Cross-species variability in lobular geometry and cytochrome P450 hepatic zonation: insights into CYP1A2, CYP2D6, CYP2E1 and CYP3A4

. 2024 ; 15 () : 1404938. [epub] 20240516

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38818378

There is a lack of systematic research exploring cross-species variation in liver lobular geometry and zonation patterns of critical drug-metabolizing enzymes, a knowledge gap essential for translational studies. This study investigated the critical interplay between lobular geometry and key cytochrome P450 (CYP) zonation in four species: mouse, rat, pig, and human. We developed an automated pipeline based on whole slide images (WSI) of hematoxylin-eosin-stained liver sections and immunohistochemistry. This pipeline allows accurate quantification of both lobular geometry and zonation patterns of essential CYP proteins. Our analysis of CYP zonal expression shows that all CYP enzymes (besides CYP2D6 with panlobular expression) were observed in the pericentral region in all species, but with distinct differences. Comparison of normalized gradient intensity shows a high similarity between mice and humans, followed by rats. Specifically, CYP1A2 was expressed throughout the pericentral region in mice and humans, whereas it was restricted to a narrow pericentral rim in rats and showed a panlobular pattern in pigs. Similarly, CYP3A4 is present in the pericentral region, but its extent varies considerably in rats and appears panlobular in pigs. CYP2D6 zonal expression consistently shows a panlobular pattern in all species, although the intensity varies. CYP2E1 zonal expression covered the entire pericentral region with extension into the midzone in all four species, suggesting its potential for further cross-species analysis. Analysis of lobular geometry revealed an increase in lobular size with increasing species size, whereas lobular compactness was similar. Based on our results, zonated CYP expression in mice is most similar to humans. Therefore, mice appear to be the most appropriate species for drug metabolism studies unless larger species are required for other purposes, e.g., surgical reasons. CYP selection should be based on species, with CYP2E1 and CYP2D6 being the most preferable to compare four species. CYP1A2 could be considered as an additional CYP for rodent versus human comparisons, and CYP3A4 for mouse/human comparisons. In conclusion, our image analysis pipeline together with suggestions for species and CYP selection can serve to improve future cross-species and translational drug metabolism studies.

Zobrazit více v PubMed

Agarwal A. N., Nania J., Qiu L., Lewis B., Mais D. D. (2022). Impact of liver biopsy size on histopathologic evaluation of liver allograft rejection. Arch. Pathol. Lab. Med. 146 (12), 1530–1534. 10.5858/arpa.2021-0257-OA PubMed DOI

Albadry M., Höpfl S., Ehteshamzad N., König M., Böttcher M., Neumann J., et al. (2022). Periportal steatosis in mice affects distinct parameters of pericentral drug metabolism. Sci. Rep. 12 (1), 21825. 10.1038/s41598-022-26483-6 PubMed DOI PMC

Almazroo O. A., Miah M. K., Venkataramanan R. (2017). Drug metabolism in the liver. Clin. Liver Dis. 21 (1), 1–20. 10.1016/j.cld.2016.08.001 PubMed DOI

Ben-Moshe S., Shapira Y., Moor A. E., Manco R., Veg T., Bahar Halpern K., et al. (2019). Spatial sorting enables comprehensive characterization of liver zonation. Nat. Metab. 1 (9), 899–911. 10.1038/s42255-019-0109-9 PubMed DOI PMC

Bradski G., Kaehler A. (2008). Learning OpenCV: computer vision with the OpenCV library (Sebastopol, CA, United States: O’Reilly Media, Inc; ).

Bravo A. A., Sheth S. G., Chopra S. (2001). Liver biopsy. N. Engl. J. Med. 344 (7), 495–500. 10.1056/NEJM200102153440706 PubMed DOI

Dalgaard L. (2015). Comparison of minipig, dog, monkey and human drug metabolism and disposition. J. Pharmacol. Toxicol. Methods 74, 80–92. 10.1016/j.vascn.2014.12.005 PubMed DOI

European Association for the Study of the Liver, European Association for the Study of Diabetes, and European Association for the Study of Obesity (2016). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 64 (6), 1388–1402. 10.1016/j.jhep.2015.11.004 PubMed DOI

Fuhr U., Jetter A., Kirchheiner J. (2007). Appropriate phenotyping procedures for drug metabolizing enzymes and transporters in humans and their simultaneous use in the “cocktail” approach. Clin. Pharmacol. Ther. 81 (2), 270–283. 10.1038/sj.clpt.6100050 PubMed DOI

Garza A. Z., Park S. B., Kocz R. (2022). “Drug elimination,” in StatPearls (Treasure Island (FL): StatPearls Publishing; ). PubMed

Gatenbee C. D., Baker A. M., Prabhakaran S., Swinyard O., Slebos R. J. C., Mandal G., et al. (2023). Virtual alignment of pathology image series for multi-gigapixel whole slide images. Nat. Commun. 14 (1), 4502. 10.1038/s41467-023-40218-9 PubMed DOI PMC

Gebhardt R. (1992). Metabolic zonation of the liver: regulation and implications for liver function. Pharmacol. Ther. 53 (3), 275–354. 10.1016/0163-7258(92)90055-5 PubMed DOI

Ghallab A., Myllys M., Holland C. H., Zaza A., Murad W., Hassan R., et al. (2019). Influence of liver fibrosis on lobular zonation. Cells 8 (12), 1556. 10.3390/cells8121556 PubMed DOI PMC

Gillies S., van der Wel C., Van den Bossche J., Taves M. W., Arnott J., Ward B. C. (2023) Shapely (2.0.2). Zenodo. 10.5281/zenodo.8436711 DOI

Goode A., Gilbert B., Harkes J., Jukic D., Satyanarayanan M. (2013). OpenSlide: a vendor-neutral software foundation for digital pathology. J. Pathol. Inf. 4, 27. 10.4103/2153-3539.119005 PubMed DOI PMC

Guttman Y., Nudel A., Kerem Z. (2019). Polymorphism in cytochrome P450 3A4 is ethnicity related. Front. Genet. 10, 224. 10.3389/fgene.2019.00224 PubMed DOI PMC

Hammad S., Othman A., Meyer C., Telfah A., Lambert J., Dewidar B., et al. (2018). Confounding influence of tamoxifen in mouse models of Cre recombinase-induced gene activity or modulation. Arch. Toxicol. 92 (8), 2549–2561. 10.1007/s00204-018-2254-4 PubMed DOI

Hammer H., Schmidt F., Marx-Stoelting P., Potz O., Braeuning A. (2021). Cross-species analysis of hepatic cytochrome P450 and transport protein expression. Arch. Toxicol. 95 (1), 117–133. 10.1007/s00204-020-02939-4 PubMed DOI PMC

Hassan R., Hobloss Z., Myllys M., Gonzalez D., Begher-Tibbe B., Reinders J., et al. (2024). Acetaminophen overdose causes a breach of the blood-bile barrier in mice but not in rats. Arch. Toxicol. 98 (5), 1533–1542. 10.1007/s00204-024-03705-6 PubMed DOI

Hata S., Miki Y., Fujishima F., Sato R., Okaue A., Abe K., et al. (2010). Cytochrome 3A and 2E1 in human liver tissue: individual variations among normal Japanese subjects. Life Sci. 86 (11-12), 393–401. 10.1016/j.lfs.2010.01.011 PubMed DOI

Hoehme S., Hammad S., Boettger J., Begher-Tibbe B., Bucur P., Vibert E., et al. (2023). Digital twin demonstrates significance of biomechanical growth control in liver regeneration after partial hepatectomy. iScience 26 (1), 105714. 10.1016/j.isci.2022.105714 PubMed DOI PMC

Hrycay E. G., Bandiera S. M. (2009). Expression, function and regulation of mouse cytochrome P450 enzymes: comparison with human P450 enzymes. Curr. Drug Metab. 10 (10), 1151–1183. 10.2174/138920009790820138 PubMed DOI

Ishak K., Baptista A., Bianchi L., Callea F., De Groote J., Gudat F., et al. (1995). Histological grading and staging of chronic hepatitis. J. Hepatol. 22 (6), 696–699. 10.1016/0168-8278(95)80226-6 PubMed DOI

Jaeschke H., Xie Y., McGill M. R. (2014). Acetaminophen-induced liver injury: from animal models to humans. J. Clin. Transl. Hepatol. 2 (3), 153–161. 10.14218/JCTH.2014.00014 PubMed DOI PMC

Kietzmann T. (2017). Metabolic zonation of the liver: the oxygen gradient revisited. Redox Biol. 11, 622–630. 10.1016/j.redox.2017.01.012 PubMed DOI PMC

Kishida T., Muto S., Hayashi M., Tsutsui M., Tanaka S., Murakami M., et al. (2008). Strain differences in hepatic cytochrome P450 1A and 3A expression between Sprague-Dawley and Wistar rats. J. Toxicol. Sci. 33 (4), 447–457. 10.2131/jts.33.447 PubMed DOI

Kleiner D. E., Brunt E. M., Van Natta M., Behling C., Contos M. J., Cummings O. W., et al. (2005). Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41 (6), 1313–1321. 10.1002/hep.20701 PubMed DOI

Kruepunga N., Hakvoort T. B. M., Hikspoors J., Kohler S. E., Lamers W. H. (2019). Anatomy of rodent and human livers: what are the differences? Biochim. Biophys. Acta Mol. Basis Dis. 1865 (5), 869–878. 10.1016/j.bbadis.2018.05.019 PubMed DOI

Kwak H. C., Kim H. C., Oh S. J., Kim S. K. (2015). Effects of age increase on hepatic expression and activity of cytochrome P450 in male C57BL/6 mice. Arch. Pharm. Res. 38 (5), 857–864. 10.1007/s12272-014-0452-z PubMed DOI

Laine J. E., Auriola S., Pasanen M., Juvonen R. O. (2009). Acetaminophen bioactivation by human cytochrome P450 enzymes and animal microsomes. Xenobiotica 39 (1), 11–21. 10.1080/00498250802512830 PubMed DOI

Lambers L., Waschinsky N., Schleicher J., König M., Tautenhahn H. M., Albadry M., et al. (2024). Quantifying fat zonation in liver lobules: an integrated multiscale in silico model combining disturbed microperfusion and fat metabolism via a continuum biomechanical bi-scale, tri-phasic approach. Biomech. Model Mechanobiol. 23 (2), 631–653. 10.1007/s10237-023-01797-0 PubMed DOI PMC

Lau C., Kalantari B., Batts K. P., Ferrell L. D., Nyberg S. L., Graham R. P., et al. (2021). The Voronoi theory of the normal liver lobular architecture and its applicability in hepatic zonation. Sci. Rep. 11 (1), 9343. 10.1038/s41598-021-88699-2 PubMed DOI PMC

Lindros K. O. (1997). Zonation of cytochrome P450 expression, drug metabolism and toxicity in liver. Gen. Pharmacol. 28 (2), 191–196. 10.1016/s0306-3623(96)00183-8 PubMed DOI

Macenko M., Niethammer M., Marron J. S., Borland D., Woosley J. T., Guan X., et al. (2009). “A method for normalizing histology slides for quantitative analysis,” in 2009 IEEE international symposium on biomedical imaging: from nano to macro (IEEE; ), 1107–1110.

Manco R., Itzkovitz S. (2021). Liver zonation. J. Hepatol. 74 (2), 466–468. 10.1016/j.jhep.2020.09.003 PubMed DOI

Martignoni M., Groothuis G. M. M., de Kanter R. (2006). Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin. Drug Metabolism Toxicol. 2 (6), 875–894. 10.1517/17425255.2.6.875 PubMed DOI

Martini T., Naef F., Tchorz J. S. (2023). Spatiotemporal metabolic liver zonation and consequences on pathophysiology. Annu. Rev. Pathol. 18, 439–466. 10.1146/annurev-pathmechdis-031521-024831 PubMed DOI

McGill M. R., Jaeschke H. (2013). Metabolism and disposition of acetaminophen: recent advances in relation to hepatotoxicity and diagnosis. Pharm. Res. 30 (9), 2174–2187. 10.1007/s11095-013-1007-6 PubMed DOI PMC

McGill M. R., Williams C. D., Xie Y., Ramachandran A., Jaeschke H. (2012). Acetaminophen-induced liver injury in rats and mice: comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity. Toxicol. Appl. Pharmacol. 264 (3), 387–394. 10.1016/j.taap.2012.08.015 PubMed DOI PMC

Paine M. F., Hart H. L., Ludington S. S., Haining R. L., Rettie A. E., Zeldin D. C. (2006). The human intestinal cytochrome P450 pie. Drug Metabolism Dispos. 34 (5), 880–886. 10.1124/dmd.105.008672 PubMed DOI PMC

Palek R., Rosendorf J., Maleckova A., Vistejnova L., Bajcurova K., Mirka H., et al. (2020). Influence of mesenchymal stem cell administration on the outcome of partial liver resection in a porcine model of sinusoidal obstruction syndrome. Anticancer Res. 40 (12), 6817–6833. 10.21873/anticanres.14704 PubMed DOI

Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., et al. (2011). Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830. 10.5555/1953048.2078195 DOI

Peleman C., De Vos W. H., Pintelon I., Driessen A., Van Eyck A., Van Steenkiste C., et al. (2023). Zonated quantification of immunohistochemistry in normal and steatotic livers. Virchows Arch. 482 (6), 1035–1045. 10.1007/s00428-023-03496-8 PubMed DOI

Ricken T., Werner D., Holzhütter H. G., König M., Dahmen U., Dirsch O. (2015). Modeling function-perfusion behavior in liver lobules including tissue, blood, glucose, lactate and glycogen by use of a coupled two-scale PDE-ODE approach. Biomech. Model Mechanobiol. 14 (3), 515–536. 10.1007/s10237-014-0619-z PubMed DOI

Santoh M., Sanoh S., Takagi M., Ejiri Y., Kotake Y., Ohta S. (2016). Acetaminophen induces accumulation of functional rat CYP3A via polyubiquitination dysfunction. Sci. Rep. 6, 21373. 10.1038/srep21373 PubMed DOI PMC

Schenk A., Ghallab A., Hofmann U., Hassan R., Schwarz M., Schuppert A., et al. (2017). Physiologically-based modelling in mice suggests an aggravated loss of clearance capacity after toxic liver damage. Sci. Rep. 7 (1), 6224. 10.1038/s41598-017-04574-z PubMed DOI PMC

Schurink I. J., de Haan J. E., Willemse J., Mueller M., Doukas M., Roest H., et al. (2021). A proof of concept study on real-time LiMAx CYP1A2 liver function assessment of donor grafts during normothermic machine perfusion. Sci. Rep. 11 (1), 23444. 10.1038/s41598-021-02641-0 PubMed DOI PMC

Schwen L. O., Homeyer A., Schwier M., Dahmen U., Dirsch O., Schenk A., et al. (2016). Zonated quantification of steatosis in an entire mouse liver. Comput. Biol. Med. 73, 108–118. 10.1016/j.compbiomed.2016.04.004 PubMed DOI

Shannon M. W. (2007). “Chapter 5 - drug interactions,” in Haddad and winchester's clinical management of poisoning and drug overdose. Editors Shannon M. W., Borron S. W., Burns M. J. Fourth Edition (Philadelphia: W.B. Saunders; ), 97–104.

Sherlock S., Dooley J. (2002). Diseases of the liver and biliary system (Osney Mead, Oxford, United Kingdom: Blackwell Science; ).

Shimada T., Yamazaki H., Mimura M., Inui Y., Guengerich F. P. (1994). Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J. Pharmacol. Exp. Ther. 270 (1), 414–423. PubMed

Tirona R. G., Kim R. B. (2017). “Chapter 20 - introduction to clinical Pharmacology,” in Clinical and translational science. Editors Robertson D., Williams G. H. Second Edition (Academic Press; ), 365–388.

Trousil S., Lee P., Edwards R. J., Maslen L., Lozan-Kuehne J. P., Ramaswami R., et al. (2019). Altered cytochrome 2E1 and 3A P450-dependent drug metabolism in advanced ovarian cancer correlates to tumour-associated inflammation. Br. J. Pharmacol. 176 (18), 3712–3722. 10.1111/bph.14776 PubMed DOI PMC

Van Peer E., Verbueken E., Saad M., Casteleyn C., Van Ginneken C., Van Cruchten S. (2014). Ontogeny of CYP3A and P-glycoprotein in the liver and the small intestine of the Gottingen minipig: an immunohistochemical evaluation. Basic Clin. Pharmacol. Toxicol. 114 (5), 387–394. 10.1111/bcpt.12173 PubMed DOI

Vuppalanchi R. (2018). “22 - metabolism of drugs and xenobiotics,” in Practical hepatic pathology: a diagnostic approach. Editor Saxena R. Second Edition (Philadelphia: Elsevier; ), 319–326.

Wang Y., Rong R., Wei Y., Wang T., Xiao G., Zhu H., et al. (2023). Image-based quantification of histological features as a function of spatial location using the Tissue Positioning System. EBioMedicine 94, 104698. 10.1016/j.ebiom.2023.104698 PubMed DOI PMC

Yun K. U., Oh S. J., Oh J. M., Kang K. W., Myung C. S., Song G. Y., et al. (2010). Age-related changes in hepatic expression and activity of cytochrome P450 in male rats. Arch. Toxicol. 84 (12), 939–946. 10.1007/s00204-010-0520-1 PubMed DOI

Zaher H., Buters J. T., Ward J. M., Bruno M. K., Lucas A. M., Stern S. T., et al. (1998). Protection against acetaminophen toxicity in CYP1A2 and CYP2E1 double-null mice. Toxicol. Appl. Pharmacol. 152 (1), 193–199. 10.1006/taap.1998.8501 PubMed DOI

Zanger U. M., Schwab M. (2013). Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 138 (1), 103–141. 10.1016/j.pharmthera.2012.12.007 PubMed DOI

Zhou S. F. (2008). Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Curr. Drug Metab. 9 (4), 310–322. 10.2174/138920008784220664 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...