Increasing Rate of Fatal Streptococcus pyogenes Bacteriemia-A Challenge for Prompt Diagnosis and Appropriate Therapy in Real Praxis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MH CZ - DRO - VFN00064165
Ministry of Health
PubMed
38792824
PubMed Central
PMC11124258
DOI
10.3390/microorganisms12050995
PII: microorganisms12050995
Knihovny.cz E-zdroje
- Klíčová slova
- GAS bacteriaemia, Streptococcus pyogenes, appropriate therapy, lactate, myoglobin, procalcitonin,
- Publikační typ
- časopisecké články MeSH
Streptococcus pyogenes, group A streptococci (GAS) bacteriaemia, is a life-threatening infection with high mortality, requiring fast diagnosis together with the use of appropriate antibiotic therapy as soon as possible. Our study analysed data from 93 patients with GAS bacteraemia at the General University Hospital in Prague between January 2006 and March 2024. In the years 2016-2019 there was an increase in GAS bacteraemia. Mortality in the period 2006-2019 was 21.9%; in the period 2020-2024, the mortality increased to 41.4%, p = 0.08. At the same time, in the post-2020 period, the time from hospital admission to death was reduced from 9.5 days to 3 days. A significant predictor of worse outcome in this period was high levels of procalcitonin, >35.1 µg/L (100% sensitivity and 82.35% specificity), and lactate, >5 mmol/L (90.91% sensitivity and 91.67% specificity). Myoglobin was a significant predictor in both compared periods, the AUC was 0.771, p = 0.044, and the AUC was an even 0.889, p ≤ 0.001, respectively. All isolates of S. pyogenes were susceptible to penicillin, and resistance to clindamycin was 20.3% from 2006-2019 and 10.3% in 2020-2024. Appropriate therapy was initiated in 89.1%. and 96.6%, respectively. We hypothesise that the increase in mortality after 2020 might be due to a decrease in the immune status of the population.
Clinical Biochemistry General University Hospital 128 08 Prague Czech Republic
Clinical Microbiology and ATB Centre General University Hospital 128 08 Prague Czech Republic
Department of Medical Microbiology Palacky University 779 00 Olomouc Czech Republic
Department of Plant Sciences University of Cambridge Cambridge CB2 3EA UK
Department of Surgery University Hospital Bulovka 180 00 Prague Czech Republic
Zobrazit více v PubMed
Rello J., van Engelen T.S.R., Alp E., Calandra T., Cattoir V., Kern W.V., Netea M.G., Nseir S., Opal S.M., van de Veerdonk F.L. Towards precision medicine in sepsis: A position paper from the European Society of Clinical Microbiology and Infectious Diseases. Clin. Microbiol. Infect. 2018;24:1264–1272. doi: 10.1016/j.cmi.2018.03.011. PubMed DOI
Gouel-Cheron A., Swihart B.J., Warner S., Mathew L., Strich J.R., Mancera A., Follmann D., Kadri S.S. Epidemiology of ICU-onset bloodstream infection: Prevalence, pathogens, and risk factors among 150,948 ICU patients at 85 U.S. hospitals*. Crit. Care Med. 2022;50:1725–1736. doi: 10.1097/CCM.0000000000005662. PubMed DOI PMC
Carapetis J.R., Steer A.C., Mulholland E.K., Weber M. The global burden of group A streptococcal diseases. Lancet Infect. Dis. 2005;5:685–694. doi: 10.1016/S1473-3099(05)70267-X. PubMed DOI
Barnett T.C., Bowen A.C., Carapetis J.R. The fall and rise of Group A Streptococcus diseases. Epidemiol. Infect. 2018;147:e4. doi: 10.1017/S0950268818002285. PubMed DOI PMC
Efstratiou A., Lamagni T. Epidemiology of Streptococcus pyogenes. In: Ferretti J.J., Stevens D.L., Fischetti V.A., editors. Streptococcus Pyogenes: Basic Biology to Clinical Manifestations. University of Oklahoma Health Sciences Center; Oklahoma City, OK, USA: 2016. PubMed
Ron M., Brosh-Nissimov T., Korenman Z., Treygerman O., Sagi O., Valinsky L., Rokney A. Invasive Multidrug-Resistant emm93.0 Streptococcus pyogenes Strain Harboring a Novel Genomic Island, Israel, 2017–2019. Emerg. Infect. Dis. 2022;28:118–126. doi: 10.3201/eid2801.210733. PubMed DOI PMC
Walker M.J., Barnett T.C., McArthur J.D., Cole J.N., Gillen C.M., Henningham A., Sriprakash K.S., Sanderson-Smith M.L., Nizet V. Disease manifestations and pathogenic mechanisms of Group A Streptococcus. Clin. Microbiol. Rev. 2014;27:264–301. doi: 10.1128/CMR.00101-13. PubMed DOI PMC
Shakoor S., Khan E., Mir F., Malik F.R., Jamil B. Secular trends of Streptococcus pyogenes sepsis in Pakistan and analysis of clinical features in a hospitalized cohort. Trop. Biomed. 2017;34:648–656. PubMed
Meehan M., Murchan S., Gavin P.J., Drew R.J., Cunney R. Epidemiology of an upsurge of invasive group A streptococcal infections in Ireland, 2012–2015. J. Inf. Secur. 2018;77:183–190. doi: 10.1016/j.jinf.2018.05.010. PubMed DOI
Blagden S., Watts V., Verlander N.Q., Pegorie M. Invasive group A streptococcal infections in North West England: Epidemiology, risk factors and fatal infection. Public Health. 2020;186:63–70. doi: 10.1016/j.puhe.2020.06.007. PubMed DOI
Vilhonen J., Vuopio J., Vahlberg T., Gröndahl-Yli-Hannuksela K., Rantakokko-Jalava K., Oksi J. Group A streptococcal bacteremias in Southwest Finland 2007–2018: Epidemiology and of infectious diseases consultation in antibiotic treatment selection. Eur. J. Clin. Microbiol. Infect. Dis. 2020;39:1339–1348. doi: 10.1007/s10096-020-03851-6. PubMed DOI PMC
Bläckberg A., Svedevall S., Lundberg K., Nilson B., Kahn F., Rasmussen M. Time to blood culture positivity: An independent predictor of mortality in Streptococcus Pyogenes bacteremia. Open Forum Infect. Dis. Ther. 2022;9:ofac163. doi: 10.1093/ofid/ofac163. PubMed DOI PMC
Thomson T.N., Campbell P.T., Gibney K.B. The epidemiology of invasive group A streptococcal disease in Victoria, 2007–2017: An analysis of linked datasets. Aust. N. Z. J. Public Health. 2022;46:878–883. doi: 10.1111/1753-6405.13290. PubMed DOI
GBD 2019 Antimicrobial Resistance Collaborators Global mortality associated with 33 bacterial pathogens in 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2022;400:2221–2248. doi: 10.1016/S0140-6736(22)02185-7. PubMed DOI PMC
Tabah A., Buetti N., Staiquly Q., Ruckly S., Akova M., Aslan A.T., Leone M., Conway M.A., Bassetti M., Arvaniti K., et al. Epidemiology and outcomes of hospital-acquired bloodstream infections in intensive care unit patients: The EUROBACT-2 international cohort study. Intensive Care Med. 2023;49:178–190. doi: 10.1007/s00134-022-06944-2. PubMed DOI PMC
Reglinski M., Sriskandan S. The contribution of group A streptococcal virulence determinants to the pathogenesis of sepsis. Virulence. 2014;5:127–136. doi: 10.4161/viru.26400. PubMed DOI PMC
Lu S.-L., Omori H., Zhou Y., Lin Y.-S., Liu C.-C., Wu J.-J., Noda T. VEGF-mediated augmentation of Autophagic and lysosomal activity in endothelial cells defends against intracellular Streptococcus pyogenes. mBio. 2022;13:e0123322. doi: 10.1128/mbio.01233-22. PubMed DOI PMC
Okumura C.Y.M., Nizet V. Subterfuge and sabotage: Evasion of host innate defenses by invasive gram-positive bacterial pathogens. Annu. Rev. Microbiol. 2014;68:439–458. doi: 10.1146/annurev-micro-092412-155711. PubMed DOI PMC
Brouwer S., Barnett T.C., Rivera-Hernandez T., Rohde M., Walker M.J. Streptococcus pyogenes adhesion and colonization. FEBS Lett. 2016;590:3739–3757. doi: 10.1002/1873-3468.12254. PubMed DOI
Rivera-Hernandez T., Carnathan D.G., Jones S., Cork A.J., Davies M.R., Moyle P.M., Toth I., Batzloff M.R., McCarthy J., Nizet V., et al. An experimental group A Streptococcus vaccine that reduces pharyngitis and tonsillitis in a nonhuman primate model. mBio. 2019;10:e00693-19. doi: 10.1128/mBio.00693-19. PubMed DOI PMC
Huang E., Maldonado A.Q., Kjellman C., Jordan S.C. Imlifidase for the treatment of anti-HLA antibody-mediated processes inkidney transplantation. Am. J. Transplant. 2022;22:691–697. doi: 10.1111/ajt.16828. PubMed DOI PMC
Sjogren J., Lood R., Nageli A. On enzymatic remodeling of IgG glycosylation; unique tools with broad applications. Glycobiology. 2020;30:254–267. doi: 10.1093/glycob/cwz085. PubMed DOI PMC
Happonen L., Collin M. Immunomodulating Enzymes from Streptococcus pyogenes—In Pathogenesis, as Biotechnological Tools, and as Biological Drugs. Microorganisms. 2024;12:200. doi: 10.3390/microorganisms12010200. PubMed DOI PMC
Proft T., Fraser J.D. Streptococcal superantigens. Chem. Immunol. Allergy. 2007;93:1–23. PubMed
Stevens D.L., Bryant A.E., Yan S. Invasive group A streptococcal infection: New concepts in antibiotic treatment. Int. J. Antimicrob. 1994;4:297–301. doi: 10.1016/0924-8579(94)90029-9. PubMed DOI
Allen U., Moore D. Invasive group A streptococcal disease: Management and chemoprophylaxis. Can. J. Infect. Dis. Med. Microbiol. 2010;21:115–118. doi: 10.1155/2010/585187. PubMed DOI PMC
Eagle H. Experimental approach to the problem of treatment failure with penicillin. I. Group A streptococcal infection in mice. Am. J. Med. 1952;13:389–399. doi: 10.1016/0002-9343(52)90293-3. PubMed DOI
Stevens D.L., Gibbons A.E., Bergstrom R., Winn V. The Eagle effect revisited: Efficacy of clindamycin, erythromycin, and penicillin in the treatment of streptococcal myositis. J. Infect. Dis. 1988;158:23–28. doi: 10.1093/infdis/158.1.23. PubMed DOI
Gajdács M., Ábrók M., Lázár A., Burián K. Beta-Haemolytic group A, C and G streptococcal infections in southern Hungary: A 10-year population-based retrospective survey (2008–2017) and a review of the literature. Infect. Drug Resist. 2020;13:4739–4749. doi: 10.2147/idr.s279157. PubMed DOI PMC
Jayakumar J.S., Niyas V.K.M., Arjun R. Group A streptococcal bacteremia: Ten years’ experience from a tertiary Care Center in South India. Indian J. Crit. Care Med. Peer-Rev. Off. Publ. Indian Soc. Crit. Care Med. 2022;26:1019–1021. doi: 10.5005/jp-journals-10071-24306. PubMed DOI PMC
Villalón P., Bárcena M., Medina-Pascual M.J., Garrido N., Pino-Rosa S., Carrasco G., Valdezate S. National Surveillance of tetracycline, erythromycin, and clindamycin resistance in invasive Streptococcus pyogenes: A retrospective study of the situation in Spain, 2007–2020. Antibiotics. 2023;12:99. doi: 10.3390/antibiotics12010099. PubMed DOI PMC
Databáze Výsledků Studie “RESPIRAČNÍ PATOGENY” [online]. Dostupný na. [(accessed on 15 April 2024)]. Available online: https://apps.szu.cz/rp/rezistence.php.
Chochua S., Metcalf B., Li Z., Mathis S., Tran T., Rivers J., Fleming-Dutra K.E., Li Y., McGee L., Beall B. Invasive group A streptococcal penicillin binding protein 2× variants associated with reduced susceptibility to β-lactam antibiotics in the United States, 2015–2021. Antimicrob. Agents Chemother. 2022;66:e0080222. doi: 10.1128/aac.00802-22. PubMed DOI PMC
Raveendran A.V., Kumar A., Gangadharan S. Biomarkers and newer laboratory investigations in the diagnosis of sepsis. J. R. Coll. Physicians Edinb. 2019;49:207–216. doi: 10.4997/jrcpe.2019.308. PubMed DOI
Candel F.J., Sá M.B., Belda S., Bou G., Del Pozo J.L., Estrada O., Ferrer R., González Del Castillo J., Julián-Jiménez A., Martín-Loeches I., et al. Current aspects in sepsis approach. Turning things around. Rev. Española Quimioter. 2018;31:298–315. PubMed PMC
Meisner M. Pathobiochemistry and clinical use of procalcitonin. Clin. Chim. Acta. 2002;323:17–29. doi: 10.1016/S0009-8981(02)00101-8. PubMed DOI
Aziz S.A., Nelwan E.J., Sukrisman L., Suhendro S. Higher cut-off serum procalcitonin level for sepsis diagnosis in metastatic solid tumor patients. BMC Res. Notes. 2018;11:84. PubMed PMC
Wacker C., Prkno A., Brunkhorst F.M., Schlattmann P. Procalcitonin as diagnostic marker for sepsis: A systematic review and meta-analysis. Lancet Infect. Dis. 2013;13:426–435. PubMed
Ullberg M., Özenci V. Identification and antimicrobial susceptibility testing of Gram-positive and Gram-negative bacteria from positive blood cultures using the Accelerate Pheno™ system. Eur. J. Clin. Microbiol. Infect. Dis. 2020;39:139–149. doi: 10.1007/s10096-019-03703-y. PubMed DOI PMC
O’Loughlin R.E., Roberson A., Cieslalc P.R., Lynfield R., Gershman K., Craig A., Albanese B.A., Farley M.M., Barrett N.L., Spina N.L. The epidemiology of invasive group A streptococcal infection and potential vaccine implications: United States, 2000–2004. Clin Infect Dis. 2007;45:853–862. doi: 10.1086/521264. PubMed DOI
Bonnet M., Lagier J.C., Raoult D., Khelaifia S. Bacterial culture through selective and non-selective conditions: The evolution of culture media in clinical microbiology. New Microbes New Infect. 2019;34:100622. doi: 10.1016/j.nmni.2019.100622. PubMed DOI PMC
Bursle E., Robson J. Non-culture methods for detecting infection. Aust. Prescr. 2016;39:171–175. doi: 10.18773/austprescr.2016.059. PubMed DOI PMC
Singer M., Deutschman C.S., Seymour C.W., Shankar-Hari M., Annane D., Bauer M., Bellomo R., Bernard G.R., Chiche J.D., Coopersmith C.M., et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) JAMA. 2016;315:801–810. doi: 10.1001/jama.2016.0287. PubMed DOI PMC
Dellinger R.P., Rhodes A., Evans L., Alhazzani W., Beale R., Jaeschke R., Machado F.R., Masur H., Osborn T., Parker M.M., et al. Surviving Sepsis Campaign Guidelines 2021. Crit. Care Med. 2023;51:431–444. doi: 10.1097/CCM.0000000000005804. PubMed DOI
Arora S., Singh P., Singh P.M., Trikha A. Procalcitonin levels in survivors and nonsurvivors of sepsis: Systematic review and meta-analysis. Shock. 2015;43:212–221. doi: 10.1097/SHK.0000000000000305. PubMed DOI
Wagner N.M., Van Aken C., Butschkau A., Bierhansl L., Kellner P., Schleusener V., Seggewiss J., Vollmar B., Nöldge-Schomburg G., Roesner J.P. Procalcitonin impairs endothelial cell function and viability. Anesth. Analg. 2017;124:836–845. doi: 10.1213/ANE.0000000000001574. PubMed DOI
Adamkova V., Adamkova V.G., Lahoda Brodska H. Procalcitonin: A tricky biomarker for an initial choice of appropriate atb therapy! Crit. Care. 2020;24((Suppl. S2)):P588.
Adamkova V., Lahoda Brodska H., Adamkova V.G., Zima T. Can gram-negative-like biomarker values in Streptococcus pyogenes sepsis negatively influence right choice of initial antibiotic therapy? Epidemiol. Mikrobiol. Imunol. 2020;69:128–133. PubMed
Valderrama J.A., Nizet V. Group A Streptococcus encounters with host macrophages. Future Microbiol. 2018;13:119–134. doi: 10.2217/fmb-2017-0142. PubMed DOI PMC
Vanderschueren S., Deeren D., Knockaert D.C., Bobbaers H., Bossuyt X., Peetermans W. Extremely elevated C-reactive protein. Eur. J. Intern. Med. 2006;17:430–433. doi: 10.1016/j.ejim.2006.02.025. PubMed DOI
Gómez N.F.P., Del Pilar Sanz Martín M., Chong M., Cruz N.D.Z., Hernández R.M., Molina I., Sanz I.G., Tejerina A.F., Rueda F.R. Usefulness of Procalcitonin Levels for Predicting the Microbiological Orientation in Patients with Sepsis. J. Pers. Med. 2024;14:208. doi: 10.3390/jpm14020208. PubMed DOI PMC
Garcia-Alvarez M., Marik P., Bellomo R. Sepsis-associated hyperlactatemia. Crit. Care. 2014;18:503. doi: 10.1186/s13054-014-0503-3. PubMed DOI PMC
Rueddel T., Daniel O., Poidinger B., Weiss M., Bach F., Dey K., Häberle H., Kaisers U., Rüddel H., Schädler D., et al. Hyperlactatemia is an independent predictor of mortality and denotes distinct subtypes of severe sepsis and septic shock. J. Crit. Care. 2015;30:439. PubMed
Hu J., Jin Q., Fang H., Zhang W. Evaluating the predictive value of initial lactate/albumin ratios in determining prognosis of sepsis patients. Medicine. 2024;103:e37535. doi: 10.1097/MD.0000000000037535. PubMed DOI PMC
Dou Q.L., Liu J., Zhang W., Wang C.W., Gu Y., Li N., Hu R., Hsu W.T., Huang A.H., Tong H.S., et al. Dynamic changes in heparin-binding protein as a prognostic biomarker for 30-day mortality in sepsis patients in the intensive care unit. Sci. Rep. 2022;12:10751. doi: 10.1038/s41598-022-14827-1. PubMed DOI PMC
Svobodová E., Drábek T., Brodská H. Pervitin Intoxication with Two-peak Massive Myoglobinemia, Acute Kidney Injury and Marked Procalcitonin Increase Not Associated with Sepsis. Prague Med. Rep. 2022;123:266–278. doi: 10.14712/23362936.2022.25. PubMed DOI
Raju N.A., Rao S.V., Joel J.C., Jacob G.G., Anil A.K., Gowri S.M., Kandasamy S. Predictive Value of Serum Myoglobin and Creatine Phosphokinase for Development of Acute Kidney Injury in Traumatic Rhabdomyolysis. Indian J. Crit. Care Med. 2017;21:852–856. doi: 10.4103/ijccm.IJCCM_186_17. PubMed DOI PMC
Uchino S., Kellum J.A., Bellomo R., Doig G.S., Morimatsu H., Morgera S., Schetz M., Tan I., Bouman C., Macedo E., et al. Acute renal failure in critically ill patients: A multinational, multicenter study. JAMA. 2005;294:813–818. doi: 10.1001/jama.294.7.813. PubMed DOI
Bellomo R., Kellum J.A., Ronco C., Wald R., Martensson J., Maiden M., Bagshaw S.M., Glassford N.J., Lankadeva Y., Vaara S.T., et al. Acute kidney injury in sepsis. Intensive Care Med. 2017;43:816–828. doi: 10.1007/s00134-017-4755-7. PubMed DOI
Hoste E.A., Bagshaw S.M., Bellomo R., Cely C.M., Colman R., Cruz D.N., Edipidis K., Forni L.G., Gomersall C.D., Govil D., et al. Epidemiology of acute kidney injury in critically ill patients: The multinational AKI-EPI study. Intensive Care Med. 2015;41:1411–1423. doi: 10.1007/s00134-015-3934-7. PubMed DOI
Vincent J.L., Sakr Y., Sprung C.L., Ranieri V.M., Reinhart K., Gerlach H., Moreno R., Carlet J., Le Gall J.R., Payen D. Sepsis in European intensive care units: Results of the SOAP study. Crit. Care Med. 2006;34:344–353. doi: 10.1097/01.CCM.0000194725.48928.3A. PubMed DOI
Andreoni F., Zurcher C., Tarnutzer A., Schilcher K., Neff A., Keller N., Marques M.E., Poyart C., Schuepbach R.A., Zinkernagel A.S. Clindamycin affects group A streptococcus virulence factors and improves clinical outcome. J. Infect. Dis. 2017;215:269–277. PubMed
Mulla Z.D., Leaverton P.E., Wiersma S.T. Invasive group A streptococcal infections in Florida. South Med. J. 2003;96:968–973. doi: 10.1097/01.SMJ.0000051060.95210.9A. PubMed DOI
Linner A., Darenberg J., Sjolin J., Henriques-Normarlc B., Norrby-Teglund A. Clinical efficacy of polyspecific intravenous immunoglobulin therapy in patients with streptococcal toxic shock syndrome: A comparative observational study. Clin. Infect. Dis. 2014;59:851–857. doi: 10.1093/cid/ciu449. PubMed DOI
Couture-Cossette A., Carignan A., Mercier A., Desruisseaux C., Valiquette L., Pépin J. Secular trends in incidence of invasive beta-hemolytic streptococci and efficacy of adjunctive therapy in Quebec, Canada, 1996–2016. PLoS ONE. 2018;13:e0206289. doi: 10.1371/journal.pone.0206289. PubMed DOI PMC
Armengol Álvarez L., Van de Sijpe G., Desmet S., Metsemakers W.-J., Spriet I., Allegaert K., Rozenski J. Ways to Improve Insights into Clindamycin Pharmacology and Pharmacokinetics Tailored to Practice. Antibiotics. 2022;11:701. doi: 10.3390/antibiotics11050701. PubMed DOI PMC
White B.P., Siegrist E.A. Increasing clindamycin resistance in group A Streptococcus. Lancet Infect. Dis. 2021;21:1208–1209. PubMed
Bamford A., Whittaker E. Resurgence of group A streptococcal disease in children. BMJ. 2023;380:43. doi: 10.1136/bmj.p43. PubMed DOI
Bagcchi S. Surge of invasive group A streptococcus disease. Lancet Infect. Dis. 2023;23:284. doi: 10.1016/S1473-3099(23)00043-9. PubMed DOI
Nash K., Lai J., Sandhu K., Chandan J.S., Shantikumar S., Ogunlayi F., Coleman P.C. Impact of national COVID-19 restrictions on incidence of notifiable communicable diseases in England: An interrupted time series analysis. BMC Public Health. 2022;22:2318. doi: 10.1186/s12889-022-14796-0. PubMed DOI PMC
Johannesen T.B., Munkstrup C., Edslev S.M., Baig S., Nielsen S., Funk T., Kristensen D.K., Jacobsen L.H., Ravn S.F., Bindslev N., et al. Increase in invasive group A streptococcal infections and emergence of novel, rapidly expanding sub-lineage of the virulent Streptococcus pyogenes M1 clone, Denmark, 2023. Eurosurveillance. 2023;28:2300291. doi: 10.2807/1560-7917.ES.2023.28.26.2300291. PubMed DOI PMC
Zhi X., Li H.K., Li H., Loboda Z., Charles S., Vieira A., Huse K., Jauneikaite E., Reeves L., Mok K.Y., et al. Emerging invasive group A streptococcus M1UK Lineage detected by allele-specific PCR, England, 2020. Emerg. Infect. Dis. 2023;29:1007–1010. doi: 10.3201/eid2905.221887. PubMed DOI PMC
Lynskey N.N., Jauneikaite E., Li H.K., Zhi X., Turner C.E., Mosavie M., Pearson M., Asai M., Lobkowicz L., Chow J.Y., et al. Emergence of dominant toxigenic M1T1 Streptococcus pyogenes clone during increased scarlet fever activity in England: A population-based molecular epidemiological study. Lancet Infect. Dis. 2019;19:1209–1218. doi: 10.1016/S1473-3099(19)30446-3. PubMed DOI PMC
Alcolea-Medina A., Snell L.B., Alder C., Charalampous T., Williams T.G.S., Synnovis Microbiology Laboratory Group. Tan M.K.I., Al-Yaakoubi N., Humayun G., Newsholme W., et al. The ongoing Streptococcus pyogenes (Group A Streptococcus) outbreak in London, United Kingdom, in December 2022: A molecular epidemiology study. Clin. Microbiol. Infect. 2023;29:887–890. doi: 10.1016/j.cmi.2023.03.001. PubMed DOI PMC
Guy R., Henderson K.L., Coelho J., Hughes H., Mason E.L., Gerver S.M., Demirjian A., Watson C., Sharp A., Brown C.S., et al. Increase in invasive group A streptococcal infection notifications, England, 2022. Eurosurveillance. 2023;28:2200942. doi: 10.2807/1560-7917.ES.2023.28.1.2200942. PubMed DOI PMC
Apte R.S., Chen D.S., Ferrara N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell. 2019;176:1248–1264. doi: 10.1016/j.cell.2019.01.021. PubMed DOI PMC
Lu S.L., Kuo C.F., Chen H.W., Yang Y.S., Liu C.C., Anderson R., Wu J.J., Lin Y.S. Insufficient Acidification of Autophagosomes Facilitates Group A Streptococcus Survival and Growth in Endothelial Cells. mBio. 2015;6:e01435-15. doi: 10.1128/mBio.01435-15. PubMed DOI PMC
Lu S.L., Kawabata T., Cheng Y.L., Omori H., Hamasaki M., Kusaba T., Iwamoto R., Arimoto H., Noda T., Lin Y.S., et al. Endothelial cells are intrinsically defective in xenophagy of Streptococcus pyogenes. PLoS Pathog. 2017;13:e1006444. doi: 10.1371/journal.ppat.1006444. PubMed DOI PMC
Semeraro F., Morescalchi F., Duse S., Gambicorti E., Cancarini A., Costagliola C. Pharmacokinetic and Pharmacodynamic Properties of Anti-VEGF Drugs After Intravitreal Injection. Curr. Drug Metab. 2015;16:572–584. doi: 10.2174/1389200216666151001120831. PubMed DOI
Touyz R.M., Herrmann S.M.S., Herrmann J. Vascular toxicities with VEGF inhibitor therapies-focus on hypertension and arterial thrombotic events. J. Am. Soc. Hypertens. 2018;12:409–425. doi: 10.1016/j.jash.2018.03.008. PubMed DOI PMC