targets? Histopathology. 2010;56:440–448. doi: 10.1111/j.1365-2559.2010.03499.x. PubMed DOI
Wang X., Miao J., Wang S., Shen R., Zhang S., Tian Y., Li M., Zhu D., Yao A., Bao W., et al. Single-Cell RNA-Seq Reveals the Genesis and Heterogeneity of Tumor Microenvironment in Pancreatic Undifferentiated Carcinoma with Osteoclast-like Giant-Cells. Mol. Cancer. 2022;21:133. doi: 10.1186/s12943-022-01596-8. PubMed DOI PMC
Nakata K., Ohuchida K., Mizumoto K., Kayashima T., Ikenaga N., Sakai H., Lin C., Fujita H., Otsuka T., Aishima S., et al. MicroRNA-10b Is Overexpressed in Pancreatic Cancer, Promotes Its Invasiveness, and Correlates with a Poor Prognosis. Surgery. 2011;150:916–922. doi: 10.1016/j.surg.2011.06.017. PubMed DOI
Park J.-K., Lee E.J., Esau C., Schmittgen T.D. Antisense Inhibition of microRNA-21 or -221 Arrests Cell Cycle, Induces Apoptosis, and Sensitizes the Effects of Gemcitabine in Pancreatic Adenocarcinoma. Pancreas. 2009;38:e190. doi: 10.1097/MPA.0b013e3181ba82e1. PubMed DOI
Wang P., Zhu C., Ma M., Chen G., Song M., Zeng Z., Lu W., Yang J., Wen S., Chiao P.J., et al. Micro-RNA-155 Is Induced by K-Ras Oncogenic Signal and Promotes ROS Stress in Pancreatic Cancer. Oncotarget. 2015;6:21148–21158. doi: 10.18632/oncotarget.4125. PubMed DOI PMC
Fasanaro P., D’Alessandra Y., Di Stefano V., Melchionna R., Romani S., Pompilio G., Capogrossi M.C., Martelli F. MicroRNA-210 Modulates Endothelial Cell Response to Hypoxia and Inhibits the Receptor Tyrosine Kinase Ligand Ephrin-A3. J. Biol. Chem. 2008;283:15878–15883. doi: 10.1074/jbc.M800731200. PubMed DOI PMC
Zhang Z., Sun H., Dai H., Walsh R.M., Imakura M., Schelter J., Burchard J., Dai X., Chang A.N., Diaz R.L., et al. MicroRNA miR-210 Modulates Cellular Response to Hypoxia through the MYC Antagonist MNT. Cell Cycle. 2009;8:2756–2768. doi: 10.4161/cc.8.17.9387. PubMed DOI
Huang X., Le Q.-T., Giaccia A.J. MiR-210–Micromanager of the Hypoxia Pathway. Trends Mol. Med. 2010;16:230–237. doi: 10.1016/j.molmed.2010.03.004. PubMed DOI PMC
Buscaglia L.E.B., Li Y. Apoptosis and the Target Genes of microRNA-21. Chin. J. Cancer. 2011;30:371–380. doi: 10.5732/cjc.011.10132. PubMed DOI PMC
Huang C., Li H., Wu W., Jiang T., Qiu Z. Regulation of miR-155 Affects Pancreatic Cancer Cell Invasiveness and Migration by Modulating the STAT3 Signaling Pathway through SOCS1. Oncol. Rep. 2013;30:1223–1230. doi: 10.3892/or.2013.2576. PubMed DOI
Nakamura S., Sadakari Y., Ohtsuka T., Okayama T., Nakashima Y., Gotoh Y., Saeki K., Mori Y., Nakata K., Miyasaka Y., et al. Pancreatic Juice Exosomal MicroRNAs as Biomarkers for Detection of Pancreatic Ductal Adenocarcinoma. Ann. Surg. Oncol. 2019;26:2104–2111. doi: 10.1245/s10434-019-07269-z. PubMed DOI
Huang F., Tang J., Zhuang X., Zhuang Y., Cheng W., Chen W., Yao H., Zhang S. MiR-196a Promotes Pancreatic Cancer Progression by Targeting Nuclear Factor Kappa-B-Inhibitor Alpha. PLoS ONE. 2014;9:e87897. doi: 10.1371/journal.pone.0087897. PubMed DOI PMC
Giovannetti E., Funel N., Peters G.J., Del Chiaro M., Erozenci L.A., Vasile E., Leon L.G., Pollina L.E., Groen A., Falcone A., et al. MicroRNA-21 in Pancreatic Cancer: Correlation with Clinical Outcome and Pharmacologic Aspects Underlying Its Role in the Modulation of Gemcitabine Activity. Cancer Res. 2010;70:4528–4538. doi: 10.1158/0008-5472.CAN-09-4467. PubMed DOI
Huang X., Zuo J. Emerging Roles of miR-210 and Other Non-Coding RNAs in the Hypoxic Response. Acta Biochim. Et Biophys. Sin. 2014;46:220–232. doi: 10.1093/abbs/gmt141. PubMed DOI
Zhao Q., Chen S., Zhu Z., Yu L., Ren Y., Jiang M., Weng J., Li B. miR-21 Promotes EGF-Induced Pancreatic Cancer Cell Proliferation by Targeting Spry2. Cell Death Dis. 2018;9:1157. doi: 10.1038/s41419-018-1182-9. PubMed DOI PMC
Mok E.T.Y., Chitty J.L., Cox T.R. miRNAs in Pancreatic Cancer Progression and Metastasis. Clin. Exp. Metastasis. 2024 doi: 10.1007/s10585-023-10256-0. PubMed DOI PMC
Wang P., Zhuang L., Zhang J., Fan J., Luo J., Chen H., Wang K., Liu L., Chen Z., Meng Z. The Serum miR-21 Level Serves as a Predictor for the Chemosensitivity of Advanced Pancreatic Cancer, and miR-21 Expression Confers Chemoresistance by Targeting FasL. Mol. Oncol. 2013;7:334. doi: 10.1016/j.molonc.2012.10.011. PubMed DOI PMC
Karásek P., Gablo N., Hlavsa J., Kiss I., Vychytilová-Faltejsková P., Hermanová M., Kala Z., Slabý O., Procházka V. Pre-Operative Plasma miR-21-5p Is a Sensitive Biomarker and Independent Prognostic Factor in Patients with Pancreatic Ductal Adenocarcinoma Undergoing Surgical Resection. Cancer Genom. Proteom. 2018;15:321–327. doi: 10.21873/cgp.20090. PubMed DOI PMC
Khan K., Cunningham D., Peckitt C., Barton S., Tait D., Hawkins M., Watkins D., Starling N., Rao S., Begum R., et al. miR-21 Expression and Clinical Outcome in Locally Advanced Pancreatic Cancer: Exploratory Analysis of the Pancreatic Cancer Erbitux, Radiotherapy and UFT (PERU) Trial. Oncotarget. 2016;7:12672–12681. doi: 10.18632/oncotarget.7208. PubMed DOI PMC
Nishiwada S., Sho M., Banwait J.K., Yamamura K., Akahori T., Nakamura K., Baba H., Goel A. A MicroRNA Signature Identifies Pancreatic Ductal Adenocarcinoma Patients at Risk for Lymph Node Metastases. Gastroenterology. 2020;159:562–574. doi: 10.1053/j.gastro.2020.04.057. PubMed DOI PMC
Mikamori M., Yamada D., Eguchi H., Hasegawa S., Kishimoto T., Tomimaru Y., Asaoka T., Noda T., Wada H., Kawamoto K., et al. MicroRNA-155 Controls Exosome Synthesis and Promotes Gemcitabine Resistance in Pancreatic Ductal Adenocarcinoma. Sci. Rep. 2017;7:42339. doi: 10.1038/srep42339. PubMed DOI PMC
Khan M.A., Zubair H., Srivastava S.K., Singh S., Singh A.P. Insights into the Role of microRNAs in Pancreatic Cancer Pathogenesis: Potential for Diagnosis, Prognosis, and Therapy. Adv. Exp. Med. Biol. 2015;889:71–87. doi: 10.1007/978-3-319-23730-5_5. PubMed DOI PMC
Pang W., Su J., Wang Y., Feng H., Dai X., Yuan Y., Chen X., Yao W. Pancreatic Cancer-Secreted miR-155 Implicates in the Conversion from Normal Fibroblasts to Cancer-Associated Fibroblasts. Cancer Sci. 2015;106:1362–1369. doi: 10.1111/cas.12747. PubMed DOI PMC
Wu Y., Hong Q., Lu F., Zhang Z., Li J., Nie Z., He B. The Diagnostic and Prognostic Value of miR-155 in Cancers: An Updated Meta-Analysis. Mol. Diagn. Ther. 2023;27:283–301. doi: 10.1007/s40291-023-00641-6. PubMed DOI
Kim M.W., Koh H., Kim J.Y., Lee S., Lee H., Kim Y., Hwang H.K., Kim S.I. Tumor-Specific miRNA Signatures in Combination with CA19-9 for Liquid Biopsy-Based Detection of PDAC. Int. J. Mol. Sci. 2021;22:13621. doi: 10.3390/ijms222413621. PubMed DOI PMC
Wang J., Raimondo M., Guha S., Chen J., Diao L., Dong X., Wallace M.B., Killary A.M., Frazier M.L., Woodward T.A., et al. Circulating microRNAs in Pancreatic Juice as Candidate Biomarkers of Pancreatic Cancer. J. Cancer. 2014;5:696–705. doi: 10.7150/jca.10094. PubMed DOI PMC
Lian M., Mortoglou M., Uysal-Onganer P. Impact of Hypoxia-Induced miR-210 on Pancreatic Cancer. Curr. Issues Mol. Biol. 2023;45:9778–9792. doi: 10.3390/cimb45120611. PubMed DOI PMC
Wu G., Ding X., Quan G., Xiong J., Li Q., Li Z., Wang Y. Hypoxia-Induced miR-210 Promotes Endothelial Cell Permeability and Angiogenesis via Exosomes in Pancreatic Ductal Adenocarcinoma. Biochem. Res. Int. 2022;2022:7752277. doi: 10.1155/2022/7752277. PubMed DOI PMC
Yu Q., Xu C., Yuan W., Wang C., Zhao P., Chen L., Ma J. Evaluation of Plasma MicroRNAs as Diagnostic and Prognostic Biomarkers in Pancreatic Adenocarcinoma: miR-196a and miR-210 Could Be Negative and Positive Prognostic Markers, Respectively. BioMed Res. Int. 2017;2017:6495867. doi: 10.1155/2017/6495867. PubMed DOI PMC
Wnuk J., Strzelczyk J.K., Gisterek I. Clinical Value of Circulating miRNA in Diagnosis, Prognosis, Screening and Monitoring Therapy of Pancreatic Ductal Adenocarcinoma–A Review of the Literature. Int. J. Mol. Sci. 2023;24:5113. doi: 10.3390/ijms24065113. PubMed DOI PMC
Luthra R., Singh R.R., Luthra M.G., Li Y.X., Hannah C., Romans A.M., Barkoh B.A., Chen S.S., Ensor J., Maru D.M., et al. MicroRNA-196a Targets Annexin A1: A microRNA-Mediated Mechanism of Annexin A1 Downregulation in Cancers. Oncogene. 2008;27:6667–6678. doi: 10.1038/onc.2008.256. PubMed DOI
Lee Y.S., Kim H., Kim H.W., Lee J.-C., Paik K.-H., Kang J., Kim J., Yoon Y.-S., Han H.-S., Sohn I., et al. High Expression of MicroRNA-196a Indicates Poor Prognosis in Resected Pancreatic Neuroendocrine Tumor. Medicine. 2015;94:e2224. doi: 10.1097/MD.0000000000002224. PubMed DOI PMC
Balzeau J., Menezes M.R., Cao S., Hagan J.P. The LIN28/Let-7 Pathway in Cancer. Front. Genet. 2017;8:31. doi: 10.3389/fgene.2017.00031. PubMed DOI PMC
Wang H., Chirshev E., Hojo N., Suzuki T., Bertucci A., Pierce M., Perry C., Wang R., Zink J., Glackin C.A., et al. The Epithelial–Mesenchymal Transcription Factor SNAI1 Represses Transcription of the Tumor Suppressor miRNA Let-7 in Cancer. Cancers. 2021;13:1469. doi: 10.3390/cancers13061469. PubMed DOI PMC
Bhutia Y.D., Hung S.W., Krentz M., Patel D., Lovin D., Manoharan R., Thomson J.M., Govindarajan R. Differential Processing of Let-7a Precursors Influences RRM2 Expression and Chemosensitivity in Pancreatic Cancer: Role of LIN-28 and SET Oncoprotein. PLoS ONE. 2013;8:e53436. doi: 10.1371/journal.pone.0053436. PubMed DOI PMC
Idichi T., Seki N., Kurahara H., Fukuhisa H., Toda H., Shimonosono M., Okato A., Arai T., Kita Y., Mataki Y., et al. Molecular Pathogenesis of Pancreatic Ductal Adenocarcinoma: Impact of Passenger Strand of Pre-miR-148a on Gene Regulation. Cancer Sci. 2018;109:2013–2026. doi: 10.1111/cas.13610. PubMed DOI PMC
Hanoun N., Delpu Y., Suriawinata A.A., Bournet B., Bureau C., Selves J., Tsongalis G.J., Dufresne M., Buscail L., Cordelier P., et al. The Silencing of MicroRNA 148a Production by DNA Hypermethylation Is an Early Event in Pancreatic Carcinogenesis. Clin. Chem. 2010;56:1107–1118. doi: 10.1373/clinchem.2010.144709. PubMed DOI
Deng S., Zhu S., Wang B., Li X., Liu Y., Qin Q., Gong Q., Niu Y., Xiang C., Chen J., et al. Chronic Pancreatitis and Pancreatic Cancer Demonstrate Active Epithelial-Mesenchymal Transition Profile, Regulated by miR-217-SIRT1 Pathway. Cancer Lett. 2014;355:184–191. doi: 10.1016/j.canlet.2014.08.007. PubMed DOI
Chang X., Yu C., Li J., Yu S., Chen J. Hsa-miR-96 and Hsa-miR-217 Expression Down-Regulates with Increasing Dysplasia in Pancreatic Intraepithelial Neoplasias and Intraductal Papillary Mucinous Neoplasms. Int. J. Med. Sci. 2017;14:412–418. doi: 10.7150/ijms.18641. PubMed DOI PMC
Lemberger M., Loewenstein S., Lubezky N., Nizri E., Pasmanik-Chor M., Barazovsky E., Klausner J.M., Lahat G. MicroRNA Profiling of Pancreatic Ductal Adenocarcinoma (PDAC) Reveals Signature Expression Related to Lymph Node Metastasis. Oncotarget. 2019;10:2644–2656. doi: 10.18632/oncotarget.26804. PubMed DOI PMC
Kent O.A., Mullendore M., Wentzel E.A., López-Romero P., Tan A.C., Alvarez H., West K., Ochs M.F., Hidalgo M., Arking D.E., et al. A Resource for Analysis of microRNA Expression and Function in Pancreatic Ductal Adenocarcinoma Cells. Cancer Biol. Ther. 2009;8:2013–2024. doi: 10.4161/cbt.8.21.9685. PubMed DOI PMC
Liu X., Li Y., Li Z., Hou T. miR-155 Promotes Proliferation and Epithelial-Mesenchymal Transition of MCF-7 Cells. Exp. Ther. Med. 2021;21:218. doi: 10.3892/etm.2021.9650. PubMed DOI PMC
Kong W., Yang H., He L., Zhao J., Coppola D., Dalton W.S., Cheng J.Q. MicroRNA-155 Is Regulated by the Transforming Growth Factor Beta/Smad Pathway and Contributes to Epithelial Cell Plasticity by Targeting RhoA. Mol. Cell. Biol. 2008;28:6773–6784. doi: 10.1128/MCB.00941-08. PubMed DOI PMC
Kong X., Liu F., Gao J. MiR-155 Promotes Epithelial-Mesenchymal Transition in Hepatocellular Carcinoma Cells through the Activation of PI3K/SGK3/β-Catenin Signaling Pathways. Oncotarget. 2016;7:66051–66060. doi: 10.18632/oncotarget.11800. PubMed DOI PMC
Kulkarni P., Dasgupta P., Hashimoto Y., Shiina M., Shahryari V., Tabatabai Z.L., Yamamura S., Tanaka Y., Saini S., Dahiya R., et al. A lncRNA TCL6-miR-155 Interaction Regulates the Src-Akt-EMT Network to Mediate Kidney Cancer Progression and Metastasis. Cancer Res. 2021;81:1500–1512. doi: 10.1158/0008-5472.CAN-20-0832. PubMed DOI PMC