• This record comes from PubMed

Application of Moringa Leaf Extract as a Seed Priming Agent Enhances Growth and Physiological Attributes of Rice Seedlings Cultivated under Water Deficit Regime

. 2022 Jan 19 ; 11 (3) : . [epub] 20220119

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
No:21-2333/SRGP/R&D/HEC/2019 Higher Education Commission

Population growth, food shortages, climate change and water scarcity are some of the frightening challenges being confronted in today's world. Water deficit or drought stress has been considered a severe limitation for the productivity of rice, a widely popular nutritive cereal crop and the staple food of a large portion of the population. A key stage in crop growth is seed emergence, which is mostly constrained by abiotic elements such as high temperatures, soil crusting and low water potential, which are responsible for poor stand establishment. Seed priming is a pre-sowing treatment of seeds that primes them to a physiological state that allows them to emerge more proficiently. The purpose of this study was to investigate the potential of leaf extracts from local and exotic moringa landraces as seed priming agents in rice cultivated under water deficit (75% field capacity) and control conditions (100% field capacity). Rice seeds were placed in an aerated solution of moringa leaf extract (MLE) at 3% from three obtained landraces (Faisalabad, Multan and an exotic landrace of India). The results obtained from the experimentation show that the water deficit regime adversely affected the studied indicators including emergence and growth attributes as well as physiological parameters. Among the priming agents, MLE from the Faisalabad landrace significantly improved the speed and spread of emergence of rice seedlings (time to start emergence at 23%, emergence index at 75%, mean emergence time at 3.58% and final emergence percentage at 46%). All the priming agents enhanced the growth, photosynthetic pigments, gas exchange parameters and antioxidant activities, particularly under the water deficit regime, but the maximum improvement was recorded by the MLE from the Faisalabad landrace. Therefore, the MLE of the Faisalabad landrace can be productively used to boost the seedling establishment and growth of rice grown under normal and water deficit conditions.

See more in PubMed

Nadeem M., Li J., Yahya M., Sher A., Ma C., Wang X., Qiu L. Research progress and perspective on drought stress in legumes: A review. Int. J. Mole. Sci. 2019;20:2541. doi: 10.3390/ijms20102541. PubMed DOI PMC

Statista. 2019. [(accessed on 25 October 2021)]. Available online: https://www.statista.com/statistics/263977/world-grain-production-by-type/

Alexandratos N., Jelle B. World Agriculture towards 2030/2050: The 2012 Revision. FAO Agricultural Development Economics Division. Food and Agriculture Organization of the United Nations. 2012. [(accessed on 12 September 2021)]. Available online: www.fao.org/economic/esa.

Milani P., Carnahan E., Kapoor S., Ellison C., Manus C., Spohrer R., van den Berg G., Wolfson J., Kreis K. Social marketing of a fortified staple food at scale: Generating demand for fortified rice in Brazil. J. Food Prod. Mark. 2017;23:955–978. doi: 10.1080/10454446.2016.1266546. DOI

Kapoor D., Bhardwaj S., Landi M., Sharma A., Ramakrishnan M., Sharma A. The Impact of Drought in Plant Metabolism: How to Exploit Tolerance Mechanisms to Increase Crop Production. Appl. Sci. 2020;10:5692. doi: 10.3390/app10165692. DOI

Hossain M.Z., Sikder S., Husna A., Sultana S., Akhter S., Alim A., Joardar J.C. Influence of water stress on morphology, physiology and yield contributing characteristics of rice. SAARC J. Agric. 2020;18:61–71. doi: 10.3329/sja.v18i1.48382. DOI

Basal O., Szabó A. Physiology, yield and quality of soybean as affected by drought stress. Asian J. Agric. Biol. 2020;8:247–252. doi: 10.35495/ajab.2019.11.505. DOI

Huke R.E., Huke E.H. Rice Area by Type of Culture: South, Southeast, and East Asia. IRRI; Los Ban, CA, USA: 1997.

Anjum S.A., Wang L.C., Farooq M., Hussain M., Xue L.L., Zou C.M. Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J. Agron. Crop Sci. 2011;197:177–185. doi: 10.1111/j.1439-037X.2010.00459.x. DOI

Kim Y., Chung Y.S., Lee E., Tripathi P., Heo S., Kim K.H. Root Response to Drought Stress in Rice (Oryza sativa L.) Int. J. Mol. Sci. 2020;21:1513. doi: 10.3390/ijms21041513. PubMed DOI PMC

Hussain M., Malik M.A., Farooq M., Ashraf M.Y., Cheema M.A. Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. J. Agron. Crop Sci. 2008;194:193–199. doi: 10.1111/j.1439-037X.2008.00305.x. DOI

Darwish E., Rehman S.U., Mao X., Jing R. A wheat stress induced WRKY transcription factor TaWRKY32 confers drought stress tolerance in Oryza sativa. Asian J. Agric. Biol. 2021 doi: 10.35495/ajab.2020.06.371. DOI

Nawaz A., Farooq M., Alam S., Wahid A. Stay green character at grain filling ensures resistance against terminal drought in wheat. Int. J. Agric. Biol. 2013;15:1272–1276.

Denaxa N.K., Damvakaris T., Roussos P.A. Antioxidant defense system in young olive plants against drought stress and mitigation of adverse effects through external application of alleviating products. Sci. Hortic. 2020;259:108812. doi: 10.1016/j.scienta.2019.108812. DOI

Farooq M., Wahid A., Kobayashi N., Fujita D., Basra S.M.A. Sustainable Agriculture. Springer; Dordrecht, The Netherland: 2009. Plant drought stress: Effects, mechanisms and management; pp. 153–188.

Kazemi S., Zakerin A., Abdossi V., Moradi P. Fruit yield and quality of the grafted tomatoes under different drought stress conditions. Asian J. Agric. Biol. 2021 doi: 10.35495/ajab.2020.03.164. DOI

Rehman A., Hassan F., Qamar R., Rehman A.U. Application of plant growth promoters on sugarcane (Saccharum officinarum L.) budchip under subtropical conditions. Asian J. Agric. Biol. 2021;2:202003202. doi: 10.35495/ajab.2020.03.202. DOI

Al-Zboon K.K., Al-Tabbal J.A., Al-Kharabsheh N.M., Al-Mefleh N.K. Natural volcanic tuff as a soil mulching: Effect on plant growth and soil chemistry under water stress. Appl. Water Sci. 2019;9:123. doi: 10.1007/s13201-019-1000-2. DOI

Makawita G.I.P.S., Wickramasinghe I., Wijesekara I. Using brown seaweed as a biofertilizer in the crop management industry and assessing the nutrient upliftment of crops. Asian J. Agric. Biol. 2021 doi: 10.35495/ajab.2020.04.257. DOI

Qamar R., Anjum I., Rehman A.U., Safdar M.E., Javeed H.M.R., Rehman A., Ramzan Y. Mitigating water stress on wheat through foliar application of silicon. Asian J. Agric. Biol. 2020;8:1–10. doi: 10.35495/ajab.2019.04.174. DOI

Tabaxi I., Ζisi C., Karydogianni S., Folina A.E., Kakabouki I., Kalivas A., Bilalis D. Effect of organic fertilization on quality and yield of oriental tobacco (Nicotiana tabacum L.) under Mediterranean conditions. Asian J. Agric. Biol. 2021 doi: 10.35495/ajab.2020.05.274. DOI

Batool S., Khan S., Basra S.M.A. Foliar application of moringa leaf extract improves the growth of moringa seedlings in wInt. S. Afri. J. Bot. 2020;129:347–353. doi: 10.1016/j.sajb.2019.08.040. DOI

Gondal M.R., Saleem M.Y., Rizvi S.A., Riaz A., Naseem W., Muhammad G., Hayat S., Iqbal M. Assessment of drought tolerance in various cotton genotypes under simulated osmotic settings. Asian J. Agric. Biol. 2021;2:202008437. doi: 10.35495/ajab.2020.08.437. DOI

Hossain M.A., Rana M.M., Al-Rabbi S.M.H., Mitsui T. Management of puddled soil through organic amendments for post-rice mungbean. Asian J. Agric. Biol. 2021 doi: 10.35495/ajab.2020.04.255. DOI

Khasanah R.A.N., Rachmawati D. Potency of silicon in reducing cadmium toxicity in Cempo Merah rice. Asian J. Agric. Biol. 2020;4:405–412. doi: 10.35495/ajab.2019.12.571. DOI

Khan S., Basra S.M.A., Nawaz M., Hussain I., Foidl N. Combined application of moringa leaf extract and chemical growth-promoters enhances. the plant growth and productivity of wheat crop (Triticum aestivum L.) S. Afr. J. Bot. 2020;129:74–81. doi: 10.1016/j.sajb.2019.01.007. DOI

Cheng F., Cheng Z. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front. Plant Sci. 2015;6:1020. doi: 10.3389/fpls.2015.01020. PubMed DOI PMC

Foidl N., Makkar H.P., Becker K. What Development Potential For Moringa Product? CIRAD; Managua, Nicaragua: 2001. The potential of Moringa oleifera for agricultural and industrial uses. The miracle tree: The multiple attributes of Moringa; pp. 45–76.

Khan S., Basit A., Hafeez M.B., Irshad S., Bashir S., Bashir S., Maqbool M.M., Saddiq M.S., Hasnain Z., Aljuaid B.S., et al. Moringa leaf extract improves biochemical attributes, yield and grain quality of rice (Oryza sativa L.) under drought stress. PLoS ONE. 2021;16:e0254452. doi: 10.1371/journal.pone.0254452. PubMed DOI PMC

Khan S., Basra S.M.A., Afzal I., Nawaz M., Rehman H.U. Growth promoting potential of fresh and stored Moringa oleifera leaf extracts in improving seedling vigor, growth and productivity of wheat crop. Environ. Sci. Poll. Res. 2017;24:27601–27612. doi: 10.1007/s11356-017-0336-0. PubMed DOI

Aslam M.F., Basra S.M.A., Hafeez M.B., Khan S., Irshad S., Iqbal S., Saddiq M.S., Akram M.Z. Inorganic fertilization improves quality and biomass of Moringa oleifera L. Agrofor. Syst. 2020;94:975–983. doi: 10.1007/s10457-019-00464-7. DOI

Carrillo-Reche J., Vallejo-Marín M., Quilliam R.S. Quantifying the potential of ‘on-farm’ seed priming to increase crop performance in developing countries. A meta-analysis. Agron. Sustain. Dev. 2018;38:64. doi: 10.1007/s13593-018-0536-0. DOI

Basra S.M.A., Iftikhar M., Afzal I. Potential of moringa (Moringa oleifera) leaf extract as priming agent for hybrid maize seeds. Int. J. Agric. Biol. 2011;13:1006–1010.

Khan S., Basra S.M.A., Afzal I., Wahid A. Screening of moringa landraces for leaf extract as biostimulant in wheat. Int. J. Agric. Biol. 2017;19:999–1006. doi: 10.17957/IJAB/15.0372. DOI

Salsinha Y.C.F., Maryani I.D., Purwestri Y.A., Rachmawati D. Morphological and anatomical characteristics of Indonesian rice roots from East Nusa Tenggara contribute to drought tolerance. Asian J. Agric. Biol. 2021 doi: 10.35495/ajab.2020.05.304. DOI

Sarwar N., Mubeen K., Wasaya A., Rehman A.U., Farooq O., Shehzad M. Response of hybrid maize to multiple soil organic amendments under sufficient or deficient soil zinc situation. Asian J. Agric. Biol. 2020;8:38–43. doi: 10.35495/ajab.2019.07.332. DOI

Nachabe M.H. Refining the definition of field capacity in the literature. J. Irrig. Drain. Eng. 1998;124:230–232. doi: 10.1061/(ASCE)0733-9437(1998)124:4(230). DOI

ISTA . International Rules for Seed Testing. ISTA; Secretariat, Switzerland: 2010.

Ellis R.A., Roberts E.H. The quantification of ageing and survival in orthodox seeds. Seed Sci. Technol. 1981;9:373–409.

Association of Official Seed Analysis (AOSA) Rules for testing seeds. J. Seed Technol. 1990;12:1–112.

Arnon D.T. Copper enzyme in isolated chloroplasts polyphenols oxidase in Beta vulgaris. Plant Physiol. 1949;24:1–15. doi: 10.1104/pp.24.1.1. PubMed DOI PMC

Long S.P., Farage P.K., Garcia R.L. Measurement of leaf and canopy photosynthetic CO2 exchange in the field. J. Exp. Bot. 1996;47:1629–1642. doi: 10.1093/jxb/47.11.1629. DOI

Giannopolitis C.N., Ries S.K. Superoxide dismutase I. Occurrence in higher plants. Plant Physiol. 1977;59:309–314. doi: 10.1104/pp.59.2.309. PubMed DOI PMC

Chance B., Maehly A.C. Assay of catalase and peroxidase. Meth. Enzym. 1955;2:764–775.

Nakano Y., Asada K. Purification of ascorbate peroxidase in spinach chloroplasts: Its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol. 1987;28:131–140.

Velikova V., Yordanov I., Edreva A. Oxidative stress and some antioxidant systems in acid raintreated bean plants. Protective role of exogenous polyamines. Plant Sci. 2000;151:59–66. doi: 10.1016/S0168-9452(99)00197-1. DOI

Steel R.G.D., Torrie J.H., Dicky D.A. Principles And Procedures Of Statistics, A Biometrical Approach. 3rd ed. McGraw Hill, Inc. Book Co.; New York, NY, USA: 1997. pp. 352–358.

Jena A., Sing R.K., Sing M.K. Mitigation measures for wheat production under heat stress condition. Int. J. Agric. Sci. Res. 2017;7:359–376.

Farooq B., Koul B. Comparative analysis of the antioxidant, antibacterial and plant growth promoting potential of five Indian varieties of Moringa oleifera L. S. Afri. J. Bot. 2020;129:47–55. doi: 10.1016/j.sajb.2018.12.014. DOI

Ashraf M., Athar H.R., Harris P.J.C., Kwon T.R. Some prospective strategies for improving crop salt tolerance. Adv. Agron. 2008;97:45–110.

Abdalla M.M. The potential of Moringa oleifera extract as a biostimulant in enhancing the growth, biochemical and hormonal contents in rocket (Eruca vesicaria subsp. sativa) plants. Int. J. Plant Physiol. Biochem. 2013;5:42–49.

Rehman H., Basra S.M.A. Growing Moringa oleifera as a Multipurpose Tree; Some Agro-Physiological and Industrial Perspectives. American Chronicle. May 28, 2010. [(accessed on 21 May 2020)]. Available online: http://www.americanchronicle.com/articles/view/159447.

Rashid N., Khan S., Wahid A., Basra S.M.A., Alwahibi M.S., Jacobsen S.E. Impact of Natural and Synthetic Growth Enhancers on the Productivity and Yield of Quinoa (Chenopodium quinoa Willd.) Cultivated under Normal and Late Sown Circumstances. J. Agron. Crop Sci. 2021:1–15. doi: 10.1111/jac.12482. DOI

Rashid N., Khan S., Wahid A., Ibrar D., Irshad S., Bakhsh A., Hasnain Z., Alkahtani J., Alwahibi M.S., Gawwad M.R.A., et al. Exogenous application of moringa leaf extract improves growth, biochemical attributes, and productivity of late-sown quinoa. PLoS ONE. 2021;16:e0259214. doi: 10.1371/journal.pone.0259214. PubMed DOI PMC

Owusu D. Master’s Thesis. Department of Biochem and Biotech, Faculty of Bio Science, College of Science, Kwame Nkrumah University of Science Technology; Kumasi, Ghana: 2008. Phytochemical Composition of Ipomea Batatus and Moringa Oleifera Leaves and Crackers from Underutilized Flours.

Yasmeen A., Basra S.M.A., Farooq M., Rehman H., Hussain N., Athar H.R. Exogenous application of moringa leaf extract modulates the antioxidant enzyme system to improve wheat performance under saline conditions. Plant Growth Regul. 2013;69:225–233. doi: 10.1007/s10725-012-9764-5. DOI

Farooq O., Ali M., Sarwar N., Rehman A., Iqbal M.M., Naz T., Asghar M., Ehsan F., Nasir M., Hussain Q.M. Foliar applied brassica water extract improves the seedling development of wheat and chickpea. Asian J. Agric. Biol. 2021 doi: 10.35495/ajab.2020.04.219. DOI

Fuglie L.J. The Miracle Tree: Moringa oleifera: Natural Nutrition for the Tropics. Church World Service; Dakar, Senegal: 1999. p. 172.

Swapna S., Shylaraj K.S. Screening for osmotic stress responses in rice varieties under drought condition. Rice Sci. 2017;24:253–263. doi: 10.1016/j.rsci.2017.04.004. DOI

Xu Q., Ma X., Lv T., Bai M., Wand Z., Niu J. Effects of water stress on fluorescence parameters and photosynthetic characteristics of drip irrigation in rice. Water. 2020;12:289. doi: 10.3390/w12010289. DOI

Zhang Y.P., Zhu D.F., Lin X.Q., Chen H.Z. Effects of water stress on rice growth and yield at different growth stages. Agric. Res. Arid Areas. 2005;2:48–53.

Sun L.F. Master’s Thesis. Henan Agricultural University; Zhengzhou, China: 2013. Rice Roots of Drought Stress on the Photosynthetic Fluorescence Characteristic Influence.

Safdar M.E., Aslam A., Qamar R., Ali A., Javaid M.M., Hayyat M.S., Raza A. Allelopathic effect of prickly chaff flower (Achyranthes aspera L.) used as a tool for managing noxious weeds. Asian J. Agric. Biol. 2021;10 doi: 10.35495/ajab.2020.06.370. DOI

Zahid N., Ahmed M.J., Tahir M.M., Maqbool M., Shah S.Z.A., Hussain S.J., Khaliq A., Rehmani M.I.A. Integrated effect of urea and poultry manure on growth, yield and postharvest quality of cucumber (Cucumis sativus L.) Asian J. Agric. Biol. 2021;2021:1–9. doi: 10.35495/ajab.2020.07.381. DOI

Foyer C.H., Noctor G. Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol. Planta. 2003;119:355–364. doi: 10.1034/j.1399-3054.2003.00223.x. DOI

Alscher R.G., Erturk N., Heath L.S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 2002;53:1331–1341. doi: 10.1093/jexbot/53.372.1331. PubMed DOI

McKersie B.D., Bowley S.R., Jones K.S. Winter survival of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol. 1999;119:839–848. doi: 10.1104/pp.119.3.839. PubMed DOI PMC

Hanafy R. Using Moringa olifera Leaf Extract as a bio-fertilizer for drought stress mitigation of Glycine max L. plants. Egypt. J. Bot. 2017;57:281–292. doi: 10.21608/ejbo.2017.596.1027. DOI

Mirzaee M., Moieni A., Ghanati F. Effects of drought stress on the lipid peroxidation and antioxidant enzymes activities in two canola (Brassica napus L.) cultivars. J. Agric. Sci. Technol. 2013;15:593–602.

Zaki S.S., Rady M.M. Moringa oleifera leaf extract improves growth, physiochemical attributes, antioxidant defense system and yields of salt-stressed Phaseolus vulgaris L. plants. Int. J. Chem. Technol. Res. 2015;8:120–134.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...