Current and future scenarios of suitability and expansion of cassava brown streak disease, Bemisia tabaci species complex, and cassava planting in Africa

. 2024 ; 12 () : e17386. [epub] 20240531

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38832032

Cassava (Manihot esculenta) is among the most important staple crops globally, with an imperative role in supporting the Sustainable Development Goal of 'Zero hunger'. In sub-Saharan Africa, it is cultivated mainly by millions of subsistence farmers who depend directly on it for their socio-economic welfare. However, its yield in some regions has been threatened by several diseases, especially the cassava brown streak disease (CBSD). Changes in climatic conditions enhance the risk of the disease spreading to other planting regions. Here, we characterise the current and future distribution of cassava, CBSD and whitefly Bemisia tabaci species complex in Africa, using an ensemble of four species distribution models (SDMs): boosted regression trees, maximum entropy, generalised additive model, and multivariate adaptive regression splines, together with 28 environmental covariates. We collected 1,422 and 1,169 occurrence records for cassava and Bemisia tabaci species complex from the Global Biodiversity Information Facility and 750 CBSD occurrence records from published literature and systematic surveys in East Africa. Our results identified isothermality as having the highest contribution to the current distribution of cassava, while elevation was the top predictor of the current distribution of Bemisia tabaci species complex. Cassava harvested area and precipitation of the driest month contributed the most to explain the current distribution of CBSD outbreaks. The geographic distributions of these target species are also expected to shift under climate projection scenarios for two mid-century periods (2041-2060 and 2061-2080). Our results indicate that major cassava producers, like Cameron, Ivory Coast, Ghana, and Nigeria, are at greater risk of invasion of CBSD. These results highlight the need for firmer agricultural management and climate-change mitigation actions in Africa to combat new outbreaks and to contain the spread of CBSD.

Zobrazit více v PubMed

Alicai T, Omongo CA, Maruthi MN, Hillocks R, Baguma Y, Kawuki R, Bua A, Otim-Nape GW, Colvin J. Re-emergence of cassava brown streak disease in Uganda. The American Phytopathological Society. 2007;91(1):24–29. doi: 10.1094/PD-91-0024. PubMed DOI

Alicai T, Szyniszewska AM, Omongo CA, Abidrabo P, Okao-Okuja G, Baguma Y, Ogwok E, Kawuki R, Esuma W, Tairo F, Bua A, Legg JP, Stutt ROJH, Godding D, Sseruwagi P, Ndunguru J, Gilligan CA. Expansion of the cassava brown streak pandemic in Uganda revealed by annual field survey data for 2004 to 2017. Scientific Data. 2019;6:327. doi: 10.1038/s41597-019-0334-9. PubMed DOI PMC

Almazroui M, Saeed F, Saeed S, Nazrul Islam M, Ismail M, Klutse NAB, Siddiqui MH. Projected change in temperature and precipitation over Africa from CMIP6. Earth Systems and Environment. 2020;4(3):455–475. doi: 10.1007/s41748-020-00161-x. DOI

Amuji CF. The future of rain-fed horticultural crops production in a changing West African climate. Reviews in Agricultural Science. 2021;9:206–220. doi: 10.7831/ras.9.0_206. DOI

Aregbesola OZ, Legg JP, Lund OS, Sigsgaard L, Sporleder M, Carhuapoma P, Rapisarda C. Life history and temperature-dependence of cassava-colonising populations of Bemisia tabaci. Journal of Pest Science. 2020;93(4):1225–1241. doi: 10.1007/s10340-020-01249-z. DOI

Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF. Present and future köppen-geiger climate classification maps at 1-km resolution. Scientific Data. 2018;5:180214. doi: 10.1038/sdata.2018.214. PubMed DOI PMC

Bizimana JP, Ngapout Y, Nyirakanani C, Shakir S, Kanju E, Legg JP, Vanderschuren H, et al. Breeding strategies for mitigating cassava brown streak disease in Africa. Tropical Plants. 2024;3:e006. doi: 10.48130/tp-0024-000600567. DOI

Bock L, Lauer A, Schlund M, Barreiro M, Bellouin N, Jones C, Eyring V, et al. Quantifying progress across different CMIP phases with the ESMValTool. Journal of Geophysical Research: Atmospheres. 2020;125(21):1–28. doi: 10.1029/2019JD03. DOI

Boykin LM, De Barro PJ. A practical guide to identifying members of the Bemisia tabaci species complex: and other morphologically identical species. Frontiers in Ecology and Evolution. 2014;2:45. doi: 10.3389/fevo.2014.00045. DOI

Brown JN, Sen Gupta A, Brown JR, Muir LC, Risbey JS, Whetton P, Zhang X, Ganachaud A, Murphy B, Wijffels SE. Implications of CMIP3 model biases and uncertainties for climate projections in the western tropical Pacific. Climatic Change. 2013;119(1):147–161. doi: 10.1007/s10584-012-0603-5. DOI

Bundi M, Kasoma C, Mbugua F, Williams F, Rwomushana I. Cassava brown streak disease: an evidence note on impacts and management strategies for Zambia. CABI; Wallingford: 2022.

Campo BVH, Hyman G, Bellotti A. Threats to cassava production: known and potential geographic distribution of four key biotic constraints. Food Security. 2011;3(3):329–345. doi: 10.1007/s12571-011-0141-4. DOI

Casinga CM, Wosula EM, Sikirou MM, Shirima RR, Munyerenkana CM, Nabahungu LN, Bashizi BK, Ugentho H, Monde G, Legg JP. Diversity and distribution of whiteflies colonizing cassava in Eastern Democratic Republic of Congo. Insects. 2022;13(9):849. doi: 10.3390/insects13090849. PubMed DOI PMC

Chemura A, Schauberger B, Gornott C. Impacts of climate change on agro-climatic suitability of major food crops in Ghana. PLOS ONE. 2020;15(6):1–21. doi: 10.1371/journal.pone.0229881. PubMed DOI PMC

Colvin J, Omongo CA, Maruthi MN, Otim-Nape GW, Thresh JM. Dual begomovirus infections and high Bemisia tabaci populations: two factors driving the spread of a cassava mosaic disease pandemic. Plant Pathology. 2004;53(5):577–584. doi: 10.1111/j.1365-3059.2004.01062.x. DOI

De Marco P, Nóbrega CC. Evaluating collinearity effects on species distribution models: an approach based on virtual species simulation. PLOS ONE. 2018;13(9):e0202403. doi: 10.1371/journal.pone.0202403. PubMed DOI PMC

de Tafur S, El-Sharkawy M, Calle F. Photosynthesis and yield performance of cassava in seasonally dry and semiarid environments. Photosynthetica. 1997;33(2):249–257. doi: 10.1023/A:1022116414969. DOI

Donnelly R, Gilligan CA. What is pathogen-mediated insect superabundance? Journal of the Royal Society Interface. 2020;17(170):20200229. doi: 10.1098/rsif.2020.0229. PubMed DOI PMC

Donnelly R, Sikazwe GW, Gilligan CA. Estimating epidemiological parameters from experiments in vector access to host plants, the method of matching gradients. PLOS Computational Biology. 2020;16(3):e1007724. PubMed PMC

El-Sharkawy MA. Cassava biology and physiology Cassava: a crop for sustainable agriculture and food security in developing countries. Plant Molecular Biology. 2004;56:481–501. doi: 10.1007/s11103-005-2270-7. PubMed DOI

Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, McOverton CMJ, Townsend Peterson A, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE. Novel methods improve prediction of species’ distributions from occurrence data. Ecography. 2006;29(2):129–151. doi: 10.1111/j.2006.0906-7590.04596.x. DOI

FAO . Save and grow: cassava. Food and Agriculture Organization of the United Nations; Rome: 2013.

FAO . FAO; Rome: 2021. FAOStat.

FAO, & IIASA Global Agro Ecological Zones version 4 (GAEZ v4). Dataset. 2000. https://gaez.fao.org/ https://gaez.fao.org/

Guan J, Li M, Ju X, Lin J, Wu J, Zheng J. The potential habitat of desert locusts is contracting: predictions under climate change scenarios. PeerJ. 2021;9:e12311. doi: 10.7717/peerj.12311. PubMed DOI PMC

Hijmans RJ, Cameron SE, Parra JL, Jones G, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology. 2005;25:1965–1978. doi: 10.1002/joc.1276. DOI

IPCC Climate change 2021 –the physical science basis: working group I contribution to the sixth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press2021 doi: 10.1017/9781009157896. DOI

Jarvis A, Ramirez-Villegas J, Campo BVH, Navarro-Racines C. Is cassava the answer to african climate change adaptation? Tropical Plant Biology. 2012;5(1):9–29. doi: 10.1007/s12042-012-9096-7. DOI

Jeremiah SC, Ndyetabula IL, Mkamilo GS, Haji S, Muhanna MM, Chuwa C, Kasele S, Bouwmeester H, Ijumba JN, Legg JP. The dynamics and environmental influence on interactions between cassava brown streak disease and the Whitefly, Bemisia tabaci. Phytopathology. 2015;105(5):646–655. doi: 10.1094/PHYTO-05-14-0146-R. PubMed DOI

Jiménez-Valverde A. Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Global Ecology and Biogeography. 2012;21(4):498–507. doi: 10.1111/j.1466-8238.2011.00683.x. DOI

Jones RAC, Barbetti MJ. CABI reviews: perspectives in agriculture, veterinary science, nutrition and natural resources, 7, (022) 2012. Influence of climate change on plant disease infections and epidemics caused by viruses and bacteria. DOI

Katono K, MacFadyen S, Omongo CA, Colvin J, Karungi J, Otim MH. Effect of temperature and cassava genotype on the development, fecundity and reproduction of Bemisia tabaci SSA1. African Crop Science Journal. 2022;30(2):185–203. doi: 10.4314/acsj.v30i2.6. DOI

Kotir JH. Climate change and variability in Sub-Saharan Africa: a review of current and future trends and impacts on agriculture and food security. Environment, Development and Sustainability. 2011;13(3):587–605. doi: 10.1007/s10668-010-9278-0. DOI

Kriticos DJ, Darnell RE, Yonow T, Ota N, Sutherst RW, Parry HR, De Barro PJ, et al. Improving climate suitability for Bemisia tabaci in East Africa is correlated with increased prevalence of whiteflies and cassava diseases. Scientific Reports. 2020;10(1):22049. doi: 10.1038/s41598-020-79149-6. PubMed DOI PMC

Lapidot M, Legg JP, Wintermantel WW, Polston JE. Management of whitefly-transmitted viruses in open-field production systems. Advances in Virus Research. 2014;90:147–206. doi: 10.1016/B978-0-12-801246-8.00003-2. PubMed DOI

Legg JP, Jeremiah SC, Obiero HM, Maruthi MN, Ndyetabula I, Okao-Okuja G, Bouwmeester H, Bigirimana S, Tata-Hangy W, Gashaka G, Mkamilo G, Alicai T, Lava Kumar P. Comparing the regional epidemiology of the cassava mosaic and cassava brown streak virus pandemics in Africa. Virus Research. 2011;159(2):161–170. doi: 10.1016/j.virusres.2011.04.018. PubMed DOI

Legg J, Ndalahwa M, Yabeja J, Ndyetabula I, Bouwmeester h, Shirima R, Mtunda K. Community phytosanitation to manage cassava brown streak disease. Virus Research. 2017;241:0–1. doi: 10.1016/j.virusres.2017.04.020. PubMed DOI PMC

Legg JP, Owor B, Sseruwagi P, Ndunguru J. Cassava mosaic virus disease in east and central Africa: epidemiology and management of A regional pandemic. Advances in Virus Research. 2006;67(06):355–418. doi: 10.1016/S0065-3527(06)67010-3. PubMed DOI

MacFadyen S, Paull C, Boykin LM, De Barro P, Maruthi MN, Otim M, Kalyebi A, Vassão DG, Sseruwagi P, Tay WT, Delatte H, Seguni Z, Colvin J, Omongo CA. Cassava whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) in East African farming landscapes: a review of the factors determining abundance. Bulletin of Entomological Research. 2018;108(5):565–582. doi: 10.1017/S0007485318000032. PubMed DOI PMC

Maruthi MN, Jeremiah SC, Mohammed IU, Legg JP. The role of the whitefly, Bemisia tabaci (Gennadius), and farmer practices in the spread of cassava brown streak ipomoviruses. Journal of Phytopathology. 2016;165:707–717. doi: 10.1111/jph.12609. PubMed DOI PMC

McQuaid CF, Gilligan CA, Van den Bosch F. Considering behaviour to ensure the success of a disease control. Royal Society Open Science. 2017;4(12):170721. doi: 10.1098/rsos.170721. PubMed DOI PMC

Meinshausen M, Nicholls ZRJ, Lewis J, Gidden MJ, Vogel E, Freund M, Beyerle U, Gessner C, Nauels A, Bauer N, Canadell JG, Daniel JS, John A, Krummel PB, Luderer G, Meinshausen N, Montzka SA, Rayner PJ, Reimann S, Wang RHJ, et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geoscientific Model Development. 2020;13(8):3571–3605. doi: 10.5194/gmd-13-3571-2020. DOI

Mudereri BT, Kimathi E, Chitata T, Moshobane MC, Abdel-Rahman EM. Landscape-scale biogeographic distribution analysis of the whitefly, Bemisia tabaci (Gennadius, 1889) in Kenya. International Journal of Tropical Insect Science. 2021;41(2):1585–1599. doi: 10.1007/s42690-020-00360-z. DOI

Mugerwa H, Rey MEC, Alicai T, Ateka E, Atuncha H, Ndunguru J, Sseruwagi P. Genetic diversity and geographic distribution of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) genotypes associated with Cassava in East Africa. Ecology and Evolution. 2012;2(11):2749–2762. doi: 10.1002/ece3.379. PubMed DOI PMC

Mugerwa H, Sseruwagi P, Colvin J, Seal S. Is high whitefly abundance on cassava in sub-Saharan Africa driven by biological traits of a specific, cryptic bemisia tabaci species? Insects. 2021;12(3):260. doi: 10.3390/insects12030260. PubMed DOI PMC

Nahm FS. Receiver operating characteristic curve: overview and practical use for clinicians. Korean Journal of Anesthesiology. 2022;75(1):25–36. doi: 10.4097/kja.21209. PubMed DOI PMC

Naimi B, Araújo MB. sdm: a reproducible and extensible R platform for species distribution modelling. Ecography. 2016;39(4):368–375. doi: 10.1111/ecog.01881. DOI

Naranjo SE, Ellsworth PC. Mortality dynamics and population regulation in Bemisia tabaci. Entomologia Experimentalis et Applicata. 2005;116(2):93–108. doi: 10.1111/j.1570-7458.2005.00297.x. DOI

Nichols RFW. The brown streak disease of cassava. The East African Agricultural Journal. 1950;15(3):154–160. doi: 10.1080/03670074.1950.11664727. DOI

Nicholson SE. Climate and climatic variability of rainfall over eastern Africa. Reviews of Geophysics. 2017;55(3):590–635. doi: 10.1002/2016RG000544. DOI

Nweke F. 2004. https://ebrary.ifpri.org/digital/collection/p15738coll2/id/48640/

Nwezeobi J, Onyegbule O, Nkere C, Onyeka J, van Brunschot S, Seal S, Colvin J. Cassava whitefly species in eastern Nigeria and the threat of vector-borne pandemics from East and Central Africa. PLOS ONE. 2020;15(5):e0232616. doi: 10.1371/journal.pone.0232616. PubMed DOI PMC

Omongo CA, Kawuki R, Bellotti AC, Alicai T, Baguma Y, Maruthi MN, Bua A, Colvin J. African Cassava Whitefly, Bemisia tabaci, Resistance in African and South American Cassava Genotypes. Journal of Integrative Agriculture. 2012;11(2):327–336. doi: 10.1016/S2095-3119(12)60017-3. DOI

Osima S, Indasi V, Zaroug M, Endris H, Gudoshava M, Misiani H, Nimusiima A, Anyah R, Otieno G, Ogwang B, Jain S. Projected climate over the Greater Horn of Africa under 1.5 °C and 2 °C global warming. Environmental Research Letters. 2018;13(6):065004. doi: 10.1088/1748-9326/aaba1b. DOI

Otim M, Legg J, Kyamanywa S, Polaszek A, Gerling D. Population dynamics of Bemisia tabaci (Homoptera: Aleyrodidae) parasitoids on cassava mosaic disease-resistant and susceptible varieties. Biocontrol Science and Technology. 2006;16(2):205–214. doi: 10.1080/09583150500335558. DOI

Pellet DM, El-Sharkawy MA. Cassava varietal response to fertilisation: growth dynamics and implications for cropping sustainability. Experimental Agriculture. 1997;33(3):353–365. doi: 10.1017/S0014479797003013. DOI

R Core Team . R Foundation for Statistical Computing; Vienna: 2021. R: a language and environment for statistical computing. Version 5.0.5.

Ramos RS, Kumar L, Shabani F, Picanço MC. Mapping global risk levels of Bemisia tabaci in areas of suitability for open field tomato cultivation under current and future climates. PLOS ONE. 2018;13(6):e0198925. doi: 10.1371/journal.pone.0198925. PubMed DOI PMC

Ramos RS, Kumar L, Shabani F, Picanço MC. Risk of spread of tomato yellow leaf curl virus (TYLCV) in tomato crops under various climate change scenarios. Agricultural Systems. 2019;173:524–535. doi: 10.1016/j.agsy.2019.03.020. DOI

Sheat S, Fuerholzner B, Stein B, Winter S. Resistance against cassava brown streak viruses from africa in cassava germplasm from South America. Frontiers in Plant Science. 2019;10 doi: 10.3389/fpls.2019. PubMed DOI PMC

Stas M, Aerts R, Hendrickx M, Dendoncker N, Dujardin S, Linard C, Somers B, et al. An evaluation of species distribution models to estimate tree diversity at genus level in a heterogeneous urban-rural landscape. Landscape and Urban Planning. 2020;198:103770. doi: 10.1016/j.landurbplan.2020.103770. DOI

Szyniszewska AM. CassavaMap, a fine-resolution disaggregation of cassava production and harvested area in Africa in 2014. Scientific Data. 2020;7:159. doi: 10.1038/s41597-020-0501-z. PubMed DOI PMC

Szyniszewska AM, Chikoti PC, Tembo M, Mulenga R, Gilligan CA, Van den Bosch F, McQuaid CF. Smallholder cassava planting material movement and grower behavior in Zambia: implications for the management of cassava virus diseases. Phytopathology. 2021;111(11):1952–1962. doi: 10.1094/PHYTO-06-20-0215-R. PubMed DOI

Tay WT, Court LN, Macfadyen S, Jacomb F, Vyskočilová S, Colvin J, De Barro PJ. A high-throughput amplicon sequencing approach for population-wide species diversity and composition survey. Molecular Ecology Resources. 2022;22(5):1706–1724. doi: 10.1111/1755-0998.13576. PubMed DOI PMC

Tebaldi C, Debeire K, Eyring V, Fischer E, Fyfe J, Friedlingstein P, Ziehn T, et al. Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6. Earth System Dynamics. 2021;12(1):253–293. doi: 10.5194/esd-12-253-2021. DOI

Thuiller W, Georges D, Engler R. biomod2: ensemble platform for species distribution modeling. R Package Version, 4.2-4https://cran.r-project.org/package=biomod2 2013

Tomlinson KR, Bailey AM, Alicai T, Seal S, Foster GD. Cassava brown streak disease: historical timeline, current knowledge and future prospects. Molecular Plant Pathology. 2018;19(5):1706–1724. doi: 10.1111/mpp.12613. PubMed DOI PMC

UNFCCC 2016. https://unfccc.int/

Winter S, Koerbler M, Stein B, Pietruszka A, Paape M, Butgereitt A. Analysis of cassava brown streak viruses reveals the presence of distinct virus species causing Cassava brown streak disease in East Africa. Journal of General Virology. 2010;91(5):1365–1372. doi: 10.1099/vir.0.014688-0. PubMed DOI

Wu T, Lu Y, Fang Y, Xin X, Li L, Li W, Jie W, Zhang J, Liu Y, Zhang L, Zhang F, Zhang Y, Wu F, Li J, Chu M, Wang Z, Shi X, Liu X, Wei M, Huang A, Zhang Y, Liu X. The Beijing climate center climate system model (BCC-CSM): the main progress from CMIP5 to CMIP6. Geoscientific Model Development. 2019;12(4):1573–1600. doi: 10.5194/gmd-12-1573-2019. DOI

Zelinka MD, Myers TA, McCoy DT, Po-Chedley S, Caldwell PM, Ceppi P, Klein SA, Taylor KE. Causes of higher climate sensitivity in CMIP6 models. Geophysical Research Letters. 2020;47(1):e2019GL085782. doi: 10.1029/2019GL085782. DOI

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.9745118

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...