Design of Polymeric Nanoparticles for Theranostic Delivery of Capsaicin as Anti-Cancer Drug and Fluorescent Nitrogen-Doped Graphene Quantum Dots
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
BG22/000147
Ministerio de Universidades
LM2018129
Ministerstvo Školství, Mládeže a Tělovýchovy
TSA-2023-2751
Ankara Universitesi
24-12321S
Grantová Agentura České Republiky
PubMed
38819531
DOI
10.1002/mabi.202400149
Knihovny.cz E-zdroje
- Klíčová slova
- Capsaicin, N‐GQDs, amphiphilic block copolymers, nanoparticle, theranostic,
- MeSH
- dusík * chemie MeSH
- fluorescenční barviva chemie MeSH
- grafit * chemie MeSH
- kapsaicin * chemie farmakologie MeSH
- kvantové tečky * chemie terapeutické užití MeSH
- lidé MeSH
- MFC-7 buňky MeSH
- nanočástice * chemie MeSH
- nosiče léků chemie MeSH
- polymery chemie MeSH
- protinádorové látky * farmakologie chemie MeSH
- teranostická nanomedicína * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dusík * MeSH
- fluorescenční barviva MeSH
- grafit * MeSH
- kapsaicin * MeSH
- nosiče léků MeSH
- polymery MeSH
- protinádorové látky * MeSH
In recent years, multifunctional nanocarriers that provide simultaneous drug delivery and imaging have attracted enormous attention, especially in cancer treatment. In this research, a biocompatible fluorescent multifunctional nanocarrier is designed for the co-delivery of capsaicin (CPS) and nitrogen-doped graphene quantum dots (N-GQDs) using the pH sensitive amphiphilic block copolymer (poly(2-ethyl-2-oxazoline)-b-poly(ε-caprolactone), PEtOx-b-PCL). The effects of the critical formulation parameters (the amount of copolymer, the concentration of poly(vinyl alcohol) (PVA) as a stabilizing agent in the inner aqueous phase, and volume of the inner phase) are evaluated to achieve optimal nanoparticle (NP) properties using Central Composite Design. The optimized NPs demonstrated a desirable size distribution (167.8 ± 1.4 nm) with a negative surface charge (-19.9 ± 0.4) and a suitable loading capacity for CPS (70.80 ± 0.05%). The CPS & N-GQD NPs are found to have remarkable toxicity on human breast adenocarcinoma cell line (MCF-7). The solid fluorescent signal is acquired from cells containing multifunctional NPs, according to the confocal microscope imaging results, confirming the significant cellular uptake. This research illustrates the enormous potential for cellular imaging and enhanced cancer therapy offered by multifunctional nanocarriers that combine drug substances with the novel fluorescent agents.
Ankara University Graduate School of Health Sciences Dışkapı Ankara 06110 Turkey
Department of Biotechnology Biotechnology Institute Ankara University Keçiören Ankara 06135 Turkey
Materials Technologies Marmara Research Center TUBITAK Gebze Kocaeli 41470 Turkey
Zobrazit více v PubMed
P. Parashar, C. B. Tripathi, M. Arya, J. Kanoujia, M. Singh, A. Yadav, G. Kaithwas, S. A. Saraf, Phytomedicine 2019, 53, 107.
Q. Li, Y. Zhou, W. He, X. Ren, M. Zhang, Y. Jiang, Z. Zhou, Y. Luan, J. Controlled Release 2021, 338, 33.
K. Bhatt, P. Patil, P. Jani, P. Thakkar, K. Sawant, Drug Dev. Ind. Pharm. 2021, 47, 2013.
R. A. Ilyas, M. Y. M. Zuhri, M. N. F. Norrrahim, M. S. M. Misenan, M. A. Jenol, S. A. Samsudin, N. M. Nurazzi, M. R. M. Asyraf, A. B. M. Supian, S. P. Bangar, R. Nadlene, S. Sharma, A. A. B. Omran, Polymers 2022, 14, 182.
M. Dirauf, C. Grune, C. Weber, U. S. Schubert, D. Fischer, Eur. Polym. J. 2020, 134, 109801.
P. Wilson, P. C. Ke, T. P. Davis, K. Kempe, Eur. Polym. J. 2017, 88, 486.
U. C. Oz, Z. B. Bolat, U. U. Ozkose, S. Gulyuz, B. Kucukturkmen, M. P. Khalily, S. Ozcubukcu, O. Yilmaz, D. Telci, G. Esendagli, F. Sahin, A. Bozkir, Mater. Sci. Eng., C 2021, 123, 111929.
I. J. Gómez, M. Vázquez Sulleiro, A. Dolečková, N. Pizúrová, J. Medalová, R. Roy, D. Nečas, L. Zajíčková, J. Phys. Chem. C 2021, 125, 21044.
I. J. Gómez, M. V. Sulleiro, A. Dolečková, N. Pizúrová, J. Medalová, A. Bednařík, J. Preisler, D. Nečas, L. Zajíčková, Mater. Chem. Front. 2022, 6, 145.
I. Jénnifer Gómez, M. Russo, O. A. Arcidiacono, E. M. Sánchez‐Carnerero, P. Klán, L. Zajíčková, Mater. Chem. Front. 2022, 6, 1719.
I. J. Gómez, K. Ovejero‐Paredes, J. M. Méndez‐Arriaga, N. Pizúrová, M. Filice, L. Zajíčková, S. Prashar, S. Gómez‐Ruiz, Chemistry 2023, 29, 202301845.
I. J. Gómez, P. Křížková, A. Dolečková, L. Cardo, C. Wetzl, N. Pizúrová, M. Prato, J. Medalová, L. Zajíčková, Appl. Mater. Today 2024, 36, 102072.
Y. Nie, Y. Liu, Q. Zhang, X. Su, Q. Ma, Biosens. Bioelectron. 2019, 138, 111318.
S. Gulyuz, U. U. Ozkose, P. Kocak, D. Telci, O. Yilmaz, M. A. Tasdelen, eXPRESS Polym. Lett. 2018, 12, 146.
P. Kocak, U. C. Oz, Z. B. Bolat, U. U. Ozkose, S. Gulyuz, M. A. Tasdelen, O. Yilmaz, A. Bozkir, F. Sahin, D. Telci, Macromol. Biosci. 2021, 21, 2000287.
H. Hassan, S. K. Adam, E. Alias, M. M. Meor Mohd Affandi, A. F. Shamsuddin, R. Basir, Molecules 2021, 26, 5432.
S. Bhattacharjee, J. Controlled Release 2016, 235, 337.
M. Wiśniewska, V. Bogatyrov, I. Ostolska, K. Szewczuk‐Karpisz, K. Terpiłowski, A. Nosal‐Wiercińska, Adsorption 2016, 22, 417.
Y. Z. Zhou, R. G. Alany, V. Chuang, J. Wen, Drug Dev. Ind. Pharm. 2013, 39, 321.
M. Kaiser, S. Pereira, L. Pohl, S. Ketelhut, B. Kemper, C. Gorzelanny, H. J. Galla, B. M. Moerschbacher, F. M. Goycoolea, Sci. Rep. 2015, 5, 10048.
A. Al‐Samydai, W. Alshaer, E. A. S. Al‐Dujaili, H. Azzam, T. Aburjai, Nutrients 2021, 13, 3995.
I. J. Gomez, B. Arnaiz, M. Cacioppo, F. Arcudi, M. Prato, J. Mater. Chem. B 2018, 6, 5540.
K. Y. Win, C. P. Teng, E. Ye, M. Low, M. Y. Han, Small 2015, 11, 1197.
D. Nečas, P. Klapetek, Open Phys. 2012, 10, 181.
Y. O. Agrawal, M. Husain, K. D. Patil, V. Sodgir, T. S. Patil, V. V. Agnihotri, H. S. Mahajan, C. Sharma, S. Ojha, S. N. Goyal, Biomed. Pharmacother. 2022, 154, 113429.
B. Küçüktürkmen, A. Bozkır, Drug Dev. Ind. Pharm. 2018, 44, 306.