Current and future scenarios of suitability and expansion of cassava brown streak disease, Bemisia tabaci species complex, and cassava planting in Africa
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38832032
PubMed Central
PMC11146326
DOI
10.7717/peerj.17386
PII: 17386
Knihovny.cz E-zdroje
- Klíčová slova
- Bemisia tabaci, Cassava, Cassava brown streak disease, Climate change, Food security, Zero hunger,
- MeSH
- Hemiptera * fyziologie MeSH
- maniok * parazitologie MeSH
- nemoci rostlin * parazitologie statistika a číselné údaje MeSH
- zemědělské plodiny růst a vývoj parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Afrika epidemiologie MeSH
Cassava (Manihot esculenta) is among the most important staple crops globally, with an imperative role in supporting the Sustainable Development Goal of 'Zero hunger'. In sub-Saharan Africa, it is cultivated mainly by millions of subsistence farmers who depend directly on it for their socio-economic welfare. However, its yield in some regions has been threatened by several diseases, especially the cassava brown streak disease (CBSD). Changes in climatic conditions enhance the risk of the disease spreading to other planting regions. Here, we characterise the current and future distribution of cassava, CBSD and whitefly Bemisia tabaci species complex in Africa, using an ensemble of four species distribution models (SDMs): boosted regression trees, maximum entropy, generalised additive model, and multivariate adaptive regression splines, together with 28 environmental covariates. We collected 1,422 and 1,169 occurrence records for cassava and Bemisia tabaci species complex from the Global Biodiversity Information Facility and 750 CBSD occurrence records from published literature and systematic surveys in East Africa. Our results identified isothermality as having the highest contribution to the current distribution of cassava, while elevation was the top predictor of the current distribution of Bemisia tabaci species complex. Cassava harvested area and precipitation of the driest month contributed the most to explain the current distribution of CBSD outbreaks. The geographic distributions of these target species are also expected to shift under climate projection scenarios for two mid-century periods (2041-2060 and 2061-2080). Our results indicate that major cassava producers, like Cameron, Ivory Coast, Ghana, and Nigeria, are at greater risk of invasion of CBSD. These results highlight the need for firmer agricultural management and climate-change mitigation actions in Africa to combat new outbreaks and to contain the spread of CBSD.
African Institute for Mathematical Sciences Kigali Rwanda
Department of Mathematical Sciences University of Stellenbosch Stellenbosch South Africa
Institute for Plant Biotechnology Stellenbosch University Stellenbosch South Africa
Institute of Botany Czech Academy of Sciences Průhonice Czech Republic
Mathematical Bioscience Unit African Institute for Mathematical Sciences Cape Town South Africa
Zobrazit více v PubMed
Alicai T, Omongo CA, Maruthi MN, Hillocks R, Baguma Y, Kawuki R, Bua A, Otim-Nape GW, Colvin J. Re-emergence of cassava brown streak disease in Uganda. The American Phytopathological Society. 2007;91(1):24–29. doi: 10.1094/PD-91-0024. PubMed DOI
Alicai T, Szyniszewska AM, Omongo CA, Abidrabo P, Okao-Okuja G, Baguma Y, Ogwok E, Kawuki R, Esuma W, Tairo F, Bua A, Legg JP, Stutt ROJH, Godding D, Sseruwagi P, Ndunguru J, Gilligan CA. Expansion of the cassava brown streak pandemic in Uganda revealed by annual field survey data for 2004 to 2017. Scientific Data. 2019;6:327. doi: 10.1038/s41597-019-0334-9. PubMed DOI PMC
Almazroui M, Saeed F, Saeed S, Nazrul Islam M, Ismail M, Klutse NAB, Siddiqui MH. Projected change in temperature and precipitation over Africa from CMIP6. Earth Systems and Environment. 2020;4(3):455–475. doi: 10.1007/s41748-020-00161-x. DOI
Amuji CF. The future of rain-fed horticultural crops production in a changing West African climate. Reviews in Agricultural Science. 2021;9:206–220. doi: 10.7831/ras.9.0_206. DOI
Aregbesola OZ, Legg JP, Lund OS, Sigsgaard L, Sporleder M, Carhuapoma P, Rapisarda C. Life history and temperature-dependence of cassava-colonising populations of Bemisia tabaci. Journal of Pest Science. 2020;93(4):1225–1241. doi: 10.1007/s10340-020-01249-z. DOI
Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF. Present and future köppen-geiger climate classification maps at 1-km resolution. Scientific Data. 2018;5:180214. doi: 10.1038/sdata.2018.214. PubMed DOI PMC
Bizimana JP, Ngapout Y, Nyirakanani C, Shakir S, Kanju E, Legg JP, Vanderschuren H, et al. Breeding strategies for mitigating cassava brown streak disease in Africa. Tropical Plants. 2024;3:e006. doi: 10.48130/tp-0024-000600567. DOI
Bock L, Lauer A, Schlund M, Barreiro M, Bellouin N, Jones C, Eyring V, et al. Quantifying progress across different CMIP phases with the ESMValTool. Journal of Geophysical Research: Atmospheres. 2020;125(21):1–28. doi: 10.1029/2019JD03. DOI
Boykin LM, De Barro PJ. A practical guide to identifying members of the Bemisia tabaci species complex: and other morphologically identical species. Frontiers in Ecology and Evolution. 2014;2:45. doi: 10.3389/fevo.2014.00045. DOI
Brown JN, Sen Gupta A, Brown JR, Muir LC, Risbey JS, Whetton P, Zhang X, Ganachaud A, Murphy B, Wijffels SE. Implications of CMIP3 model biases and uncertainties for climate projections in the western tropical Pacific. Climatic Change. 2013;119(1):147–161. doi: 10.1007/s10584-012-0603-5. DOI
Bundi M, Kasoma C, Mbugua F, Williams F, Rwomushana I. Cassava brown streak disease: an evidence note on impacts and management strategies for Zambia. CABI; Wallingford: 2022.
Campo BVH, Hyman G, Bellotti A. Threats to cassava production: known and potential geographic distribution of four key biotic constraints. Food Security. 2011;3(3):329–345. doi: 10.1007/s12571-011-0141-4. DOI
Casinga CM, Wosula EM, Sikirou MM, Shirima RR, Munyerenkana CM, Nabahungu LN, Bashizi BK, Ugentho H, Monde G, Legg JP. Diversity and distribution of whiteflies colonizing cassava in Eastern Democratic Republic of Congo. Insects. 2022;13(9):849. doi: 10.3390/insects13090849. PubMed DOI PMC
Chemura A, Schauberger B, Gornott C. Impacts of climate change on agro-climatic suitability of major food crops in Ghana. PLOS ONE. 2020;15(6):1–21. doi: 10.1371/journal.pone.0229881. PubMed DOI PMC
Colvin J, Omongo CA, Maruthi MN, Otim-Nape GW, Thresh JM. Dual begomovirus infections and high Bemisia tabaci populations: two factors driving the spread of a cassava mosaic disease pandemic. Plant Pathology. 2004;53(5):577–584. doi: 10.1111/j.1365-3059.2004.01062.x. DOI
De Marco P, Nóbrega CC. Evaluating collinearity effects on species distribution models: an approach based on virtual species simulation. PLOS ONE. 2018;13(9):e0202403. doi: 10.1371/journal.pone.0202403. PubMed DOI PMC
de Tafur S, El-Sharkawy M, Calle F. Photosynthesis and yield performance of cassava in seasonally dry and semiarid environments. Photosynthetica. 1997;33(2):249–257. doi: 10.1023/A:1022116414969. DOI
Donnelly R, Gilligan CA. What is pathogen-mediated insect superabundance? Journal of the Royal Society Interface. 2020;17(170):20200229. doi: 10.1098/rsif.2020.0229. PubMed DOI PMC
Donnelly R, Sikazwe GW, Gilligan CA. Estimating epidemiological parameters from experiments in vector access to host plants, the method of matching gradients. PLOS Computational Biology. 2020;16(3):e1007724. PubMed PMC
El-Sharkawy MA. Cassava biology and physiology Cassava: a crop for sustainable agriculture and food security in developing countries. Plant Molecular Biology. 2004;56:481–501. doi: 10.1007/s11103-005-2270-7. PubMed DOI
Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, McOverton CMJ, Townsend Peterson A, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE. Novel methods improve prediction of species’ distributions from occurrence data. Ecography. 2006;29(2):129–151. doi: 10.1111/j.2006.0906-7590.04596.x. DOI
FAO . Save and grow: cassava. Food and Agriculture Organization of the United Nations; Rome: 2013.
FAO . FAO; Rome: 2021. FAOStat.
FAO, & IIASA Global Agro Ecological Zones version 4 (GAEZ v4). Dataset. 2000. https://gaez.fao.org/ https://gaez.fao.org/
Guan J, Li M, Ju X, Lin J, Wu J, Zheng J. The potential habitat of desert locusts is contracting: predictions under climate change scenarios. PeerJ. 2021;9:e12311. doi: 10.7717/peerj.12311. PubMed DOI PMC
Hijmans RJ, Cameron SE, Parra JL, Jones G, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology. 2005;25:1965–1978. doi: 10.1002/joc.1276. DOI
IPCC Climate change 2021 –the physical science basis: working group I contribution to the sixth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press2021 doi: 10.1017/9781009157896. DOI
Jarvis A, Ramirez-Villegas J, Campo BVH, Navarro-Racines C. Is cassava the answer to african climate change adaptation? Tropical Plant Biology. 2012;5(1):9–29. doi: 10.1007/s12042-012-9096-7. DOI
Jeremiah SC, Ndyetabula IL, Mkamilo GS, Haji S, Muhanna MM, Chuwa C, Kasele S, Bouwmeester H, Ijumba JN, Legg JP. The dynamics and environmental influence on interactions between cassava brown streak disease and the Whitefly, Bemisia tabaci. Phytopathology. 2015;105(5):646–655. doi: 10.1094/PHYTO-05-14-0146-R. PubMed DOI
Jiménez-Valverde A. Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Global Ecology and Biogeography. 2012;21(4):498–507. doi: 10.1111/j.1466-8238.2011.00683.x. DOI
Jones RAC, Barbetti MJ. CABI reviews: perspectives in agriculture, veterinary science, nutrition and natural resources, 7, (022) 2012. Influence of climate change on plant disease infections and epidemics caused by viruses and bacteria. DOI
Katono K, MacFadyen S, Omongo CA, Colvin J, Karungi J, Otim MH. Effect of temperature and cassava genotype on the development, fecundity and reproduction of Bemisia tabaci SSA1. African Crop Science Journal. 2022;30(2):185–203. doi: 10.4314/acsj.v30i2.6. DOI
Kotir JH. Climate change and variability in Sub-Saharan Africa: a review of current and future trends and impacts on agriculture and food security. Environment, Development and Sustainability. 2011;13(3):587–605. doi: 10.1007/s10668-010-9278-0. DOI
Kriticos DJ, Darnell RE, Yonow T, Ota N, Sutherst RW, Parry HR, De Barro PJ, et al. Improving climate suitability for Bemisia tabaci in East Africa is correlated with increased prevalence of whiteflies and cassava diseases. Scientific Reports. 2020;10(1):22049. doi: 10.1038/s41598-020-79149-6. PubMed DOI PMC
Lapidot M, Legg JP, Wintermantel WW, Polston JE. Management of whitefly-transmitted viruses in open-field production systems. Advances in Virus Research. 2014;90:147–206. doi: 10.1016/B978-0-12-801246-8.00003-2. PubMed DOI
Legg JP, Jeremiah SC, Obiero HM, Maruthi MN, Ndyetabula I, Okao-Okuja G, Bouwmeester H, Bigirimana S, Tata-Hangy W, Gashaka G, Mkamilo G, Alicai T, Lava Kumar P. Comparing the regional epidemiology of the cassava mosaic and cassava brown streak virus pandemics in Africa. Virus Research. 2011;159(2):161–170. doi: 10.1016/j.virusres.2011.04.018. PubMed DOI
Legg J, Ndalahwa M, Yabeja J, Ndyetabula I, Bouwmeester h, Shirima R, Mtunda K. Community phytosanitation to manage cassava brown streak disease. Virus Research. 2017;241:0–1. doi: 10.1016/j.virusres.2017.04.020. PubMed DOI PMC
Legg JP, Owor B, Sseruwagi P, Ndunguru J. Cassava mosaic virus disease in east and central Africa: epidemiology and management of A regional pandemic. Advances in Virus Research. 2006;67(06):355–418. doi: 10.1016/S0065-3527(06)67010-3. PubMed DOI
MacFadyen S, Paull C, Boykin LM, De Barro P, Maruthi MN, Otim M, Kalyebi A, Vassão DG, Sseruwagi P, Tay WT, Delatte H, Seguni Z, Colvin J, Omongo CA. Cassava whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) in East African farming landscapes: a review of the factors determining abundance. Bulletin of Entomological Research. 2018;108(5):565–582. doi: 10.1017/S0007485318000032. PubMed DOI PMC
Maruthi MN, Jeremiah SC, Mohammed IU, Legg JP. The role of the whitefly, Bemisia tabaci (Gennadius), and farmer practices in the spread of cassava brown streak ipomoviruses. Journal of Phytopathology. 2016;165:707–717. doi: 10.1111/jph.12609. PubMed DOI PMC
McQuaid CF, Gilligan CA, Van den Bosch F. Considering behaviour to ensure the success of a disease control. Royal Society Open Science. 2017;4(12):170721. doi: 10.1098/rsos.170721. PubMed DOI PMC
Meinshausen M, Nicholls ZRJ, Lewis J, Gidden MJ, Vogel E, Freund M, Beyerle U, Gessner C, Nauels A, Bauer N, Canadell JG, Daniel JS, John A, Krummel PB, Luderer G, Meinshausen N, Montzka SA, Rayner PJ, Reimann S, Wang RHJ, et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geoscientific Model Development. 2020;13(8):3571–3605. doi: 10.5194/gmd-13-3571-2020. DOI
Mudereri BT, Kimathi E, Chitata T, Moshobane MC, Abdel-Rahman EM. Landscape-scale biogeographic distribution analysis of the whitefly, Bemisia tabaci (Gennadius, 1889) in Kenya. International Journal of Tropical Insect Science. 2021;41(2):1585–1599. doi: 10.1007/s42690-020-00360-z. DOI
Mugerwa H, Rey MEC, Alicai T, Ateka E, Atuncha H, Ndunguru J, Sseruwagi P. Genetic diversity and geographic distribution of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) genotypes associated with Cassava in East Africa. Ecology and Evolution. 2012;2(11):2749–2762. doi: 10.1002/ece3.379. PubMed DOI PMC
Mugerwa H, Sseruwagi P, Colvin J, Seal S. Is high whitefly abundance on cassava in sub-Saharan Africa driven by biological traits of a specific, cryptic bemisia tabaci species? Insects. 2021;12(3):260. doi: 10.3390/insects12030260. PubMed DOI PMC
Nahm FS. Receiver operating characteristic curve: overview and practical use for clinicians. Korean Journal of Anesthesiology. 2022;75(1):25–36. doi: 10.4097/kja.21209. PubMed DOI PMC
Naimi B, Araújo MB. sdm: a reproducible and extensible R platform for species distribution modelling. Ecography. 2016;39(4):368–375. doi: 10.1111/ecog.01881. DOI
Naranjo SE, Ellsworth PC. Mortality dynamics and population regulation in Bemisia tabaci. Entomologia Experimentalis et Applicata. 2005;116(2):93–108. doi: 10.1111/j.1570-7458.2005.00297.x. DOI
Nichols RFW. The brown streak disease of cassava. The East African Agricultural Journal. 1950;15(3):154–160. doi: 10.1080/03670074.1950.11664727. DOI
Nicholson SE. Climate and climatic variability of rainfall over eastern Africa. Reviews of Geophysics. 2017;55(3):590–635. doi: 10.1002/2016RG000544. DOI
Nweke F. 2004. https://ebrary.ifpri.org/digital/collection/p15738coll2/id/48640/
Nwezeobi J, Onyegbule O, Nkere C, Onyeka J, van Brunschot S, Seal S, Colvin J. Cassava whitefly species in eastern Nigeria and the threat of vector-borne pandemics from East and Central Africa. PLOS ONE. 2020;15(5):e0232616. doi: 10.1371/journal.pone.0232616. PubMed DOI PMC
Omongo CA, Kawuki R, Bellotti AC, Alicai T, Baguma Y, Maruthi MN, Bua A, Colvin J. African Cassava Whitefly, Bemisia tabaci, Resistance in African and South American Cassava Genotypes. Journal of Integrative Agriculture. 2012;11(2):327–336. doi: 10.1016/S2095-3119(12)60017-3. DOI
Osima S, Indasi V, Zaroug M, Endris H, Gudoshava M, Misiani H, Nimusiima A, Anyah R, Otieno G, Ogwang B, Jain S. Projected climate over the Greater Horn of Africa under 1.5 °C and 2 °C global warming. Environmental Research Letters. 2018;13(6):065004. doi: 10.1088/1748-9326/aaba1b. DOI
Otim M, Legg J, Kyamanywa S, Polaszek A, Gerling D. Population dynamics of Bemisia tabaci (Homoptera: Aleyrodidae) parasitoids on cassava mosaic disease-resistant and susceptible varieties. Biocontrol Science and Technology. 2006;16(2):205–214. doi: 10.1080/09583150500335558. DOI
Pellet DM, El-Sharkawy MA. Cassava varietal response to fertilisation: growth dynamics and implications for cropping sustainability. Experimental Agriculture. 1997;33(3):353–365. doi: 10.1017/S0014479797003013. DOI
R Core Team . R Foundation for Statistical Computing; Vienna: 2021. R: a language and environment for statistical computing. Version 5.0.5.
Ramos RS, Kumar L, Shabani F, Picanço MC. Mapping global risk levels of Bemisia tabaci in areas of suitability for open field tomato cultivation under current and future climates. PLOS ONE. 2018;13(6):e0198925. doi: 10.1371/journal.pone.0198925. PubMed DOI PMC
Ramos RS, Kumar L, Shabani F, Picanço MC. Risk of spread of tomato yellow leaf curl virus (TYLCV) in tomato crops under various climate change scenarios. Agricultural Systems. 2019;173:524–535. doi: 10.1016/j.agsy.2019.03.020. DOI
Sheat S, Fuerholzner B, Stein B, Winter S. Resistance against cassava brown streak viruses from africa in cassava germplasm from South America. Frontiers in Plant Science. 2019;10 doi: 10.3389/fpls.2019. PubMed DOI PMC
Stas M, Aerts R, Hendrickx M, Dendoncker N, Dujardin S, Linard C, Somers B, et al. An evaluation of species distribution models to estimate tree diversity at genus level in a heterogeneous urban-rural landscape. Landscape and Urban Planning. 2020;198:103770. doi: 10.1016/j.landurbplan.2020.103770. DOI
Szyniszewska AM. CassavaMap, a fine-resolution disaggregation of cassava production and harvested area in Africa in 2014. Scientific Data. 2020;7:159. doi: 10.1038/s41597-020-0501-z. PubMed DOI PMC
Szyniszewska AM, Chikoti PC, Tembo M, Mulenga R, Gilligan CA, Van den Bosch F, McQuaid CF. Smallholder cassava planting material movement and grower behavior in Zambia: implications for the management of cassava virus diseases. Phytopathology. 2021;111(11):1952–1962. doi: 10.1094/PHYTO-06-20-0215-R. PubMed DOI
Tay WT, Court LN, Macfadyen S, Jacomb F, Vyskočilová S, Colvin J, De Barro PJ. A high-throughput amplicon sequencing approach for population-wide species diversity and composition survey. Molecular Ecology Resources. 2022;22(5):1706–1724. doi: 10.1111/1755-0998.13576. PubMed DOI PMC
Tebaldi C, Debeire K, Eyring V, Fischer E, Fyfe J, Friedlingstein P, Ziehn T, et al. Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6. Earth System Dynamics. 2021;12(1):253–293. doi: 10.5194/esd-12-253-2021. DOI
Thuiller W, Georges D, Engler R. biomod2: ensemble platform for species distribution modeling. R Package Version, 4.2-4https://cran.r-project.org/package=biomod2 2013
Tomlinson KR, Bailey AM, Alicai T, Seal S, Foster GD. Cassava brown streak disease: historical timeline, current knowledge and future prospects. Molecular Plant Pathology. 2018;19(5):1706–1724. doi: 10.1111/mpp.12613. PubMed DOI PMC
UNFCCC 2016. https://unfccc.int/
Winter S, Koerbler M, Stein B, Pietruszka A, Paape M, Butgereitt A. Analysis of cassava brown streak viruses reveals the presence of distinct virus species causing Cassava brown streak disease in East Africa. Journal of General Virology. 2010;91(5):1365–1372. doi: 10.1099/vir.0.014688-0. PubMed DOI
Wu T, Lu Y, Fang Y, Xin X, Li L, Li W, Jie W, Zhang J, Liu Y, Zhang L, Zhang F, Zhang Y, Wu F, Li J, Chu M, Wang Z, Shi X, Liu X, Wei M, Huang A, Zhang Y, Liu X. The Beijing climate center climate system model (BCC-CSM): the main progress from CMIP5 to CMIP6. Geoscientific Model Development. 2019;12(4):1573–1600. doi: 10.5194/gmd-12-1573-2019. DOI
Zelinka MD, Myers TA, McCoy DT, Po-Chedley S, Caldwell PM, Ceppi P, Klein SA, Taylor KE. Causes of higher climate sensitivity in CMIP6 models. Geophysical Research Letters. 2020;47(1):e2019GL085782. doi: 10.1029/2019GL085782. DOI
figshare
10.6084/m9.figshare.9745118