Combined effect of gallic acid and zinc ferrite nanoparticles on wheat growth and yield under salinity stress
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
38834735
PubMed Central
PMC11150583
DOI
10.1038/s41598-024-63175-9
PII: 10.1038/s41598-024-63175-9
Knihovny.cz E-zdroje
- Klíčová slova
- Antioxidant, Chlorophyll content, Gallic acid, Growth attributes, Zinc ferrite nanoparticles,
- MeSH
- chlorofyl metabolismus MeSH
- fotosyntéza účinky léků MeSH
- kořeny rostlin růst a vývoj účinky léků metabolismus MeSH
- kyselina gallová * metabolismus MeSH
- nanočástice chemie MeSH
- pšenice * růst a vývoj účinky léků metabolismus MeSH
- půda chemie MeSH
- salinita MeSH
- solný stres * MeSH
- železité sloučeniny * MeSH
- zinek metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorofyl MeSH
- ferrite MeSH Prohlížeč
- kyselina gallová * MeSH
- půda MeSH
- železité sloučeniny * MeSH
- zinek MeSH
Salinity stress significantly impacts crops, disrupting their water balance and nutrient uptake, reducing growth, yield, and overall plant health. High salinity in soil can adversely affect plants by disrupting their water balance. Excessive salt levels can lead to dehydration, hinder nutrient absorption, and damage plant cells, ultimately impairing growth and reducing crop yields. Gallic acid (GA) and zinc ferrite (ZnFNP) can effectively overcome this problem. GA can promote root growth, boost photosynthesis, and help plants absorb nutrients efficiently. However, their combined application as an amendment against drought still needs scientific justification. Zinc ferrite nanoparticles possess many beneficial properties for soil remediation and medical applications. That's why the current study used a combination of GA and ZnFNP as amendments to wheat. There were 4 treatments, i.e., 0, 10 µM GA, 15 μM GA, and 20 µM GA, without and with 5 μM ZnFNP applied in 4 replications following a completely randomized design. Results exhibited that 20 µM GA + 5 μM ZnFNP caused significant improvement in wheat shoot length (28.62%), shoot fresh weight (16.52%), shoot dry weight (11.38%), root length (3.64%), root fresh weight (14.72%), and root dry weight (9.71%) in contrast to the control. Significant enrichment in wheat chlorophyll a (19.76%), chlorophyll b (25.16%), total chlorophyll (21.35%), photosynthetic rate (12.72%), transpiration rate (10.09%), and stomatal conductance (15.25%) over the control validate the potential of 20 µM GA + 5 μM ZnFNP. Furthermore, improvement in N, P, and K concentration in grain and shoot verified the effective functioning of 20 µM GA + 5 μM ZnFNP compared to control. In conclusion, 20 µM GA + 5 μM ZnFNP can potentially improve the growth, chlorophyll contents and gas exchange attributes of wheat cultivated in salinity stress. More investigations are suggested to declare 20 µM GA + 5 μM ZnFNP as the best amendment for alleviating salinity stress in different cereal crops.
Department of Botany Hindu College Moradabad Moradabad India
Department of Botany The Islamia University of Bahawalpur Bahawalpur Pakistan
Zobrazit více v PubMed
Huang S, et al. Evaluating the hidden potential of deashed biochar in mitigating salinity stress for cultivation of fenugreek. Sci. Rep. 2024;14:141. doi: 10.1038/s41598-023-49063-8. PubMed DOI PMC
Ma Y, et al. γ-Aminobutyric acid (GABA) and ectoine (ECT) impacts with and without AMF on antioxidants, gas exchange attributes and nutrients of cotton cultivated in salt affected soil. BMC Plant Biol. 2023;23:476. doi: 10.1186/s12870-023-04486-3. PubMed DOI PMC
Irshad K, et al. Bio-priming with salt tolerant endophytes improved crop tolerance to salt stress via modulating photosystem II and antioxidant activities in a sub-optimal environment. Front. Plant Sci. 2023;14:1082480. doi: 10.3389/fpls.2023.1082480. PubMed DOI PMC
Huang S, et al. Uncovering the impact of AM fungi on wheat nutrient uptake, ion homeostasis, oxidative stress, and antioxidant defense under salinity stress. Sci. Rep. 2023;13:8249. doi: 10.1038/s41598-023-35148-x. PubMed DOI PMC
Farooq F, et al. Impact of varying levels of soil salinity on emergence, growth and biochemical attributes of four Moringa oleifera landraces. PLoS One. 2022;17:e0263978. doi: 10.1371/journal.pone.0263978. PubMed DOI PMC
Ashraf F, Chen Y. Synergistic effects of biochar and arbuscular mycorrhizal fungi on enhancing Elymus elymoides growth in saline coastal soil. Pak. J. Bot. 2023;55:119–126. doi: 10.30848/PJB2023-SI(14). DOI
Gill S, et al. Effect of silicon nanoparticle-based biochar on wheat growth, antioxidants and nutrients concentration under salinity stress. Sci. Rep. 2024;14:6380. doi: 10.1038/s41598-024-55924-7. PubMed DOI PMC
Danish S, et al. The role of strigolactone in alleviating salinity stress in chili pepper. BMC Plant Biol. 2024;24:209. doi: 10.1186/s12870-024-04900-4. PubMed DOI PMC
Zafar S, et al. Modulations of wheat growth by selenium nanoparticles under salinity stress. BMC Plant Biol. 2024;24:35. doi: 10.1186/s12870-024-04720-6. PubMed DOI PMC
Kaya C, Ugurlar F, Ashraf M, Alam P, Ahmad P. Nitric oxide and hydrogen sulfide work together to improve tolerance to salinity stress in wheat plants by upraising the AsA-GSH cycle. Plant Physiol. Biochem. 2023;194:651–663. doi: 10.1016/j.plaphy.2022.11.041. PubMed DOI
Zahid A, et al. Exogenous application of sulfur-rich thiourea (STU) to alleviate the adverse effects of cobalt stress in wheat. BMC Plant Biol. 2024;24:126. doi: 10.1186/s12870-024-04795-1. PubMed DOI PMC
Shen X, Min X, Zhang S, Song C, Xiong K. Effect of heavy metal contamination in the environment on antioxidant function in wumeng semi-fine wool sheep in Southwest China. Biol. Trace Elem. Res. 2020;198:505–514. doi: 10.1007/s12011-020-02081-3. PubMed DOI
Saeed S, et al. Salicylic acid and α-tocopherol ameliorate salinity impact on wheat. ACS Omega. 2023;8:26122–26135. doi: 10.1021/acsomega.3c02166. PubMed DOI PMC
Younis U, Danish S, Datta R, Alahmadi TA, Ansari MJ. Sustainable remediation of chromium-contaminated soils: Boosting radish growth with deashed biochar and strigolactone. BMC Plant Biol. 2024;24:115. doi: 10.1186/s12870-024-04791-5. PubMed DOI PMC
Babaei M, Shabani L, Hashemi-Shahraki S. Improving the effects of salt stress by β-carotene and gallic acid using increasing antioxidant activity and regulating ion uptake in Lepidium sativum L. Bot. Stud. 2022;63:22. doi: 10.1186/s40529-022-00352-x. PubMed DOI PMC
Liu Y, Li F, Huang Q. Allelopathic effects of gallic acid from Aegiceras corniculatum on Cyclotella caspia. J. Environ. Sci. 2013;25:776–784. doi: 10.1016/S1001-0742(12)60112-0. PubMed DOI
Abdelhameed R, Abu-Elsaad N, Abdel Latef A, Metwally R. Tracking of zinc ferrite nanoparticle effects on pea (Pisum sativum L.) plant growth, pigments, mineral content and arbuscular mycorrhizal colonization. Plants. 2021;10:583. doi: 10.3390/plants10030583. PubMed DOI PMC
Saleem I, et al. Potassium ferrite nanoparticles on DAP to formulate slow release fertilizer with auxiliary nutrients. Ecotoxicol. Environ. Saf. 2021;215:112148. doi: 10.1016/j.ecoenv.2021.112148. PubMed DOI
Tayade, R., Kabange, R., Ali, M. W., Yun, B.-W. & Nabi, R. B. S. Biofortification of wheat using current resources and future challenges. in Biofortification in Cereals: Progress and Prospects 173–208 (Springer, 2023).
EL Sabagh A, et al. Salinity stress in Wheat (Triticum aestivum L.) in the changing climate: Adaptation and management strategies. Front. Agron. 2021;3:661932. doi: 10.3389/fagro.2021.661932. DOI
Hasanuzzaman, M., Nahar, K. & Fujita, M. Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. in Ecophysiology and Responses of Plants under Salt Stress (eds. Ahmad, P., Azooz, M. M. & Prasad, M. N. V.) 25–87 (Springer, 2013). 10.1007/978-1-4614-4747-4_2.
Hossain A, et al. Consequences and mitigation strategies of abiotic stresses in wheat (Triticum aestivum L.) under the changing climate. Agronomy. 2021;11:241. doi: 10.3390/agronomy11020241. DOI
Page, A. L., Miller, R. H. & Keeny, D. R. Soil pH and lime requirement. in Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9.2.2/Agronomy Monographs (ed. Page, A. L.) 199–208 (American Society of Agronomy, Inc. and Soil Science Society of America, Inc., 1983). 10.2134/agronmonogr9.2.2ed.
Estefan, G., Sommer, R. & Ryan, J. Methods of Soil , Plant , and Water Analysis : A Manual for the West Asia and North Africa Region. (International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon, 2013).
Rhoades, J. D. Salinity: Electrical conductivity and total dissolved solids. in Methods of Soil Analysis, Part 3, Chemical Methods (eds. D.L. Sparks et al.) vol. 5 417–435 (Soil Science Society of America, 1996).
Nelson, D. W. & Sommers, L. E. Total Carbon, Organic Carbon, and Organic Matter. in Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties (ed. Page, A. L.) vol. sssabookse 539–579 (American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, 1982).
Pratt, P. F. Potassium. in Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties (ed. Norman, A. G.) 1022–1030 (Wiley, 2016). 10.2134/agronmonogr9.2.c20.
Donald, A. H. & Hanson, D. Determination of potassium and sodium by flame emmision spectrophotometery. in Handbook of Reference Methods for Plant Analysis (ed. Kalra, Y.) 153–155 (CRC Press, 1998).
Gee, G. W. & Bauder, J. W. Particle-size Analysis. in Methods of soil analysis. Part 1. Physical and mineralogical methods (ed. Klute, A.) 383–411 (Wiley, 2018). 10.2136/sssabookser5.1.2ed.c15.
Bremner, M. Nitrogen-total. in Methods of Soil Analysis Part 3. Chemical Methods-SSSA Book Series 5 (eds. Sumner, D. L. et al.) 1085–1121 (Wiley, 1996).
Kuo, S. Phosphorus. in Methods of Soil Analysis Part 3: Chemical Methods (eds. Sparks, D. L. et al.) 869–919 (Wiley, 2018). 10.2136/sssabookser5.3.c32.
Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in beta vulgaris. Plant Physiol. 1949;24:1–15. doi: 10.1104/pp.24.1.1. PubMed DOI PMC
Nazar R, Khan MIR, Iqbal N, Masood A, Khan NA. Involvement of ethylene in reversal of salt-inhibited photosynthesis by sulfur in mustard. Physiol. Plant. 2014;152:331–344. doi: 10.1111/ppl.12173. PubMed DOI
Dhindsa RS, Plumb-Dhindsa PL, Reid DM. Leaf senescence and lipid peroxidation: Effects of some phytohormones, and scavengers of free radicals and singlet oxygen. Physiol. Plant. 1982;56:453–457. doi: 10.1111/j.1399-3054.1982.tb04539.x. DOI
Aebi, H. Catalase in Vitro. in 121–126 (1984). 10.1016/S0076-6879(84)05016-3.
Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981;22:867–880.
Anderson ME. Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol. 1985;113:548–555. doi: 10.1016/S0076-6879(85)13073-9. PubMed DOI
Lutts S, Kinet JM, Bouharmont J. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann. Bot. 1996;78:389–398. doi: 10.1006/anbo.1996.0134. DOI
Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies. Plant Soil. 1973;39:205–207. doi: 10.1007/BF00018060. DOI
Banerjee P, Prasad B. Determination of concentration of total sodium and potassium in surface and ground water using a flame photometer. Appl. Water Sci. 2020;10:1–7. doi: 10.1007/s13201-020-01188-1. DOI
Steel RG, Torrie JH, Dickey DA. Principles and Procedures of Statistics: A Biometrical Approach. McGraw Hill Book International Co.; 1997.
OriginLab Corporation. OriginPro. (OriginLab, 2021).
Sharaya R, et al. Plant-microbe interaction mediated salinity stress tolerance for sustainable crop production. S. Afr. J. Bot. 2023;161:454–471. doi: 10.1016/j.sajb.2023.08.043. DOI
Zhang D, Zhang Y, Sun L, Dai J, Dong H. Mitigating salinity stress and improving cotton productivity with agronomic practices. Agronomy. 2023;13:2486. doi: 10.3390/agronomy13102486. DOI
Hossen MS, et al. Comparative physiology of indica and japonica rice under salinity and drought stress: An intrinsic study on osmotic adjustment, oxidative stress, antioxidant defense and methylglyoxal detoxification. Stresses. 2022;2:156–178. doi: 10.3390/stresses2020012. DOI
Hasanuzzaman M, et al. Biostimulants for the regulation of reactive oxygen species metabolism in plants under abiotic stress. Cells. 2021;10:2537. doi: 10.3390/cells10102537. PubMed DOI PMC
Likhanov A, Klyuvadenko A, Subin O, Shevchuk M, Dubchak M. Gallic acid as a non-specific regulator of phenol synthesis and growth of regenerate plants of Corylus avellana (L.) H. Karst. and Salix alba L. in vitro. Sci. J. Ukr. J. For. Wood Sci. 2021;13:52–63.
Ozfidan-Konakci C, Yildiztugay E, Kucukoduk M. Protective roles of exogenously applied gallic acid in Oryza sativa subjected to salt and osmotic stresses: Effects on the total antioxidant capacity. Plant Growth Regul. 2015;75:219–234. doi: 10.1007/s10725-014-9946-4. DOI
Ozfidan-Konakci C, Yildiztugay E, Kucukoduk M. Upregulation of antioxidant enzymes by exogenous gallic acid contributes to the amelioration in Oryza sativa roots exposed to salt and osmotic stress. Environ. Sci. Pollut. Res. 2015;22:1487–1498. doi: 10.1007/s11356-014-3472-9. PubMed DOI
Yildiztugay E, Ozfidan-Konakci C, Kucukoduk M. Improvement of cold stress resistance via free radical scavenging ability and promoted water status and photosynthetic capacity of gallic acid in soybean leaves. J. Soil Sci. Plant Nutr. 2017;17:366–384.
Colak N, Kurt-Celebi A, Fauzan R, Torun H, Ayaz FA. The protective effect of exogenous salicylic and gallic acids ameliorates the adverse effects of ionizing radiation stress in wheat seedlings by modulating the antioxidant defence system. Plant Physiol. Biochem. 2021;168:526–545. doi: 10.1016/j.plaphy.2021.10.020. PubMed DOI
Rahman A, et al. Exogenous gallic acid confers salt tolerance in rice seedlings: Modulation of ion homeostasis, osmoregulation, antioxidant defense, and methylglyoxal detoxification systems. Agronomy. 2022;13:16. doi: 10.3390/agronomy13010016. DOI