A pseudoautosomal glycosylation disorder prompts the revision of dolichol biosynthesis

. 2024 Jul 11 ; 187 (14) : 3585-3601.e22. [epub] 20240530

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38821050
Odkazy

PubMed 38821050
PubMed Central PMC11250103
DOI 10.1016/j.cell.2024.04.041
PII: S0092-8674(24)00467-7
Knihovny.cz E-zdroje

Dolichol is a lipid critical for N-glycosylation as a carrier for activated sugars and nascent oligosaccharides. It is commonly thought to be directly produced from polyprenol by the enzyme SRD5A3. Instead, we found that dolichol synthesis requires a three-step detour involving additional metabolites, where SRD5A3 catalyzes only the second reaction. The first and third steps are performed by DHRSX, whose gene resides on the pseudoautosomal regions of the X and Y chromosomes. Accordingly, we report a pseudoautosomal-recessive disease presenting as a congenital disorder of glycosylation in patients with missense variants in DHRSX (DHRSX-CDG). Of note, DHRSX has a unique dual substrate and cofactor specificity, allowing it to act as a NAD+-dependent dehydrogenase and as a NADPH-dependent reductase in two non-consecutive steps. Thus, our work reveals unexpected complexity in the terminal steps of dolichol biosynthesis. Furthermore, we provide insights into the mechanism by which dolichol metabolism defects contribute to disease.

AP HP Biochimie Métabolique et Cellulaire and Département de Génétique Hôpital Bichat Claude Bernard and Université de Paris Faculté de Médecine Xavier Bichat INSERM U1149 CRI Paris France

Department of Pediatrics Center for Metabolic Diseases University Hospitals Leuven Leuven Belgium

Developmental Brain Disorders Laboratory Université Paris Cité INSERM UMR1163 Imagine Institute Paris France

Division of Clinical and Metabolic Genetics Hospital for Sick Children Toronto ON Canada; Department of Paediatrics University of Toronto Toronto ON Canada; Program in Genetics and Genome Biology SickKids Research Institute Toronto ON Canada; Department of Molecular Genetics University of Toronto Toronto ON Canada

Division of Clinical and Metabolic Genetics Hospital for Sick Children Toronto ON Canada; Division of Neurology Hospital for Sick Children Toronto ON Canada; Department of Paediatrics University of Toronto Toronto ON Canada

Institute of Biomedical Sciences Faculty of Medicine Vilnius University Vilnius Lithuania

Laboratory for Molecular Diagnosis Center for Human Genetics KU Leuven Leuven Belgium

Laboratory for Molecular Diagnosis Center for Human Genetics KU Leuven Leuven Belgium; Univ Lille CNRS UMR 8576 UGSF Unité de Glycobiologie Structurale et Fonctionnelle 59000 Lille France

Laboratory for Study of Mitochondrial Disorders Department of Paediatrics and Inherited Metabolic Disorders 1st Faculty of Medicine and General University Hospital Prague Charles University Prague Czechia

Metabolic Research Group de Duve Institute Université Catholique de Louvain Brussels Belgium; WELBIO Department WEL Research Institute Wavre Belgium

Service Biochimie et Biologie Moléculaire Hospices Civils de Lyon; Laboratoire Carmen Inserm U1060 INRAE UMR1397 Université Claude Bernard Lyon 1 Lyon France

Univ Lille CNRS UMR 8576 UGSF Unité de Glycobiologie Structurale et Fonctionnelle 59000 Lille France

Erratum v

PubMed

Zobrazit více v PubMed

Aebi M. N-linked protein glycosylation in the ER. Biochim. Biophys. Acta. 2013;1833:2430–2437. doi: 10.1016/j.bbamcr.2013.04.001. PubMed DOI

Denecke J., Kranz C. Hypoglycosylation due to dolichol metabolism defects. Biochim. Biophys. Acta. 2009;1792:888–895. doi: 10.1016/J.BBADIS.2009.01.013. PubMed DOI

Shridas P., Rush J.S., Waechter C.J. Identification and characterization of a cDNA encoding a long-chain cis-isoprenyltranferase involved in dolichyl monophosphate biosynthesis in the ER of brain cells. Biochem. Biophys. Res. Commun. 2003;312:1349–1356. doi: 10.1016/j.bbrc.2003.11.065. PubMed DOI

Cantagrel V., Lefeber D.J., Ng B.G., Guan Z., Silhavy J.L., Bielas S.L., Lehle L., Hombauer H., Adamowicz M., Swiezewska E., et al. SRD5A3 Is Required for Converting Polyprenol to Dolichol and Is Mutated in a Congenital Glycosylation Disorder. Cell. 2010;142:203–217. doi: 10.1016/j.cell.2010.06.001. PubMed DOI PMC

Cantagrel V., Lefeber D.J. From glycosylation disorders to dolichol biosynthesis defects: a new class of metabolic diseases. J. Inherit. Metab. Dis. 2011;34:859–867. doi: 10.1007/S10545-011-9301-0. PubMed DOI PMC

Grabińska K.A., Park E.J., Sessa W.C. cis-Prenyltransferase: New Insights into Protein Glycosylation, Rubber Synthesis, and Human Diseases. J. Biol. Chem. 2016;291:18582–18590. doi: 10.1074/JBC.R116.739490. PubMed DOI PMC

Burda P., Aebi M. The dolichol pathway of N-linked glycosylation. Biochim. Biophys. Acta. 1999;1426:239–257. doi: 10.1016/S0304-4165(98)00127-5. PubMed DOI

Lehle L., Strahl S., Tanner W. Protein glycosylation, conserved from yeast to man: a model organism helps elucidate congenital human diseases. Angew. Chem. Int. Ed. Engl. 2006;45:6802–6818. doi: 10.1002/ANIE.200601645. PubMed DOI

Stiles A.R., Russell D.W. SRD5A3: A surprising role in glycosylation. Cell. 2010;142:196–198. doi: 10.1016/J.CELL.2010.07.003. PubMed DOI PMC

Sagami H., Igarashi Y., Tateyama S., Ogura K., Roos J., Lennarz W.J. Enzymatic formation of dehydrodolichal and dolichal, new products related to yeast dolichol biosynthesis. J. Biol. Chem. 1996;271:9560–9566. doi: 10.1074/jbc.271.16.9560. PubMed DOI

Ondruskova N., Cechova A., Hansikova H., Honzik T., Jaeken J. Congenital Disorders of Glycosylation: Still “Hot” in 2020. Biochim Biophys Act Gen Subj. 2021;1865:129751. doi: 10.1016/j.bbagen.2020.129751. PubMed DOI

Park E.J., Grabińska K.A., Guan Z., Stránecký V., Hartmannová H., Hodaňová K., Barešová V., Sovová J., Jozsef L., Ondrušková N., et al. Mutation of Nogo-B receptor, a subunit of cis-prenyltransferase, causes a congenital disorder of glycosylation. Cell Metab. 2014;20:448–457. doi: 10.1016/j.cmet.2014.06.016. PubMed DOI PMC

Sabry S., Vuillaumier-Barrot S., Mintet E., Fasseu M., Valayannopoulos V., Héron D., Dorison N., Mignot C., Seta N., Chantret I., et al. A case of fatal Type I congenital disorders of glycosylation (CDG I) associated with low dehydrodolichol diphosphate synthase (DHDDS) activity. Orphanet J. Rare Dis. 2016;11 doi: 10.1186/S13023-016-0468-1. PubMed DOI PMC

Morava E., Wevers R.A., Cantagrel V., Hoefsloot L.H., Al-Gazali L., Schoots J., Van Rooij A., Huijben K., Van Ravenswaaij-Arts C.M.A., Jongmans M.C.J., et al. A novel cerebello-ocular syndrome with abnormal glycosylation due to abnormalities in dolichol metabolism. Brain. 2010;133:3210–3220. doi: 10.1093/BRAIN/AWQ261. PubMed DOI PMC

Rappold G.A. The pseudoautosomal regions of the human sex chromosomes. Hum. Genet. 1993;92:315–324. doi: 10.1007/BF01247327. PubMed DOI

Bruneel A., Cholet S., Tran N.T., Mai T.D., Fenaille F. CDG biochemical screening: Where do we stand? Biochim. Biophys. Acta. Gen. Subj. 2020;1864 doi: 10.1016/j.bbagen.2020.129652. PubMed DOI

Zhang G., Luo Y., Li G., Wang L., Na D., Wu X., Zhang Y., Mo X., Wang L. DHRSX, a novel non-classical secretory protein associated with starvation induced autophagy. Int. J. Med. Sci. 2014;11:962–970. PubMed PMC

Hinch A.G., Altemose N., Noor N., Donnelly P., Myers S.R. Recombination in the human Pseudoautosomal region PAR1. PLoS Genet. 2014;10 doi: 10.1371/JOURNAL.PGEN.1004503. PubMed DOI PMC

Ellis N., Goodfellow P.N. The mammalian pseudoautosomal region. Trends Genet. 1989;5:406–410. doi: 10.1016/0168-9525(89)90199-6. PubMed DOI

Karczewski K.J., Francioli L.C., Tiao G., Cummings B.B., Alföldi J., Wang Q., Collins R.L., Laricchia K.M., Ganna A., Birnbaum D.P., et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020:434–443. doi: 10.1038/s41586-020-2308-7. PubMed DOI PMC

Varadi M., Anyango S., Deshpande M., Nair S., Natassia C., Yordanova G., Yuan D., Stroe O., Wood G., Laydon A., et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022;50:D439–D444. doi: 10.1093/NAR/GKAB1061. PubMed DOI PMC

Akdel M., Pires D.E.V., Pardo E.P., Jänes J., Zalevsky A.O., Mészáros B., Bryant P., Good L.L., Laskowski R.A., Pozzati G., et al. A structural biology community assessment of AlphaFold2 applications. Nat. Struct. Mol. Biol. 2022;29:1056–1067. doi: 10.1038/s41594-022-00849-w. PubMed DOI PMC

Hekkelman M.L., de Vries I., Joosten R.P., Perrakis A. AlphaFill: enriching AlphaFold models with ligands and cofactors. Nat. Methods. 2023:205–213. doi: 10.1038/s41592-022-01685-y. PubMed DOI PMC

Hua Y.H., Wu C.Y., Sargsyan K., Lim C. Sequence-motif Detection of NAD(P)-binding Proteins: Discovery of a Unique Antibacterial Drug Target. Sci. Rep. 2014:6471–6477. doi: 10.1038/srep06471. PubMed DOI PMC

Llargués-Sistac G., Bonjoch L., Castellvi-Bel S. HAP1, a new revolutionary cell model for gene editing using CRISPR-Cas9. Front. Cell Dev. Biol. 2023;11 doi: 10.3389/FCELL.2023.1111488/FULL. PubMed DOI PMC

Foulquier F., Amyere M., Jaeken J., Zeevaert R., Schollen E., Race V., Bammens R., Morelle W., Rosnoblet C., Legrand D., et al. TMEM165 deficiency causes a congenital disorder of glycosylation. Am. J. Hum. Genet. 2012;91:15–26. doi: 10.1016/j.ajhg.2012.05.002. PubMed DOI PMC

Morelle W., Potelle S., Witters P., Wong S., Climer L., Lupashin V., Matthijs G., Gadomski T., Jaeken J., Cassiman D., et al. Galactose supplementation in patients with TMEM165-CDG rescues the glycosylation defects. J. Clin. Endocrinol. Metab. 2017;102:1375–1386. doi: 10.1210/jc.2016-3443. PubMed DOI PMC

Mejhert N., Gabriel K.R., Frendo-Cumbo S., Krahmer N., Song J., Kuruvilla L., Chitraju C., Boland S., Jang D.K., von Grotthuss M., et al. The Lipid Droplet Knowledge Portal: A resource for systematic analyses of lipid droplet biology. Dev. Cell. 2022;57:387–397.e4. doi: 10.1016/J.DEVCEL.2022.01.003. PubMed DOI PMC

Rosenwald A.G., Krag S.S. Lec9 CHO glycosylation mutants are defective in the synthesis of dolichol. J. Lipid Res. 1990;31:523–533. doi: 10.1016/s0022-2275(20)43174-8. PubMed DOI

Könning D., Olbrisch T., Sypaseuth F.D., Tzschucke C.C., Christmann M. Oxidation of allylic and benzylic alcohols to aldehydes and carboxylic acids. Chem. Commun. 2014;50:5014–5016. doi: 10.1039/C4CC01305K. PubMed DOI

Gründahl J.E.H., Guan Z., Rust S., Reunert J., Müller B., Du Chesne I., Zerres K., Rudnik-Schöneborn S., Ortiz-Brüchle N., Häusler M.G., et al. Life with too much polyprenol: polyprenol reductase deficiency. Mol. Genet. Metab. 2012;105:642–651. doi: 10.1016/J.YMGME.2011.12.017. PubMed DOI PMC

Kale D., Kikul F., Phapale P., Beedgen L., Thiel C., Brügger B. Quantification of Dolichyl Phosphates Using Phosphate Methylation and Reverse-Phase Liquid Chromatography-High Resolution Mass Spectrometry. Anal. Chem. 2023;95:3210–3217. doi: 10.1021/ACS.ANALCHEM.2C03623. PubMed DOI PMC

Veech R.L., Eggleston L.V., Krebs H.A. The redox state of free nicotinamide-adenine dinucleotide phosphate in the cytoplasm of rat liver. Biochem. J. 1969;115:609–619. doi: 10.1042/BJ1150609A. PubMed DOI PMC

Cantó C., Menzies K.J., Auwerx J. NAD(+) Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus. Cell Metab. 2015;22:31–53. doi: 10.1016/J.CMET.2015.05.023. PubMed DOI PMC

Hall C.W., McLachlan K.R., Krag S.S., Robbins A.R. Reduced utilization of Man5GlcNAc2-P-P-lipid in a Lec9 mutant of Chinese hamster ovary cells: analysis of the steps in oligosaccharide-lipid assembly. J. Cell. Biochem. 1997;67:201–215. PubMed

Lu H., Sathe A.A., Xing C., Lehrman M.A. The Lec5 glycosylation mutant links homeobox genes with cholesterol and lipid-linked oligosaccharides. Glycobiology. 2019;29:106–109. doi: 10.1093/GLYCOB/CWY103. PubMed DOI PMC

Kaiden A., Rosenwald A.G., Cacan R., Verbert A., Krag S.S. Transfer of two oligosaccharides to protein in a Chinese hamster ovary cell B211 which utilizes polyprenol for its N-linked glycosylation intermediates. Arch. Biochem. Biophys. 1998;358:303–312. doi: 10.1006/ABBI.1998.0839. PubMed DOI

Beck P.J., Gething M.J., Sambrook J., Lehrman M.A. Complementing mutant alleles define three loci involved in mannosylation of Man5-GlcNAc2-P-P-dolichol in Chinese hamster ovary cells. Somat. Cell Mol. Genet. 1990;16:539–548. doi: 10.1007/BF01233094. PubMed DOI

Hall C.W., Robbins A.R., Krag S.S. Preliminary characterization of a Chinese hamster ovary cell glycosylation mutant isolated by screening for low intracellular lysosomal enzyme activity. Mol. Cell. Biochem. 1986;72:35–45. doi: 10.1007/BF00230634. PubMed DOI

Keller R.K., Rottler G.D., Cafmeyer N., Adair W.L., Jr. Subcellular localization and substrate specificity of dolichol kinase from rat liver. Biochim. Biophys. Acta. 1982;719:118–125. doi: 10.1016/0304-4165(82)90315-4. PubMed DOI

McLachlan K.R., Krag S.S. Three enzymes involved in oligosaccharide-lipid assembly in Chinese hamster ovary cells differ in lipid substrate preference. J. Lipid Res. 1994;35:1861–1868. PubMed

D’Souza-Schorey C., McLachlan K.R., Krag S.S., Elbein A.D. Mammalian glycosyltransferases prefer glycosyl phosphoryl dolichols rather than glycosyl phosphoryl polyprenols as substrates for oligosaccharyl synthesis. Arch. Biochem. Biophys. 1994;308:497–503. doi: 10.1006/abbi.1994.1070. PubMed DOI

Palamarczyk G., Lehle L., Mankowski T., Chojnacki T., Tanner W. Specificity of solubilized yeast glycosyl transferases for polyprenyl derivatives. Eur. J. Biochem. 1980;105:517–523. doi: 10.1111/J.1432-1033.1980.TB04527.X. PubMed DOI

McLachlan K.R., Krag S.S. Substrate specificity of N-acetylglucosamine 1-phosphate transferase activity in Chinese hamster ovary cells. Glycobiology. 1992;2:313–319. doi: 10.1093/GLYCOB/2.4.313. PubMed DOI

Polla D.L., Edmondson A.C., Duvet S., March M.E., Sousa A.B., Lehman A., CAUSES Study. Niyazov D., van Dijk F., Demirdas S., et al. Bi-allelic variants in the ER quality-control mannosidase gene EDEM3 cause a congenital disorder of glycosylation. Am. J. Hum. Genet. 2021;108:1342–1349. doi: 10.1016/J.AJHG.2021.05.010. PubMed DOI PMC

Péanne R., Vanbeselaere J., Vicogne D., Mir A.M., Biot C., Matthijs G., Guérardel Y., Foulquier F. Assessing ER and Golgi N-glycosylation process using metabolic labeling in mammalian cultured cells. Methods Cell Biol. 2013;118:157–176. doi: 10.1016/B978-0-12-417164-0.00010-0. PubMed DOI

Schenk B., Imbach T., Frank C.G., Grubenmann C.E., Raymond G.V., Hurvitz H., Korn-Lubetzki I., Revel-Vik S., Raas-Rotschild A., Luder A.S., et al. MPDU1 mutations underlie a novel human congenital disorder of glycosylation, designated type If. J. Clin. Invest. 2001;108:1687–1695. doi: 10.1172/JCI13419. PubMed DOI PMC

Kranz C., Denecke J., Lehrman M.A., Ray S., Kienz P., Kreissel G., Sagi D., Peter-Katalinic J., Freeze H.H., Schmid T., et al. A mutation in the human MPDU1 gene causes congenital disorder of glycosylation type If (CDG-If) J. Clin. Invest. 2001;108:1613–1619. doi: 10.1172/JCI13635. PubMed DOI PMC

Wheeler P.G., Ng B.G., Sanford L., Sutton V.R., Bartholomew D.W., Pastore M.T., Bamshad M.J., Kircher M., Buckingham K.J., Nickerson D.A., et al. SRD5A3-CDG: Expanding the phenotype of a congenital disorder of glycosylation with emphasis on adult onset features. Am. J. Med. Genet. 2016;170:3165–3171. doi: 10.1002/AJMG.A.37875. PubMed DOI PMC

Buczkowska A., Swiezewska E., Lefeber D.J. Genetic defects in dolichol metabolism. J. Inherit. Metab. Dis. 2015;38:157–169. doi: 10.1007/s10545-014-9760-1. PubMed DOI PMC

Xiao Q., Wang L., Supekar S., Shen T., Liu H., Ye F., Huang J., Fan H., Wei Z., Zhang C. Structure of human steroid 5α-reductase 2 with the anti-androgen drug finasteride. Nat. Commun. 2020:5430–5511. doi: 10.1038/s41467-020-19249-z. PubMed DOI PMC

Han Y., Zhuang Q., Sun B., Lv W., Wang S., Xiao Q., Pang B., Zhou Y., Wang F., Chi P., et al. Crystal structure of steroid reductase SRD5A reveals conserved steroid reduction mechanism. Nat. Commun. 2021;12 doi: 10.1038/S41467-020-20675-2. PubMed DOI PMC

Hori T., Yokomizo T., Ago H., Sugahara M., Ueno G., Yamamoto M., Kumasaka T., Shimizu T., Miyano M. Structural basis of leukotriene B4 12-hydroxydehydrogenase/15-Oxo-prostaglandin 13-reductase catalytic mechanism and a possible Src homology 3 domain binding loop. J. Biol. Chem. 2004;279:22615–22623. doi: 10.1074/JBC.M312655200. PubMed DOI

Pippione A.C., Boschi D., Pors K., Oliaro-Bosso S., Lolli M.L. Androgen-AR axis in primary and metastatic prostate cancer: chasing steroidogenic enzymes for therapeutic intervention. J. Cancer Metastasis Treat. 2017;3:328–361. doi: 10.20517/2394-4722.2017.44. DOI

Turner G.W., Croteau R. Organization of monoterpene biosynthesis in Mentha. Immunocytochemical localizations of geranyl diphosphate synthase, limonene-6-hydroxylase, isopiperitenol dehydrogenase, and pulegone reductase. Plant Physiol. 2004;136:4215–4227. doi: 10.1104/PP.104.050229. PubMed DOI PMC

Funabashi M., Grove T.L., Wang M., Varma Y., McFadden M.E., Brown L.C., Guo C., Higginbottom S., Almo S.C., Fischbach M.A. A metabolic pathway for bile acid dehydroxylation by the gut microbiome. Nature. 2020;582:566–570. doi: 10.1038/S41586-020-2396-4. PubMed DOI PMC

Rottenberg H. The Thermodynamic Description of Enzyme-Catalyzed Reactions: The Linear Relation between the Reaction Rate and the Affinity. Biophys. J. 1973;13:503–511. doi: 10.1016/S0006-3495(73)86004-7. PubMed DOI PMC

Stoll J., Rosenwald A.G., Krag S.S. A Chinese hamster ovary cell mutant F2A8 utilizes polyprenol rather than dolichol for its lipid-dependent asparagine-linked glycosylation reactions. J. Biol. Chem. 1988;263:10774–10782. doi: 10.1016/s0021-9258(18)38038-4. PubMed DOI

Rosenwald A.G., Stanley P., Krag S.S. Control of carbohydrate processing: increased beta-1,6 branching in N-linked carbohydrates of Lec9 CHO mutants appears to arise from a defect in oligosaccharide-dolichol biosynthesis. Mol. Cell Biol. 1989;9:914–924. doi: 10.1128/MCB.9.3.914-924.1989. PubMed DOI PMC

Kean E.L., Rush J.S., Waechter C.J. Activation of GlcNAc-P-P-dolichol synthesis by mannosylphosphoryldolichol is stereospecific and requires a saturated alpha-isoprene unit. Biochemistry. 1994;33:10508–10512. doi: 10.1021/BI00200A036. PubMed DOI

Kousal B., Honzík T., Hansíková H., Ondrušková N., Čechová A., Tesařová M., Stránecký V., Meliška M., Michaelides M., Lišková P., et al. Review of SRD5A3 Disease-Causing Sequence Variants and Ocular Findings in Steroid 5α-Reductase Type 3 Congenital Disorder of Glycosylation, and a Detailed New Case (retinal dystrophy/SRD5A3-CDG/SRD5A3/novel variant) Folia Biol. 2019;65:134–141. PubMed

Rauniyar N., Prokai L. Detection and identification of 4-hydroxy-2-nonenal Schiff-base adducts along with products of Michael addition using data-dependent neutral loss-driven MS3 acquisition: method evaluation through an in vitro study on cytochrome c oxidase modifications. Proteomics. 2009;9:5188–5193. doi: 10.1002/PMIC.200900116. PubMed DOI PMC

Mohamed M., Cantagrel V., Al-Gazali L., Wevers R.A., Lefeber D.J., Morava E. Normal glycosylation screening does not rule out SRD5A3-CDG. Eur. J. Hum. Genet. 2011;19:1019. doi: 10.1038/EJHG.2010.260. PubMed DOI PMC

Quellhorst G.J., Hall C.W., Robbins A.R., Krag S.S. Synthesis of dolichol in a polyprenol reductase mutant is restored by elevation of cis-prenyl transferase activity. Arch. Biochem. Biophys. 1997;343:19–26. doi: 10.1006/ABBI.1997.0141. PubMed DOI

Bertorelli R., Capone L., Ambrosetti F., Garavelli L., Varriale L., Mazza V., Stanghellini I., Percesepe A., Forabosco A. The homozygous deletion of the 3’ enhancer of the SHOX gene causes Langer mesomelic dysplasia. Clin. Genet. 2007;72:490–491. doi: 10.1111/J.1399-0004.2007.00875.X. PubMed DOI

Martinez-Moczygemba M., Doan M.L., Elidemir O., Fan L.L., Cheung S.W., Lei J.T., Moore J.P., Tavana G., Lewis L.R., Zhu Y., et al. Pulmonary alveolar proteinosis caused by deletion of the GM-CSFRalpha gene in the X chromosome pseudoautosomal region 1. J. Exp. Med. 2008;205:2711–2716. doi: 10.1084/JEM.20080759. PubMed DOI PMC

Suzuki T., Sakagami T., Rubin B.K., Nogee L.M., Wood R.E., Zimmerman S.L., Smolarek T., Dishop M.K., Wert S.E., Whitsett J.A., et al. Familial pulmonary alveolar proteinosis caused by mutations in CSF2RA. J. Exp. Med. 2008;205:2703–2710. doi: 10.1084/JEM.20080990. PubMed DOI PMC

Berletch J.B., Yang F., Xu J., Carrel L., Disteche C.M. Genes that escape from X inactivation. Hum. Genet. 2011;130:237–245. doi: 10.1007/S00439-011-1011-Z. PubMed DOI PMC

Wainer Katsir K., Linial M. Human genes escaping X-inactivation revealed by single cell expression data. BMC Genom. 2019;20 doi: 10.1186/S12864-019-5507-6. PubMed DOI PMC

Viuff M., Skakkebæk A., Johannsen E.B., Chang S., Pedersen S.B., Lauritsen K.M., Pedersen M.G.B., Trolle C., Just J., Gravholt C.H. X chromosome dosage and the genetic impact across human tissues. Genome Med. 2023;15:21. doi: 10.1186/S13073-023-01169-4. PubMed DOI PMC

Tartaglia N., Ayari N., Howell S., D’Epagnier C., Zeitler P. 48,XXYY, 48,XXXY and 49,XXXXY syndromes: not just variants of Klinefelter syndrome. Acta Paediatr. 2011;100:851–860. doi: 10.1111/J.1651-2227.2011.02235.X. PubMed DOI PMC

Astro V., Alowaysi M., Fiacco E., Saera-Vila A., Cardona-Londoño K.J., Aiese Cigliano R., Adamo A. Pseudoautosomal Region 1 Overdosage Affects the Global Transcriptome in iPSCs From Patients With Klinefelter Syndrome and High-Grade X Chromosome Aneuploidies. Front. Cell Dev. Biol. 2021;9 doi: 10.3389/FCELL.2021.801597/FULL. PubMed DOI PMC

Skakkebæk A., Nielsen M.M., Trolle C., Vang S., Hornshøj H., Hedegaard J., Wallentin M., Bojesen A., Hertz J.M., Fedder J., et al. DNA hypermethylation and differential gene expression associated with Klinefelter syndrome. Sci. Rep. 2018;8 doi: 10.1038/S41598-018-31780-0. PubMed DOI PMC

Lefèvre N., Corazza F., Valsamis J., Delbaere A., De Maertelaer V., Duchateau J., Casimir G. The Number of X Chromosomes Influences Inflammatory Cytokine Production Following Toll-Like Receptor Stimulation. Front. Immunol. 2019;10:9560–9566. doi: 10.3389/FIMMU.2019.01052. PubMed DOI PMC

Skuse D., Printzlau F., Wolstencroft J. Sex chromosome aneuploidies. Handb. Clin. Neurol. 2018;147:355–376. doi: 10.1016/B978-0-444-63233-3.00024-5. PubMed DOI

Costain G., Walker S., Marano M., Veenma D., Snell M., Curtis M., Luca S., Buera J., Arje D., Reuter M.S., et al. Genome Sequencing as a Diagnostic Test in Children With Unexplained Medical Complexity. JAMA Netw. Open. 2020;3 doi: 10.1001/jamanetworkopen.2020.18109. PubMed DOI PMC

Heremans I.P., Caligiore F., Gerin I., Bury M., Lutz M., Graff J., Stroobant V., Vertommen D., Teleman A.A., Van Schaftingen E., Bommer G.T. Parkinson’s disease protein PARK7 prevents metabolite and protein damage caused by a glycolytic metabolite. Proc. Natl. Acad. Sci. USA. 2022;119 doi: 10.1073/pnas.2111338119. PubMed DOI PMC

Corey E.J., Schmidt G. Useful procedures for the oxidation of alcohols involving pyridinium dichromate in aprotic media. Tetrahedron Lett. 1979;20:399–402. doi: 10.1016/S0040-4039(01)93515-4. DOI

Dewulf J.P., Gerin I., Rider M.H., Veiga-Da-Cunha M., Van Schaftingen E., Bommer G.T. The synthesis of branched-chain fatty acids is limited by enzymatic decarboxylation of ethyl- and methylmalonyl-CoA. Biochem. J. 2019;476:2427–2447. doi: 10.1042/BCJ20190500. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...