Endocrine effect of phthalate metabolites and a butterfly effect of prenatal exposure to androgens on qualitative aspects of female sexual response- an initial survey
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38806628
PubMed Central
PMC12043500
DOI
10.1038/s41443-024-00919-1
PII: 10.1038/s41443-024-00919-1
Knihovny.cz E-zdroje
- MeSH
- androgeny * MeSH
- dospělí MeSH
- endokrinní disruptory * MeSH
- kyseliny ftalové * moč MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- průzkumy a dotazníky MeSH
- sexuální chování * účinky léků MeSH
- těhotenství MeSH
- zpožděný efekt prenatální expozice * MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- androgeny * MeSH
- endokrinní disruptory * MeSH
- kyseliny ftalové * MeSH
- phthalic acid MeSH Prohlížeč
There is growing evidence that endocrine disruptive chemicals have deleterious effects on sexual and reproductive function. To examine subjective sexual functions in human females and their relationship to postnatal phthalate exposure and perinatal androgenization, a Sexuality Score (SS) was established from a first-stage survey questionnaire of subjective sexual function filled out by female university students (n = 68; average age 25.23 ± 5.17 years; rural 25.51 ± 6.74 vs. urban 25.85 ± 1.43 years). Seventeen phthalate metabolites in urine samples were analyzed by high-performance liquid chromatography (HPLC) and tandem mass spectrometry (MS/MS). Females were also assessed for the 2D:4D digit ratio as an index of perinatal androgenization. The mean age of menarche was 12.82 ± 1.35 years (rural 12.59 ± 1.39 vs. urban 13.18 ± 1.27; p = 0.01). The mean age at first sexual intercourse was 14.88 ± 6.89 years (rural 14.62 ± 7.20 vs. urban 15.24 ± 6.55), and as the age of first sexual intercourse increases, the SS score tends to increase as well, albeit moderately (r = 0.25, p = 0.037). Mono-iso-butyl phthalate, mono(2-ethyl-5-carboxypentyl) phthalate, mono(hydroxy-n-butyl) phthalate, mono(2-ethyl-5-oxohexyl) phthalate (p ≤ 0.05) and mono(2-carboxymethylhexyl) phthalate (p ≤ 0.01) were negatively associated with SS. A compounding butterfly effect of prenatal exposure to androgens was observed with disruptive effects of mono(2-ethyl-5-oxohexyl) phthalate and mono(2-ethyl-5-carboxypentyl) phthalate on sexual function. Exposure to phthalates in adult females may lead to disruption of subjective sexual function, especially concerning sexual desire and sexual satisfaction, and perinatal androgenization could augment these effects.
Deaprtment of Psychology Comenius University Bratislava Slovakia
Department of Nursing Constantine the Philosopher University Nitra Slovakia
Department of Psychology Charles University Prague Czech Republic
Department of Zoology and Anthropology Constantine the Philosopher University Nitra Slovakia
Zobrazit více v PubMed
Hiort O The differential role of androgens in early human sex development. BMC Med. 2013; 10.1186/1741-7015-11-152. PubMed PMC
Gore AC, Holley A, Crews D Mate choice, sexual selection, and endocrine-disrupting chemicals. Horm Behav. 2018; 10.1016/j.yhbeh.2017.09.001. PubMed PMC
Mhaouty-Kodja S, Naulé L, Capela D Sexual behavior: From hormonal regulation to endocrine disruption. Neuroendocrinology. 2018; 10.1159/000494558. PubMed
Zoeller RT, Brown TR, Doan LL, Gore AC, Skakkebæk NE, Soto AM, et al. Endocrine-Disrupting Chemicals and Public Health Protection: A Statement of Principles from The Endocrine Society. Endocrinology. 2012; 10.1210/en.2012-1422. PubMed PMC
Darbre P D Endocrine disruption and human health. Academic Press, pp. 520, 2022. ISBN 978-0-12-821985-04.
Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal Á, Prins GS, et al. EDC-2: The Endocrine Society’s second scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev. 2015; 10.1210/er.2015-1010. PubMed PMC
Blocker TD, Ophir AG Cryptic confounding compounds: a brief consideration of the influences of anthropogenic contaminants on courtship and mating behavior. Acta Ethol. 2012; 10.1007/s10211-012-0137-x. PubMed PMC
Lilienthal H, Hack A, Roth-Härer A, Grande SW, Talsness CE Effects of developmental exposure to 2,2′,4,4′,5-Pentabromodiphenyl ether (PBDE-99) on sex steroids, sexual development, and sexually dimorphic behavior in rats. Environ Health Perspect. 2006; 10.1289/ehp.8391. PubMed PMC
Mhaouty-Kodja S Courtship vocalizations: A potential biomarker of adult exposure to endocrine disrupting compounds? Mol Cell Endocrinol. 2020; 10.1016/j.mce.2019.110664. PubMed
Palanza P, Nagel SC, Parmigiani S, Saal FSV Perinatal exposure to endocrine disruptors: sex, timing and behavioral endpoints. Curr Opin Behav Sci. 2016; 10.1016/j.cobeha.2015.11.017. PubMed PMC
Rebuli ME, Patisaul HB Assessment of sex specific endocrine disrupting effects in the prenatal and pre-pubertal rodent brain. J Steroid Biochem Mol Biol. 2016; 10.1016/j.jsbmb.2015.08.021. PubMed PMC
Monje LD, Varayoud J, Muñoz-De-Toro M, Luque EH, Ramos JG Neonatal exposure to bisphenol A alters estrogen-dependent mechanisms governing sexual behavior in the adult female rat. Reprod Toxicol. 2009; 10.1016/j.reprotox.2009.06.012. PubMed
Lee HC, Yamanouchi K, Nishihara M Effects of perinatal exposure to Phthalate/Adipate esters on hypothalamic gene expression and sexual behavior in rats. J Reprod Dev. 2006; 10.1262/jrd.17096. PubMed
Meeker JD, Calafat AM, Hauser R Urinary phthalate metabolites and their biotransformation products: predictors and temporal variability among men and women. J Expo Sci Environ Epidemiol. 2012; 10.1038/jes.2012.7. PubMed PMC
Hannon PR, Flaws JA The effects of phthalates on the ovary. Front Endocrinol (Lausanne). 2015; 10.3389/fendo.2015.00008. PubMed PMC
Engel A, Buhrke T, Imber F, Jessel S, Seidel A, Völkel W, et al. Agonistic and antagonistic effects of phthalates and their urinary metabolites on the steroid hormone receptors ERα, ERβ, and AR. Toxicol Lett. 2017; 10.1016/j.toxlet.2017.05.028. PubMed
Feng M, Wu X, Li J, Ding L, Wang Z, Sen Y, et al. [Relationship between daily exposure to bisphenol A and male sexual function-a study from the reproductive center]. Zhonghua Liu Xing Bing Xue Za Zhi. 2018; 10.3760/cma.j.issn.0254-6450.2018.06.027. PubMed
Li DK, Zhou Z, Miao M, He Y, Qing D, Wu T, et al. Relationship between urine Bisphenol‐A level and declining male sexual function. J Androl. 2010; 10.2164/jandrol.110.010413. PubMed
Shoorei H, Seify M, Talebi SF, Majidpoor J, Dehaghi YK, Shokoohi M Different types of bisphenols alter ovarian steroidogenesis: Special attention to BPA. Heliyon. 2023; 10.1016/j.heliyon.2023.e16848. PubMed PMC
Siddiqui S, Mateen S, Ahmad R, Moin S A brief insight into the etiology, genetics, and immunology of polycystic ovarian syndrome (PCOS). J Assist Reprod Genet. 2022; 10.1007/s10815-022-02625-7. PubMed PMC
Hlisníková H, Petrovičová I, Kolena B, Šidlovská M, Sirotkin AV Effects and Mechanisms of phthalates’ Action on Reproductive processes and Reproductive Health: a literature review. Int J Environ Res Public Health. 2020; 10.3390/ijerph17186811. PubMed PMC
Uldbjerg CS, Koch T, Lim Y, Gregersen LS, Olesen CS, Andersson A, et al. Prenatal and postnatal exposures to endocrine disrupting chemicals and timing of pubertal onset in girls and boys: a systematic review and meta-analysis. Hum ReprodUpdate. 2022; 10.1093/humupd/dmac013. PubMed PMC
Barrett ES, Parlett LE, Wang C, Drobnis EZ, Redmon JB, Swan SH Environmental exposure to di-2-ethylhexyl phthalate is associated with low interest in sexual activity in premenopausal women. Horm Behav. 2014; 10.1016/j.yhbeh.2014.10.003. PubMed PMC
Hlisníková H, Petrovičová I, Kolena B, Šidlovská M, Sirotkin AV Effects and mechanisms of phthalates’ action on neurological processes and neural health: a literature review. Pharmacol Rep. 2021; 10.1007/s43440-021-00215-5. PubMed
Manning JT, Fink B Digit ratio. In: Springer eBooks. 2018; 10.1007/978-3-319-16999-6_3829-1.
Jeevanandam S, Muthu PK 2D:4D Ratio and its Implications in Medicine. J Clin Diagn Res. 2016; 10.7860/jcdr/2016/21952.9000. PubMed PMC
Kolena B, Hlisníková H, Kečkéšová Ľ, Šidlovská M, Trnovec T, Petrovičová I Risk of Abdominal Obesity Associated with Phthalate Exposure of Nurses. Toxics. 2022; 10.3390/toxics10030143. PubMed PMC
Pilka T, Petrovičová I, Kolena B, Zatko T, Trnovec T Relationship between variation of seasonal temperature and extent of occupational exposure to phthalates. Environ Sci Pollut Res Int. 2014; 10.1007/s11356-014-3385-7. PubMed
Koch HM, Rüther M, Schütze A, Conrad A, Pälmke C, Apel P, et al. Phthalate metabolites in 24-h urine samples of the German Environmental Specimen Bank (ESB) from 1988 to 2015 and a comparison with US NHANES data from 1999 to 2012. Int J Hyg Environ Health. 2017; 10.1016/j.ijheh.2016.11.003. PubMed
López ME, Göen T, Mol H, Nübler S, Haji-Abbas-Zarrabi K, Koch HM, et al. The European human biomonitoring platform - Design and implementation of a laboratory quality assurance/quality control (QA/QC) programme for selected priority chemicals. Int J Hyg Environ Health. 2021; 10.1016/j.ijheh.2021.113740. PubMed
Faul F, Erdfelder E, Buchner A, Lang AG Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav Res Methods. 2009; 10.3758/brm.41.4.1149. PubMed
Phthalates Factsheet | National Biomonitoring Program | CDC. Available from: https://www.cdc.gov/biomonitoring/Phthalates_FactSheet.html.
Vogel N, Frederiksen H, Lange R, Jørgensen N, Koch H, Weber T, et al. Urinary excretion of phthalates and the substitutes DINCH and DEHTP in Danish young men and German young adults between 2000 and 2017 – A time trend analysis. Int J Hyg Environ Health. 2023; 10.1016/j.ijheh.2022.114080. PubMed
Zota AR, Calafat AM, Woodruff TJ Temporal Trends in Phthalate Exposures: Findings from the National Health and Nutrition Examination Survey, 2001-10. Environ Health Perspect. 2014; 10.1289/ehp.1306681. PubMed PMC
Wang Y, Zhu H, Kannan K A review of biomonitoring of phthalate exposures. Toxics. 2019; 10.3390/toxics7020021. PubMed PMC
Giuliano F, Pfaus JG, Srilatha B, Hedlund P, Hisasue SI, Marson L, et al. Experimental models for the study of female and male sexual function. J Sex Med. 2010; 10.1111/j.1743-6109.2010.01960.x. PubMed
Pfaus JG, Coria-Avila GA, Rodríguez-Manzo G Translational animal models for sexual health. In Caba, MS., Manzo-Denes, J., & Komisaruk, BR (eds). From Animal Models to Humans: Translational Research Toward Human Health, Xalapa, VER: Universidad Veracuruzana, Press 2023.pp 143-95.
Sobolewski M, Weiss B, Martin MC, Gurven M, Barrett ES Toxicoanthropology: phthalate exposure in relation to market access in a remote forager-horticulturalist population. Int J Hyg Environ Health. 2017; 10.1016/j.ijheh.2017.03.009. PubMed PMC
Astuto MC, Benford D, Bodin L, Cattaneo I, Halldórsson TI, Schlatter JR, et al. Applying the adverse outcome pathway concept for assessing non-monotonic dose responses: biphasic effect of bis(2-ethylhexyl) phthalate (DEHP) on testosterone levels. Arch Toxicol. 2022; 10.1007/s00204-022-03409-9. PubMed
Bancroft J, Janssen E The dual control model of male sexual response: a theoretical approach to centrally mediated erectile dysfunction. Neurosci Biobehav Rev. 2000; 10.1016/s0149-7634(00)00024-5. PubMed
Janssen E, Vorst HCM, Finn PR, Bancroft J The sexual inhibition (SIS) and sexual excitation (SES) scales: II. Predicting psychophysiological response patterns. J Sex Res. 2002; 10.1080/00224490209552131. PubMed
Carpenter D, Janssen E, Graham CA, Vorst HCM, Wicherts JM Women’s Scores on the Sexual Inhibition/Sexual Excitation Scales (SIS/SES): Gender Similarities and differences. J Sex Res. 2008; 10.1080/00224490701808076. PubMed