Comparison of postural control and space perception outcomes between robotic and conventional cochlear implantation in adults
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, srovnávací studie
Grantová podpora
GAUK 323721
Charles University Grant Agancy
grant NU21-08-00280
Cooperatio Program
NU20-08-00311
Cooperatio Program
PubMed
38825603
DOI
10.1007/s00405-024-08664-3
PII: 10.1007/s00405-024-08664-3
Knihovny.cz E-zdroje
- Klíčová slova
- Adults, Cochlear implantation, Hearing loss, Posturography, Robot-assisted surgery, Subjective visual vertical,
- MeSH
- dospělí MeSH
- kochleární implantace * metody MeSH
- kochleární implantáty MeSH
- lidé středního věku MeSH
- lidé MeSH
- posturální rovnováha * fyziologie MeSH
- roboticky asistované výkony * metody MeSH
- vnímání prostoru * fyziologie MeSH
- výsledek terapie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
PURPOSE: The aim of the study is to capture the difference between the groups in direct relation to the type of electrode array insertion during cochlear implantation (CI). The robotic insertion is expected to be a more gently option. As recent studies have shown, there is a difference in perception of visual vertical (SVV) and postural control related to the CI. We assume that there can be differences in postural control and space perception outcomes depending on the type of the surgical method. METHODS: In total, 37 (24 females, mean age ± SD was 42.9 ± 13.0) candidates for CI underwent an assessment. In 14 cases, the insertion of the electrode array was performed by a robotic system (RobOtol, Colin, France) and 23 were performed conventionally. In all of these patients, we performed the same examination before the surgery, the first day, and 3 weeks after the surgery. The protocol consists of static posturography and perception of visual vertical. RESULTS: The both groups, RobOtol and conventional, responded to the procedure similarly despite the dissimilar electrode insertion. There was no difference between two groups in the dynamic of perception SVV and postural parameters. Patients in both groups were statistically significantly affected by the surgical procedure, SVV deviation appeared in the opposite direction from the implanted ear: 0.90° ± 1.25; - 1.67° ± 3.05 and - 0.19° ± 1.78 PRE and POST surgery (p < 0.001). And this deviation was spontaneously adjusted in FOLLOW-UP after 3 weeks (p < 0.01) in the both groups. We did not find a significant difference in postural parameters between the RobOtol and conventional group, even over time. CONCLUSION: Although the robotic system RobOtol allows a substantial reduction in the speed of insertion of the electrode array into the inner ear, our data did not demonstrate a postoperative effect on vestibular functions (SVV and posturography), which have the same character and dynamics as in the group with standard manual insertion. REGISTRATION NUMBER: The project is registered on clinicaltrials.gov (registration number: NCT05547113).
Zobrazit více v PubMed
Jiam NT, Li C, Agrawal Y (2016) Hearing loss and falls: a systematic review and meta-analysis. Laryngoscope 126(11):2587–2596. https://doi.org/10.1002/lary.25927 PubMed DOI
Berge JE, Nordhal SHG, Aarstad HJ, Goplen FG (2019) Hearing as an independent predictor of postural balance in 1075 patients evaluated for dizziness. Otolaryngol Head Neck Surg 161(3):478–484. https://doi.org/10.1177/0194599819844961 PubMed DOI
Lin FR, Metter EJ, O’Brien RJ, Resnick SM, Zonderman AB et al (2011) Hearing loss and incident dementia. Arch Neurol 68(2):214–220. https://doi.org/10.1001/archneurol.2010.362 PubMed DOI PMC
Dixon PR, Feeny D, Tomlinson G, Cushing S, Chen JM et al (2020) Health-related quality of life changes associated with hearing loss. JAMA Otolaryngol Head Neck Surg 146(7):630–638. https://doi.org/10.1001/jamaoto.2020.0674 PubMed DOI
Vivek KJ, Rajbir S (2020) Impact of hearing loss on quality of life in adults. Int J Life Sci Pharma Res 10(5):221–225. https://doi.org/10.22376/ijpbs/lpr.2020.10.5.L221-225 DOI
Davis AC, Hoffman HJ (2019) Hearing loss: rising prevalence and impact. Bull World Health Organ 97(10):646-646A. https://doi.org/10.2471/BLT.19.224683 PubMed DOI PMC
Bouček J, Kluh J, Čada Z, Vokřál J, Skřivan J et al (2017) 30 let kochleárních implantací v České republice. Časopis lékařů českých 156(4):178–182 PubMed
Roche JP, Hansen MR (2015) On the horizon: cochlear implant technology. Otolaryngol Clin N Am 48(6):1097–1116. https://doi.org/10.1016/j.otc.2015.07.009 DOI
Macherey O, Carlyon RP (2014) Cochlear implants. Curr Biol 24(18):R878–R884. https://doi.org/10.1016/j.cub.2014.06.053 PubMed DOI
Swain SK (2022) Vertigo following cochlear implantation: a review. Int J Res Med Sci 10(2):572–577. https://doi.org/10.18203/2320-6012.ijrms20220310 DOI
Farinetti A, Ben Gharbia D, Mancini J, Roman S, Nicollas R et al (2014) Cochlear implant complications in 403 patients: comparative study of adults and children and review of the literature. Eur Ann Otorhinolaryngol Head Neck Dis 131(3):177–182. https://doi.org/10.1016/j.anorl.2013.05.005 PubMed DOI
Caversaccio M, Mantokoudis G, Wagber F, Aebischer P, Weder S et al (2022) Robotic cochlear implantation for direct cochlear access. J Vis Exp 16(184):1–10. https://doi.org/10.3791/64047 DOI
Panara K, Shahal D, Mittal R, Eshraghi AA (2021) Robotics for cochlear implantation surgery: challenges and opportunities. Otol Neurotol 42(7):e825–e835. https://doi.org/10.1097/MAO.0000000000003165 PubMed DOI
De Seta D, Daoudi H, Torres R, Ferrary E, Sterkers O et al (2022) Robotics, automation, active electrode arrays, and new devices for cochlear implantation: a contemporary review. Hear Res 414(2):1–16. https://doi.org/10.1016/j.heares.2021.108425 DOI
Gawecki W, Balcerowiak A, Podlawska P, Borowska P, Gibasiewicz R et al (2022) Robot-assisted electrode insertion in cochlear implantation controlled by intraoperative electrocochleography—a pilot study. J Clin Med 11(23):1–13. https://doi.org/10.3390/jcm11237045 DOI
Rajan GP, Kontorinis G, Kuthubutheen J (2012) The effects of insertion speed on inner ear function during cochlear implantation: a comparison study. Audiol Neurotol 18(1):17–22. https://doi.org/10.1159/000342821 DOI
Kontorinis G, Lenarz T, Stover T, Paasche G (2011) Impact of the insertion speed of cochlear implant electrodes on the insertion forces. Otol Neurotol 32(4):565–570. https://doi.org/10.1097/MAO.0b013e318219f6ac PubMed DOI
Ibrahim I, Da Silva SD, Segal B, Zeitouni A (2017) Effect of cochlear implant surgery on vestibular function: meta-analysis study. J Otolaryngol Head Neck Surg 46(1):1–10. https://doi.org/10.1186/s40463-017-0224-0 DOI
Truong M, Bester Ch, Orimoto K, Vartanyan M, Phyland D et al (2022) Cochlear implant surgery and perioperative dizziness is associated with utricular hyperfunction. J Vestib Res 32(3):295–304. https://doi.org/10.3233/VES-210053 PubMed DOI
Smeds H, Eastwood HT, Hampson AJ, Sale P, Campbell LJ et al (2015) Endolymphatic hydrops is prevalent in the first weeks following cochlear implantation. Hear Res 327(9):48–57. https://doi.org/10.1016/j.heares.2015.04.017 PubMed DOI
Heuninck E, Van De Heyning P, Van Rompaey V, Martens G, Topsakal V (2023) Audiological outcomes of robot-assisted cochlear implant surgery. Eur Arch Otorhinolaryngol 280(4):12. https://doi.org/10.1007/s00405-023-07961-7 DOI
ClinicalTrials.gov
NCT05547113