Increasing Rate of Fatal Streptococcus pyogenes Bacteriemia-A Challenge for Prompt Diagnosis and Appropriate Therapy in Real Praxis

. 2024 May 15 ; 12 (5) : . [epub] 20240515

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38792824

Grantová podpora
MH CZ - DRO - VFN00064165 Ministry of Health

Odkazy

PubMed 38792824
PubMed Central PMC11124258
DOI 10.3390/microorganisms12050995
PII: microorganisms12050995
Knihovny.cz E-zdroje

Streptococcus pyogenes, group A streptococci (GAS) bacteriaemia, is a life-threatening infection with high mortality, requiring fast diagnosis together with the use of appropriate antibiotic therapy as soon as possible. Our study analysed data from 93 patients with GAS bacteraemia at the General University Hospital in Prague between January 2006 and March 2024. In the years 2016-2019 there was an increase in GAS bacteraemia. Mortality in the period 2006-2019 was 21.9%; in the period 2020-2024, the mortality increased to 41.4%, p = 0.08. At the same time, in the post-2020 period, the time from hospital admission to death was reduced from 9.5 days to 3 days. A significant predictor of worse outcome in this period was high levels of procalcitonin, >35.1 µg/L (100% sensitivity and 82.35% specificity), and lactate, >5 mmol/L (90.91% sensitivity and 91.67% specificity). Myoglobin was a significant predictor in both compared periods, the AUC was 0.771, p = 0.044, and the AUC was an even 0.889, p ≤ 0.001, respectively. All isolates of S. pyogenes were susceptible to penicillin, and resistance to clindamycin was 20.3% from 2006-2019 and 10.3% in 2020-2024. Appropriate therapy was initiated in 89.1%. and 96.6%, respectively. We hypothesise that the increase in mortality after 2020 might be due to a decrease in the immune status of the population.

Zobrazit více v PubMed

Rello J., van Engelen T.S.R., Alp E., Calandra T., Cattoir V., Kern W.V., Netea M.G., Nseir S., Opal S.M., van de Veerdonk F.L. Towards precision medicine in sepsis: A position paper from the European Society of Clinical Microbiology and Infectious Diseases. Clin. Microbiol. Infect. 2018;24:1264–1272. doi: 10.1016/j.cmi.2018.03.011. PubMed DOI

Gouel-Cheron A., Swihart B.J., Warner S., Mathew L., Strich J.R., Mancera A., Follmann D., Kadri S.S. Epidemiology of ICU-onset bloodstream infection: Prevalence, pathogens, and risk factors among 150,948 ICU patients at 85 U.S. hospitals*. Crit. Care Med. 2022;50:1725–1736. doi: 10.1097/CCM.0000000000005662. PubMed DOI PMC

Carapetis J.R., Steer A.C., Mulholland E.K., Weber M. The global burden of group A streptococcal diseases. Lancet Infect. Dis. 2005;5:685–694. doi: 10.1016/S1473-3099(05)70267-X. PubMed DOI

Barnett T.C., Bowen A.C., Carapetis J.R. The fall and rise of Group A Streptococcus diseases. Epidemiol. Infect. 2018;147:e4. doi: 10.1017/S0950268818002285. PubMed DOI PMC

Efstratiou A., Lamagni T. Epidemiology of Streptococcus pyogenes. In: Ferretti J.J., Stevens D.L., Fischetti V.A., editors. Streptococcus Pyogenes: Basic Biology to Clinical Manifestations. University of Oklahoma Health Sciences Center; Oklahoma City, OK, USA: 2016. PubMed

Ron M., Brosh-Nissimov T., Korenman Z., Treygerman O., Sagi O., Valinsky L., Rokney A. Invasive Multidrug-Resistant emm93.0 Streptococcus pyogenes Strain Harboring a Novel Genomic Island, Israel, 2017–2019. Emerg. Infect. Dis. 2022;28:118–126. doi: 10.3201/eid2801.210733. PubMed DOI PMC

Walker M.J., Barnett T.C., McArthur J.D., Cole J.N., Gillen C.M., Henningham A., Sriprakash K.S., Sanderson-Smith M.L., Nizet V. Disease manifestations and pathogenic mechanisms of Group A Streptococcus. Clin. Microbiol. Rev. 2014;27:264–301. doi: 10.1128/CMR.00101-13. PubMed DOI PMC

Shakoor S., Khan E., Mir F., Malik F.R., Jamil B. Secular trends of Streptococcus pyogenes sepsis in Pakistan and analysis of clinical features in a hospitalized cohort. Trop. Biomed. 2017;34:648–656. PubMed

Meehan M., Murchan S., Gavin P.J., Drew R.J., Cunney R. Epidemiology of an upsurge of invasive group A streptococcal infections in Ireland, 2012–2015. J. Inf. Secur. 2018;77:183–190. doi: 10.1016/j.jinf.2018.05.010. PubMed DOI

Blagden S., Watts V., Verlander N.Q., Pegorie M. Invasive group A streptococcal infections in North West England: Epidemiology, risk factors and fatal infection. Public Health. 2020;186:63–70. doi: 10.1016/j.puhe.2020.06.007. PubMed DOI

Vilhonen J., Vuopio J., Vahlberg T., Gröndahl-Yli-Hannuksela K., Rantakokko-Jalava K., Oksi J. Group A streptococcal bacteremias in Southwest Finland 2007–2018: Epidemiology and of infectious diseases consultation in antibiotic treatment selection. Eur. J. Clin. Microbiol. Infect. Dis. 2020;39:1339–1348. doi: 10.1007/s10096-020-03851-6. PubMed DOI PMC

Bläckberg A., Svedevall S., Lundberg K., Nilson B., Kahn F., Rasmussen M. Time to blood culture positivity: An independent predictor of mortality in Streptococcus Pyogenes bacteremia. Open Forum Infect. Dis. Ther. 2022;9:ofac163. doi: 10.1093/ofid/ofac163. PubMed DOI PMC

Thomson T.N., Campbell P.T., Gibney K.B. The epidemiology of invasive group A streptococcal disease in Victoria, 2007–2017: An analysis of linked datasets. Aust. N. Z. J. Public Health. 2022;46:878–883. doi: 10.1111/1753-6405.13290. PubMed DOI

GBD 2019 Antimicrobial Resistance Collaborators Global mortality associated with 33 bacterial pathogens in 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2022;400:2221–2248. doi: 10.1016/S0140-6736(22)02185-7. PubMed DOI PMC

Tabah A., Buetti N., Staiquly Q., Ruckly S., Akova M., Aslan A.T., Leone M., Conway M.A., Bassetti M., Arvaniti K., et al. Epidemiology and outcomes of hospital-acquired bloodstream infections in intensive care unit patients: The EUROBACT-2 international cohort study. Intensive Care Med. 2023;49:178–190. doi: 10.1007/s00134-022-06944-2. PubMed DOI PMC

Reglinski M., Sriskandan S. The contribution of group A streptococcal virulence determinants to the pathogenesis of sepsis. Virulence. 2014;5:127–136. doi: 10.4161/viru.26400. PubMed DOI PMC

Lu S.-L., Omori H., Zhou Y., Lin Y.-S., Liu C.-C., Wu J.-J., Noda T. VEGF-mediated augmentation of Autophagic and lysosomal activity in endothelial cells defends against intracellular Streptococcus pyogenes. mBio. 2022;13:e0123322. doi: 10.1128/mbio.01233-22. PubMed DOI PMC

Okumura C.Y.M., Nizet V. Subterfuge and sabotage: Evasion of host innate defenses by invasive gram-positive bacterial pathogens. Annu. Rev. Microbiol. 2014;68:439–458. doi: 10.1146/annurev-micro-092412-155711. PubMed DOI PMC

Brouwer S., Barnett T.C., Rivera-Hernandez T., Rohde M., Walker M.J. Streptococcus pyogenes adhesion and colonization. FEBS Lett. 2016;590:3739–3757. doi: 10.1002/1873-3468.12254. PubMed DOI

Rivera-Hernandez T., Carnathan D.G., Jones S., Cork A.J., Davies M.R., Moyle P.M., Toth I., Batzloff M.R., McCarthy J., Nizet V., et al. An experimental group A Streptococcus vaccine that reduces pharyngitis and tonsillitis in a nonhuman primate model. mBio. 2019;10:e00693-19. doi: 10.1128/mBio.00693-19. PubMed DOI PMC

Huang E., Maldonado A.Q., Kjellman C., Jordan S.C. Imlifidase for the treatment of anti-HLA antibody-mediated processes inkidney transplantation. Am. J. Transplant. 2022;22:691–697. doi: 10.1111/ajt.16828. PubMed DOI PMC

Sjogren J., Lood R., Nageli A. On enzymatic remodeling of IgG glycosylation; unique tools with broad applications. Glycobiology. 2020;30:254–267. doi: 10.1093/glycob/cwz085. PubMed DOI PMC

Happonen L., Collin M. Immunomodulating Enzymes from Streptococcus pyogenes—In Pathogenesis, as Biotechnological Tools, and as Biological Drugs. Microorganisms. 2024;12:200. doi: 10.3390/microorganisms12010200. PubMed DOI PMC

Proft T., Fraser J.D. Streptococcal superantigens. Chem. Immunol. Allergy. 2007;93:1–23. PubMed

Stevens D.L., Bryant A.E., Yan S. Invasive group A streptococcal infection: New concepts in antibiotic treatment. Int. J. Antimicrob. 1994;4:297–301. doi: 10.1016/0924-8579(94)90029-9. PubMed DOI

Allen U., Moore D. Invasive group A streptococcal disease: Management and chemoprophylaxis. Can. J. Infect. Dis. Med. Microbiol. 2010;21:115–118. doi: 10.1155/2010/585187. PubMed DOI PMC

Eagle H. Experimental approach to the problem of treatment failure with penicillin. I. Group A streptococcal infection in mice. Am. J. Med. 1952;13:389–399. doi: 10.1016/0002-9343(52)90293-3. PubMed DOI

Stevens D.L., Gibbons A.E., Bergstrom R., Winn V. The Eagle effect revisited: Efficacy of clindamycin, erythromycin, and penicillin in the treatment of streptococcal myositis. J. Infect. Dis. 1988;158:23–28. doi: 10.1093/infdis/158.1.23. PubMed DOI

Gajdács M., Ábrók M., Lázár A., Burián K. Beta-Haemolytic group A, C and G streptococcal infections in southern Hungary: A 10-year population-based retrospective survey (2008–2017) and a review of the literature. Infect. Drug Resist. 2020;13:4739–4749. doi: 10.2147/idr.s279157. PubMed DOI PMC

Jayakumar J.S., Niyas V.K.M., Arjun R. Group A streptococcal bacteremia: Ten years’ experience from a tertiary Care Center in South India. Indian J. Crit. Care Med. Peer-Rev. Off. Publ. Indian Soc. Crit. Care Med. 2022;26:1019–1021. doi: 10.5005/jp-journals-10071-24306. PubMed DOI PMC

Villalón P., Bárcena M., Medina-Pascual M.J., Garrido N., Pino-Rosa S., Carrasco G., Valdezate S. National Surveillance of tetracycline, erythromycin, and clindamycin resistance in invasive Streptococcus pyogenes: A retrospective study of the situation in Spain, 2007–2020. Antibiotics. 2023;12:99. doi: 10.3390/antibiotics12010099. PubMed DOI PMC

Databáze Výsledků Studie “RESPIRAČNÍ PATOGENY” [online]. Dostupný na. [(accessed on 15 April 2024)]. Available online: https://apps.szu.cz/rp/rezistence.php.

Chochua S., Metcalf B., Li Z., Mathis S., Tran T., Rivers J., Fleming-Dutra K.E., Li Y., McGee L., Beall B. Invasive group A streptococcal penicillin binding protein 2× variants associated with reduced susceptibility to β-lactam antibiotics in the United States, 2015–2021. Antimicrob. Agents Chemother. 2022;66:e0080222. doi: 10.1128/aac.00802-22. PubMed DOI PMC

Raveendran A.V., Kumar A., Gangadharan S. Biomarkers and newer laboratory investigations in the diagnosis of sepsis. J. R. Coll. Physicians Edinb. 2019;49:207–216. doi: 10.4997/jrcpe.2019.308. PubMed DOI

Candel F.J., Sá M.B., Belda S., Bou G., Del Pozo J.L., Estrada O., Ferrer R., González Del Castillo J., Julián-Jiménez A., Martín-Loeches I., et al. Current aspects in sepsis approach. Turning things around. Rev. Española Quimioter. 2018;31:298–315. PubMed PMC

Meisner M. Pathobiochemistry and clinical use of procalcitonin. Clin. Chim. Acta. 2002;323:17–29. doi: 10.1016/S0009-8981(02)00101-8. PubMed DOI

Aziz S.A., Nelwan E.J., Sukrisman L., Suhendro S. Higher cut-off serum procalcitonin level for sepsis diagnosis in metastatic solid tumor patients. BMC Res. Notes. 2018;11:84. PubMed PMC

Wacker C., Prkno A., Brunkhorst F.M., Schlattmann P. Procalcitonin as diagnostic marker for sepsis: A systematic review and meta-analysis. Lancet Infect. Dis. 2013;13:426–435. PubMed

Ullberg M., Özenci V. Identification and antimicrobial susceptibility testing of Gram-positive and Gram-negative bacteria from positive blood cultures using the Accelerate Pheno™ system. Eur. J. Clin. Microbiol. Infect. Dis. 2020;39:139–149. doi: 10.1007/s10096-019-03703-y. PubMed DOI PMC

O’Loughlin R.E., Roberson A., Cieslalc P.R., Lynfield R., Gershman K., Craig A., Albanese B.A., Farley M.M., Barrett N.L., Spina N.L. The epidemiology of invasive group A streptococcal infection and potential vaccine implications: United States, 2000–2004. Clin Infect Dis. 2007;45:853–862. doi: 10.1086/521264. PubMed DOI

Bonnet M., Lagier J.C., Raoult D., Khelaifia S. Bacterial culture through selective and non-selective conditions: The evolution of culture media in clinical microbiology. New Microbes New Infect. 2019;34:100622. doi: 10.1016/j.nmni.2019.100622. PubMed DOI PMC

Bursle E., Robson J. Non-culture methods for detecting infection. Aust. Prescr. 2016;39:171–175. doi: 10.18773/austprescr.2016.059. PubMed DOI PMC

Singer M., Deutschman C.S., Seymour C.W., Shankar-Hari M., Annane D., Bauer M., Bellomo R., Bernard G.R., Chiche J.D., Coopersmith C.M., et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) JAMA. 2016;315:801–810. doi: 10.1001/jama.2016.0287. PubMed DOI PMC

Dellinger R.P., Rhodes A., Evans L., Alhazzani W., Beale R., Jaeschke R., Machado F.R., Masur H., Osborn T., Parker M.M., et al. Surviving Sepsis Campaign Guidelines 2021. Crit. Care Med. 2023;51:431–444. doi: 10.1097/CCM.0000000000005804. PubMed DOI

Arora S., Singh P., Singh P.M., Trikha A. Procalcitonin levels in survivors and nonsurvivors of sepsis: Systematic review and meta-analysis. Shock. 2015;43:212–221. doi: 10.1097/SHK.0000000000000305. PubMed DOI

Wagner N.M., Van Aken C., Butschkau A., Bierhansl L., Kellner P., Schleusener V., Seggewiss J., Vollmar B., Nöldge-Schomburg G., Roesner J.P. Procalcitonin impairs endothelial cell function and viability. Anesth. Analg. 2017;124:836–845. doi: 10.1213/ANE.0000000000001574. PubMed DOI

Adamkova V., Adamkova V.G., Lahoda Brodska H. Procalcitonin: A tricky biomarker for an initial choice of appropriate atb therapy! Crit. Care. 2020;24((Suppl. S2)):P588.

Adamkova V., Lahoda Brodska H., Adamkova V.G., Zima T. Can gram-negative-like biomarker values in Streptococcus pyogenes sepsis negatively influence right choice of initial antibiotic therapy? Epidemiol. Mikrobiol. Imunol. 2020;69:128–133. PubMed

Valderrama J.A., Nizet V. Group A Streptococcus encounters with host macrophages. Future Microbiol. 2018;13:119–134. doi: 10.2217/fmb-2017-0142. PubMed DOI PMC

Vanderschueren S., Deeren D., Knockaert D.C., Bobbaers H., Bossuyt X., Peetermans W. Extremely elevated C-reactive protein. Eur. J. Intern. Med. 2006;17:430–433. doi: 10.1016/j.ejim.2006.02.025. PubMed DOI

Gómez N.F.P., Del Pilar Sanz Martín M., Chong M., Cruz N.D.Z., Hernández R.M., Molina I., Sanz I.G., Tejerina A.F., Rueda F.R. Usefulness of Procalcitonin Levels for Predicting the Microbiological Orientation in Patients with Sepsis. J. Pers. Med. 2024;14:208. doi: 10.3390/jpm14020208. PubMed DOI PMC

Garcia-Alvarez M., Marik P., Bellomo R. Sepsis-associated hyperlactatemia. Crit. Care. 2014;18:503. doi: 10.1186/s13054-014-0503-3. PubMed DOI PMC

Rueddel T., Daniel O., Poidinger B., Weiss M., Bach F., Dey K., Häberle H., Kaisers U., Rüddel H., Schädler D., et al. Hyperlactatemia is an independent predictor of mortality and denotes distinct subtypes of severe sepsis and septic shock. J. Crit. Care. 2015;30:439. PubMed

Hu J., Jin Q., Fang H., Zhang W. Evaluating the predictive value of initial lactate/albumin ratios in determining prognosis of sepsis patients. Medicine. 2024;103:e37535. doi: 10.1097/MD.0000000000037535. PubMed DOI PMC

Dou Q.L., Liu J., Zhang W., Wang C.W., Gu Y., Li N., Hu R., Hsu W.T., Huang A.H., Tong H.S., et al. Dynamic changes in heparin-binding protein as a prognostic biomarker for 30-day mortality in sepsis patients in the intensive care unit. Sci. Rep. 2022;12:10751. doi: 10.1038/s41598-022-14827-1. PubMed DOI PMC

Svobodová E., Drábek T., Brodská H. Pervitin Intoxication with Two-peak Massive Myoglobinemia, Acute Kidney Injury and Marked Procalcitonin Increase Not Associated with Sepsis. Prague Med. Rep. 2022;123:266–278. doi: 10.14712/23362936.2022.25. PubMed DOI

Raju N.A., Rao S.V., Joel J.C., Jacob G.G., Anil A.K., Gowri S.M., Kandasamy S. Predictive Value of Serum Myoglobin and Creatine Phosphokinase for Development of Acute Kidney Injury in Traumatic Rhabdomyolysis. Indian J. Crit. Care Med. 2017;21:852–856. doi: 10.4103/ijccm.IJCCM_186_17. PubMed DOI PMC

Uchino S., Kellum J.A., Bellomo R., Doig G.S., Morimatsu H., Morgera S., Schetz M., Tan I., Bouman C., Macedo E., et al. Acute renal failure in critically ill patients: A multinational, multicenter study. JAMA. 2005;294:813–818. doi: 10.1001/jama.294.7.813. PubMed DOI

Bellomo R., Kellum J.A., Ronco C., Wald R., Martensson J., Maiden M., Bagshaw S.M., Glassford N.J., Lankadeva Y., Vaara S.T., et al. Acute kidney injury in sepsis. Intensive Care Med. 2017;43:816–828. doi: 10.1007/s00134-017-4755-7. PubMed DOI

Hoste E.A., Bagshaw S.M., Bellomo R., Cely C.M., Colman R., Cruz D.N., Edipidis K., Forni L.G., Gomersall C.D., Govil D., et al. Epidemiology of acute kidney injury in critically ill patients: The multinational AKI-EPI study. Intensive Care Med. 2015;41:1411–1423. doi: 10.1007/s00134-015-3934-7. PubMed DOI

Vincent J.L., Sakr Y., Sprung C.L., Ranieri V.M., Reinhart K., Gerlach H., Moreno R., Carlet J., Le Gall J.R., Payen D. Sepsis in European intensive care units: Results of the SOAP study. Crit. Care Med. 2006;34:344–353. doi: 10.1097/01.CCM.0000194725.48928.3A. PubMed DOI

Andreoni F., Zurcher C., Tarnutzer A., Schilcher K., Neff A., Keller N., Marques M.E., Poyart C., Schuepbach R.A., Zinkernagel A.S. Clindamycin affects group A streptococcus virulence factors and improves clinical outcome. J. Infect. Dis. 2017;215:269–277. PubMed

Mulla Z.D., Leaverton P.E., Wiersma S.T. Invasive group A streptococcal infections in Florida. South Med. J. 2003;96:968–973. doi: 10.1097/01.SMJ.0000051060.95210.9A. PubMed DOI

Linner A., Darenberg J., Sjolin J., Henriques-Normarlc B., Norrby-Teglund A. Clinical efficacy of polyspecific intravenous immunoglobulin therapy in patients with streptococcal toxic shock syndrome: A comparative observational study. Clin. Infect. Dis. 2014;59:851–857. doi: 10.1093/cid/ciu449. PubMed DOI

Couture-Cossette A., Carignan A., Mercier A., Desruisseaux C., Valiquette L., Pépin J. Secular trends in incidence of invasive beta-hemolytic streptococci and efficacy of adjunctive therapy in Quebec, Canada, 1996–2016. PLoS ONE. 2018;13:e0206289. doi: 10.1371/journal.pone.0206289. PubMed DOI PMC

Armengol Álvarez L., Van de Sijpe G., Desmet S., Metsemakers W.-J., Spriet I., Allegaert K., Rozenski J. Ways to Improve Insights into Clindamycin Pharmacology and Pharmacokinetics Tailored to Practice. Antibiotics. 2022;11:701. doi: 10.3390/antibiotics11050701. PubMed DOI PMC

White B.P., Siegrist E.A. Increasing clindamycin resistance in group A Streptococcus. Lancet Infect. Dis. 2021;21:1208–1209. PubMed

Bamford A., Whittaker E. Resurgence of group A streptococcal disease in children. BMJ. 2023;380:43. doi: 10.1136/bmj.p43. PubMed DOI

Bagcchi S. Surge of invasive group A streptococcus disease. Lancet Infect. Dis. 2023;23:284. doi: 10.1016/S1473-3099(23)00043-9. PubMed DOI

Nash K., Lai J., Sandhu K., Chandan J.S., Shantikumar S., Ogunlayi F., Coleman P.C. Impact of national COVID-19 restrictions on incidence of notifiable communicable diseases in England: An interrupted time series analysis. BMC Public Health. 2022;22:2318. doi: 10.1186/s12889-022-14796-0. PubMed DOI PMC

Johannesen T.B., Munkstrup C., Edslev S.M., Baig S., Nielsen S., Funk T., Kristensen D.K., Jacobsen L.H., Ravn S.F., Bindslev N., et al. Increase in invasive group A streptococcal infections and emergence of novel, rapidly expanding sub-lineage of the virulent Streptococcus pyogenes M1 clone, Denmark, 2023. Eurosurveillance. 2023;28:2300291. doi: 10.2807/1560-7917.ES.2023.28.26.2300291. PubMed DOI PMC

Zhi X., Li H.K., Li H., Loboda Z., Charles S., Vieira A., Huse K., Jauneikaite E., Reeves L., Mok K.Y., et al. Emerging invasive group A streptococcus M1UK Lineage detected by allele-specific PCR, England, 2020. Emerg. Infect. Dis. 2023;29:1007–1010. doi: 10.3201/eid2905.221887. PubMed DOI PMC

Lynskey N.N., Jauneikaite E., Li H.K., Zhi X., Turner C.E., Mosavie M., Pearson M., Asai M., Lobkowicz L., Chow J.Y., et al. Emergence of dominant toxigenic M1T1 Streptococcus pyogenes clone during increased scarlet fever activity in England: A population-based molecular epidemiological study. Lancet Infect. Dis. 2019;19:1209–1218. doi: 10.1016/S1473-3099(19)30446-3. PubMed DOI PMC

Alcolea-Medina A., Snell L.B., Alder C., Charalampous T., Williams T.G.S., Synnovis Microbiology Laboratory Group. Tan M.K.I., Al-Yaakoubi N., Humayun G., Newsholme W., et al. The ongoing Streptococcus pyogenes (Group A Streptococcus) outbreak in London, United Kingdom, in December 2022: A molecular epidemiology study. Clin. Microbiol. Infect. 2023;29:887–890. doi: 10.1016/j.cmi.2023.03.001. PubMed DOI PMC

Guy R., Henderson K.L., Coelho J., Hughes H., Mason E.L., Gerver S.M., Demirjian A., Watson C., Sharp A., Brown C.S., et al. Increase in invasive group A streptococcal infection notifications, England, 2022. Eurosurveillance. 2023;28:2200942. doi: 10.2807/1560-7917.ES.2023.28.1.2200942. PubMed DOI PMC

Apte R.S., Chen D.S., Ferrara N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell. 2019;176:1248–1264. doi: 10.1016/j.cell.2019.01.021. PubMed DOI PMC

Lu S.L., Kuo C.F., Chen H.W., Yang Y.S., Liu C.C., Anderson R., Wu J.J., Lin Y.S. Insufficient Acidification of Autophagosomes Facilitates Group A Streptococcus Survival and Growth in Endothelial Cells. mBio. 2015;6:e01435-15. doi: 10.1128/mBio.01435-15. PubMed DOI PMC

Lu S.L., Kawabata T., Cheng Y.L., Omori H., Hamasaki M., Kusaba T., Iwamoto R., Arimoto H., Noda T., Lin Y.S., et al. Endothelial cells are intrinsically defective in xenophagy of Streptococcus pyogenes. PLoS Pathog. 2017;13:e1006444. doi: 10.1371/journal.ppat.1006444. PubMed DOI PMC

Semeraro F., Morescalchi F., Duse S., Gambicorti E., Cancarini A., Costagliola C. Pharmacokinetic and Pharmacodynamic Properties of Anti-VEGF Drugs After Intravitreal Injection. Curr. Drug Metab. 2015;16:572–584. doi: 10.2174/1389200216666151001120831. PubMed DOI

Touyz R.M., Herrmann S.M.S., Herrmann J. Vascular toxicities with VEGF inhibitor therapies-focus on hypertension and arterial thrombotic events. J. Am. Soc. Hypertens. 2018;12:409–425. doi: 10.1016/j.jash.2018.03.008. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...