Impact of varying levels of soil salinity on emergence, growth and biochemical attributes of four Moringa oleifera landraces
Status odvoláno Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, odvolaná publikace
PubMed
35192653
PubMed Central
PMC8863278
DOI
10.1371/journal.pone.0263978
PII: PONE-D-21-40489
Knihovny.cz E-zdroje
- MeSH
- chlorofyl metabolismus MeSH
- karotenoidy metabolismus MeSH
- Moringa oleifera růst a vývoj metabolismus MeSH
- nadzemní části rostlin růst a vývoj metabolismus MeSH
- půda chemie MeSH
- tolerance k soli * MeSH
- Publikační typ
- časopisecké články MeSH
- odvolaná publikace MeSH
- Názvy látek
- chlorofyl MeSH
- karotenoidy MeSH
- půda MeSH
Salinity in soil and water is one of the environmental factors that severely hinder the crop growth and production particularly in arid and semi-arid regions. A pot experiment was conducted to investigate the impact of salinity levels (1.5 dS m-1, 3.5 dS m-1, 7.5 dS m-1 and 11.5 dS m-1) on emergence, growth and biochemical traits of moringa landraces under completely randomized design having three replications. Four landraces of Moringa oleifera (Faisalabad black seeded moringa [MFB], Patoki black seeded moringa [MPB], Faisalabad white seeded moringa [MFW] and Rahim Yar Khan black seeded moringa [MRB]) were selected for experimentation. All the salinity levels significantly affected the emergence parameters (time to emergence start, time to 50% emergence, mean emergence time, emergence index and final emergence percentage) of moringa landraces. However, 1.5 dS m-1 and 3.5 dS m-1 were found more favorable. Higher salinity levels (7.5 dS m-1 and 11.5 dS m-1) significantly minimized the root surface area, root projected area, root volume and root density as compared to 1.5 dS m-1, 3.5 dS m-1. Number of branches, leaves, leaflets and leaf length were also adversely affected by 7.5 dS m-1 and 11.5 dS m-1. Maximum seedling fresh and dry weights, and seedling length were recorded at 1.5 dS m-1 followed by 3.5 dS m-1. Chlorophyll a and b contents, carotenoids and membrane stability index were also observed highest at salinity level of 1.5 dS m-1. In case of moringa landraces, MRB performed better regarding emergence attributes, growth parameters, and biochemical analysis followed by MFW as compared to MFB and MPB. Moringa landraces i.e. MRB and MFW were found more tolerant to salinity stress as compared to MFB and MPB.
Department of Agronomy MNS University of Agriculture Multan Pakistan
Department of Agronomy PMA Shah Arid Agriculture University Rawalpindi Pakistan
Department of Agronomy University of Agriculture Faisalabad Pakistan
Department of Botany and Microbiology College of Science King Saud University Riyadh Saudi Arabia
Department of Botany University of Agriculture Faisalabad Pakistan
National Agricultural Research Centre Islamabad Pakistan
Pedologiejh spol s r o Brno Czech Republic
Soil and Water Testing Laboratory for Research Dera Ghazi Khan Pakistan
Zobrazit více v PubMed
Shahbaz M, Ashraf M. Improving Salinity Tolerance in Cereals. Critical Reviews Plant Sci. 2013;32:237–249.
Mirza H, Khalid RH, Kamrun N, Hesham FA. Plant abiotic stress: tolerance agronomic, molecular and salt tolerance. In Handbook of Bioremediation; Elsevier: Amsterdam, The Netherlands; Academic Press: 2019; Cambridge, MA, USA.
Hafeez MB, Raza A, Zahra N, Shaukat K, Akram MZ, Iqbal S, et al.. Gene regulation in halophytes in conferring salt tolerance. In: Hasanuzzaman M., Prasad M.N.V.(Eds.), Handbook of Bioremediation. Academic Press, New York, 2021;341–370.
Hayat S, Hassan SA, Yusuf M, Hayat Q, Ahmad A. Effect of 28- homobrassinolide on photosynthsis, flouriscence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata. Environ Exp Bot. 2010;69:105–112.
Che-Othman MH, Jacoby RP, Millar AH, Taylor NL. Wheat mitochondrial respiration shifts from the tricarboxylic acid cycle to the GABA shunt under salt stress. New Phytol. 2020;225:1166–1180. doi: 10.1111/nph.15713 PubMed DOI
Farooq M, Hussain M, wakeel A, Siddique KHM. Salt stress in maize: effects, resistance mechanism and management. Agron Sustain Develop. 2015;35:461–481.
Malik A., Tayyab H., Ullah A. and Talha M. Dynamics of salinity and land use in Punjab Province of Pakistan. Pak J Agric Res. 2021;34:16–22.
https://www.encyclopedie-environnement.org/en/zoom/land-salinization/. (Accessed: Nov 5, 2021).
Amanullah I. Dry matter partitioning and harvest index differ in rice genotypes with variable rates of phosphorus and zinc nutrition. Rice Sci 2016;23:78–87.
Stadtlander T, Becker K. Proximate Composition, Amino and Fatty Acid Profiles and Element Compositions of Four Different Moringa Species. J Agric Sci. 2017;7:46–57.
Dhakad AK, Ikram M, Sharma S, Khan S, Pandey VV, Singh A. Biological, nutritional, and therapeutic significance of Moringa oleifera Lam. Phytotherapy Res. 2019;1–34. PubMed
Khan S, Ibrar D, Bashir S, Rashid N, Hasnain Z, Nawaz M, et al.. Application of moringa leaf extract as a seed priming agent enhances growth and physiological attributes of rice seedlings cultivated under water deficit regime. Plants. 2022;11(3):261. PubMed PMC
Khan S, Basit A, Hafeez MB, Irshad S, Bashir S, Bashir S, et al.. Moringa leaf extract improves biochemical attributes, yield and grain quality of rice (Oryza sativa L.) under drought stress. PLOS ONE. 2021;16(7): e0254452. doi: 10.1371/journal.pone.0254452 PubMed DOI PMC
Iqbal J, Irshad J, Bashir S, Khan S, Yousaf M, Shah AN. Comparative Study of Water Extracts of Moringa Leaves and Roots to Improve the Growth and Yield of Sunflower. South Afr J Bot. 2020;129:221–224.
Batool S, Khan S, Basra SMA. Foliar application of moringa leaf extract improves the growth of moringa seedlings in winter. South Afr J Bot. 2020;129:347–353.
Nouman W, Siddiqui MT, Basra SMA, Khan RA, Gull T, Olson M, et al.. Response of Moringa oleifera to saline conditions. Int J Agri Biol, 2012;14:757–62.
Elhag AZ, Abdalla MH. Effect of sodium chloride on germination and emergence of moringa (Moringa oleifera L.) seeds. J Sci Tech. 2012;13:62–67.
Fatima N, Akram M, Shahid M, Abbas G, Hussain M, Nafees M, et al.. Germination, growth and ions uptake of moringa (Moringa oleifera L.) grown under saline condition. J Plant Nut. 2018;41:1555–1565.
Soliman AS, El-feky SA, Darwish E. Alleviation of salt stress on Moringa peregrina using foliar application of nanofertilizers. J Horti Forest. 2015;7:36–47.
Khan S, Basra SMA, Afzal I, Nawaz M, Rehman HU. Growth promoting potential of fresh and stored Moringa oleifera leaf extracts in improving seedling vigor, growth and productivity of wheat crop. Env Sci Poll Res. 2017;24(35):27601–27612. doi: 10.1007/s11356-017-0336-0 PubMed DOI
Batool S, Khan S, Basra SMA, Hussain M, Saddiq MS, Iqbal S, et al.. Impact of Natural and Synthetic Plant Stimulants on Moringa Seedlings Grown under Low-Temperature Conditions. Int lett Nat Sci. 2019;76:50–59.
Hossain MA, Rana MM, Al Rabbi SMH, Mitsui T. Management of puddled soil through organic amendments for post-rice mungbean. Asian J Agric Biol. 2021(1). 10.35495/ajab.2020.04.255. DOI
USDA Laboratory Manual. 1954. Diagnosis and improvement of saline and alkali soils. In-Richards LA superintendent of documents, US government printing office, Washington DC, USA.
Farooq M, Basra SMA, Hafeez K, Ahmad N. Thermal hardening: a new seed vigor enhancement tool in rice. J Int Plant Biol. 2005;47:187–193.
Ellis RA, Roberts EH. The quantification of ageing and survival in orthodox seeds. Seed Sci Technol. 1981;9:373‒409.
Association of Official Seed Analysis (AOSA). Rules for testing seeds. J Seed Technol. 1990;12:1‒112.
Scott S, Jones R, Williams W. Review of data analysis methods for seed germination. Crop Sci. 1984;24:1192–1199.
Arnon DI. Copper Enzymes in Isolated Chloroplasts. Polyphenoloxidase in Beta Vulgaris. Plant Physiol. 1949;24:1–15. doi: 10.1104/pp.24.1.1 PubMed DOI PMC
Steel RGD, Torrie JH, Dicky DA. Principles and Procedures of Statistics, A Biometrical Approach, 3rd edition, 1997;352‒358. McGraw Hill, Inc. Book Co., New York, USA.
Bimurzayev N, Sari H, Kurunc A, Doganay KH, Asmamaw M. Effects of different salt sources and salinity levels on emergence and seedling growth of faba bean genotypes. Sci Reports. 2021;11:18198. doi: 10.1038/s41598-021-97810-6 PubMed DOI PMC
Saddiq MS, Iqbal S, Hafeez MB, Ibrahim AMH, Raza A, Fatima EM, et al.. Effect of Salinity Stress on Physiological Changes in Winter and Spring Wheat. Agro. 2021;11: 1193.
Hamid M, Ashraf MY, Rehman KU, Arshad M. Influence of salicylic acid seed priming on growth and some biochemical attributes on wheat growth under saline conditions. Pak J Bot. 2008;40:361–367.
Lara TS, Lira JMS, Rodrigues AC, Rakocevic M, Alvarenga AA. Potassium nitrate priming affects the activity of nitrate reductase and antioxidant enzymes in tomato germination. J Agric Sci. 2014;6:72‒80.
El-Sabagh A, Hossain A, Barutçular C, Iqbal MA, Islam MS, Fahad S. “Consequences of salinity stress on the quality of crops and its mitigation strategies for sustainable crop production: an outlook of arid and semi-arid regions,” in Environment, Climate, Plant and Vegetation Growth, eds Fahad A., Hasanuzzaman M., Alam M., Ullah H., Saeed M., Khan I. A., and Adnan M.(Cham: Springer; ), 2020;503–533.
James RA, Munns R, Caemmerer VS, Trejo C, Miller C, Condon T. Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+, K+ and Cl- in salt-affected barley and durum wheat. Plant Cell Environ. 2006;29:2185–2197. doi: 10.1111/j.1365-3040.2006.01592.x PubMed DOI
Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;59:651–681. doi: 10.1146/annurev.arplant.59.032607.092911 PubMed DOI
Zhao D, Gao S, Zhang X, Zhang Z, Zheng H, Rong K, et al.. Impact of saline stress on the uptake of various macro and micronutrients and their associations with plant biomassand root traits in wheat. Plant Soil Environ. 2021;67:61–70.
Robin AHK, Matthew C, Uddin MJ, Bayazid KN. Salinity-induced reduction in root surface area and changes in major root and shoot traits at the phytomere level in wheat. J Exp Bot. 2016;67:3719–3729. doi: 10.1093/jxb/erw064 PubMed DOI
Haling RE, Brown LK, Bengough AG, Young IM, Hallett PD, White PJ, et al.. Root hairs improve root penetration, root–soil contact, and phosphorus acquisition in soils of different strength. J Exp Bot. 2013;64:3711–3721. doi: 10.1093/jxb/ert200 PubMed DOI
Huang X, Liu Y, Li J, Xiong X, Chen Y, Yin X, et al.. The response of mulberry trees after seedling hardening to summer drought in the hydro-fluctuation belt of Three Gorges Reservoir Areas. Env Sci Poll Res. 2013;20:7103–7111. doi: 10.1007/s11356-012-1395-x PubMed DOI
Tabaxi I, Ζisi C, Karydogianni S, Folina AE, Kakabouki I, Kalivas A, et al.. Effect of organic fertilization on quality and yield of oriental tobacco (Nicotiana tabacum L.) under Mediterranean conditions. Asian J Agric Biol. 2021(1). 10.35495/ajab.2020.05.274. DOI
Makawita GIPS, Wickramasinghe I, Wijesekara I. Using brown seaweed as a biofertilizer in the crop management industry and assessing the nutrient upliftment of crops. Asian J Agric Biol. 2021(1). 10.35495/ajab.2020.04.257. DOI
Krishnamurthy L, Serraj R, Hash CT, Dakheel AJ, Reddy BVS. Screening sorghum genotypes for salinity tolerant biomass production. Euphytica. 2007;156:15–24.
Paul D, Lade H. Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agro Sustain Dev. 2014;1–17.
Hasanuzzaman M, Alam M, Rahman A, Hasanuzzaman M, Nahar K, Fujita M. Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties. BioMed Res Int. 2014;757219. doi: 10.1155/2014/757219 PubMed DOI PMC
Zahid N, Ahmed MJ, Tahir MM, Maqbool M, Shah SZA, Hussain SJ, et al.. Integrated effect of urea and poultry manure on growth, yield and postharvest quality of cucumber (Cucumis sativus L.). Asian J Agric Biol. 2021(1). 10.35495/ajab.2020.07.381. DOI
Arif Y, Singh P, Siddiqui H, Bajguz A, Hayat S. Salinity induced physiological and biochemical changes in plants: an omic approach towards salt stress tolerance. Plant Physiol Biochem. 2020;156:64–77. doi: 10.1016/j.plaphy.2020.08.042 PubMed DOI
Gondal MR, Saleem MY, Rizvi SA, Riaz A, Naseem W, Muhammad G, et al.. Assessment of drought tolerance in various cotton genotypes under simulated osmotic settings. Asian J Agric Biol. 2021;2:202008437. 10.35495/ajab.2020.08.437. DOI
Qiong Y, Guo Y, Zhixia X, Ke S, Jin X, Ting Y, et al.. Effects of salt stress on tillering nodes to the growth of winter wheat (Triticum aestivum L.). Pak J Bot. 2016;48:1775–1782.
Alamri S, Hu Y, Mukherjee S, Aftab T, Fahad S, Raza A, et al.. Silicon-induced postponement of leaf senescence is accompanied by modulation of antioxidative defense and ion homeostasis in mustard (Brassica juncea) seedlings exposed to salinity and drought stress. Plant Physiol Biochem. 2020;157:47–59. doi: 10.1016/j.plaphy.2020.09.038 PubMed DOI
Loutfy N, Sakuma Y, Gupta DK, Inouhe M. Modifications of water status, growth rate and antioxidant system in two wheat cultivars as affected by salinity stress and salicylic acid. J Plant Res. 2020;133:549–570. doi: 10.1007/s10265-020-01196-x PubMed DOI
Kazemi S, Zakerin A, Abdossi V, Moradi P. Fruit yield and quality of the grafted tomatoes under different drought stress conditions. Asian J Agric Biol. 2021(1). 10.35495/ajab.2020.03.164. DOI
Rahneshan Z, Nasibi F, Moghadam AA. Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. J Plant Interact. 2018;13:73–82. doi: 10.1080/17429145.2018.1424355 DOI
Kumar S, Li G, Yang J, Huang X, Ji Q, Liu Z, et al.. Effect of Salt Stress on Growth, Physiological Parameters, and Ionic Concentration of Water Dropwort (Oenanthe javanica) Cultivars. Front Plant Sci. 2021;12:660409. doi: 10.3389/fpls.2021.660409 PubMed DOI PMC