Genomic analysis of a halophilic bacterium Nesterenkonia sp. CL21 with ability to produce a diverse group of lignocellulolytic enzymes
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
IPSR/RMC/UTARRF/2021-C2/L02
Universiti Tunku Abdul Rahman
PubMed
38842626
DOI
10.1007/s12223-024-01178-9
PII: 10.1007/s12223-024-01178-9
Knihovny.cz E-resources
- Keywords
- Nesterenkonia, Genomics, Halophiles, Lignocellulolytic enzymes,
- MeSH
- Bacterial Proteins * genetics metabolism MeSH
- Cellulases * genetics metabolism MeSH
- Phylogeny MeSH
- Genome, Bacterial * MeSH
- Genomics MeSH
- Geologic Sediments microbiology MeSH
- Glycoside Hydrolases * genetics metabolism MeSH
- Lignin * metabolism MeSH
- Base Composition MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Bacterial Proteins * MeSH
- Cellulases * MeSH
- Glycoside Hydrolases * MeSH
- hemicellulase MeSH Browser
- Lignin * MeSH
- lignocellulose MeSH Browser
Halophilic bacteria are extremophiles that thrive in saline environment. Their ability to withstand such harsh conditions makes them an ideal choice for industrial applications such as lignocellulosic biomass degradation. In this study, a halophilic bacterium with the ability to produce extracellular cellulases and hemicellulases, designated as Nesterenkonia sp. CL21, was isolated from mangrove sediment in Tanjung Piai National Park, Malaysia. Thus far, studies on lignocellulolytic enzymes concerning bacterial species under this genus are limited. To gain a comprehensive understanding of its lignocellulose-degrading potential, the whole genome was sequenced using the Illumina NovaSeq 6000 platform. The genome of strain CL21 was assembled into 25 contigs with 3,744,449 bp and a 69.74% GC content and was predicted to contain 3,348 coding genes. Based on taxonomy analysis, strain CL21 shares 73.8 to 82.0% average nucleotide identity with its neighbouring species, below the 95% threshold, indicating its possible status as a distinct species in Nesterenkonia genus. Through in-depth genomic mining, a total of 81 carbohydrate-active enzymes were encoded. Among these, 24 encoded genes were identified to encompass diverse cellulases (GH3), xylanases (GH10, GH11, GH43, GH51, GH127 and CE4), mannanases (GH38 and GH106) and pectinases (PL1, PL9, and PL11). The production of lignocellulolytic enzymes was tested in the presence of several substrates. This study revealed that strain CL21 can produce a diverse array of enzymes which are active at different time points. By combining experimental data with genomic information, the ability of strain CL21 to produce lignocellulolytic enzymes has been elucidated, with potential applications in biorefinery industry.
See more in PubMed
Adewuyi A (2022) Underutilized lignocellulosic waste as sources of feedstock for biofuel production in developing countries. Front Energy Res 10:741570. https://doi.org/10.3389/fenrg.2022.741570 DOI
Amiri H, Azarbaijani R, Parsa Yeganeh L et al (2016) Nesterenkonia sp. strain F, a halophilic bacterium producing acetone, butanol and ethanol under aerobic conditions. Sci Report 6:18408. https://doi.org/10.1038/srep18408
Andlar M, Rezić T, Marđetko N et al (2018) Lignocellulose degradation: an overview of fungi and fungal enzymes involved in lignocellulose degradation. Eng Life Sci 18(11):768–778. https://doi.org/10.1002/elsc.201800039 PubMed DOI PMC
Awoyale AA, Lokhat D (2021) Experimental determination of the effects of pretreatment on selected Nigerian lignocellulosic biomass in bioethanol production. Sci Reports 11:557. https://doi.org/10.1038/s41598-020-78105-8 DOI
Bankevich A, Nurk S, Antipov D et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021 PubMed DOI PMC
Bertels F, Silander OK, Pachkov M et al (2014) Automated reconstruction of whole-genome phylogenies from short-sequence reads. Molr Biol Evol 31:1077–1088. https://doi.org/10.1093/molbev/msu088 DOI
Chander AM, Nair RG, Kaur G et al (2017) Genome insight and comparative pathogenomic analysis of nesterenkonia jeotgali strain cd08_7 isolated from duodenal mucosa of celiac disease patient. Front Microbiol 8:129. https://doi.org/10.3389/fmicb.2017.00129 PubMed DOI PMC
Dai D, Lu H, Xing P, Wu Q (2022) Comparative genomic analyses of the genus Nesterenkonia unravels the genomic adaptation to polar extreme environments. Microorganisms 10:233. https://doi.org/10.3390/microorganisms10020233 PubMed DOI PMC
Delgado O (2006) Nesterenkonia aethiopica sp. nov., an alkaliphilic, moderate halophile isolated from an Ethiopian soda lake. Int J Sys Evol Microbiol 56:1229–1232. https://doi.org/10.1099/ijs.0.63633-0 DOI
Deshavath NN, Mukherjee G, Goud VV et al (2020) Pitfalls in the 3, 5-dinitrosalicylic acid (DNS) assay for the reducing sugars: interference of furfural and 5-hydroxymethylfurfural. Int J Biol Macromol 156:180–185. https://doi.org/10.1016/j.ijbiomac.2020.04.045 PubMed DOI
Eliana VM, Mipeshwaree DA, Salam N et al (2019) Nesterenkonia natronophila sp. nov., an alkaliphilic actinobacterium isolated from a soda lake, and emended description of the genus Nesterenkonia. Int J Syst Evol Microbiol 69:1960–1966. https://doi.org/10.1099/ijsem.0.003409 DOI
Ghadikolaei KK, Sangachini ED, Vahdatirad V et al (2019) An extreme halophilic xylanase from camel rumen metagenome with elevated catalytic activity in high salt concentrations. AMB Express 9:86. https://doi.org/10.1186/s13568-019-0809-2 PubMed DOI PMC
Goris J, Konstantinidis KT, Klappenbach JA et al (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91. https://doi.org/10.1099/ijs.0.64483-0 PubMed DOI
Gunde-Cimerman N, Plemenitaš A, Oren A (2018) Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol Rev 42:353–375. https://doi.org/10.1093/femsre/fuy009 PubMed DOI
Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. https://doi.org/10.1093/bioinformatics/btt086 PubMed DOI PMC
Habibu A, Pieter DM, Cowan DA (2016) The genome of the antarctic polyextremophile Nesterenkonia sp. AN1 reveals adaptive strategies for survival under multiple stress conditions. FEMS Microbiol Ecol 92:fiw032–fiw032. https://doi.org/10.1093/femsec/fiw032
Huang J, Wang H, Alam F, Cui Y-W (2019) Granulation of halophilic sludge inoculated with estuarine sediments for saline wastewater treatment. Sci Total Environ 682:532–540. https://doi.org/10.1016/j.scitotenv.2019.05.197 PubMed DOI
Huerta-Cepas J, Szklarczyk D, Heller D et al (2018) eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47:D309–D314. https://doi.org/10.1093/nar/gky1085 DOI PMC
Jędrzejczyk M, Soszka E, Czapnik M et al (2019) Physical and chemical pretreatment of lignocellulosic biomass. Second Third Gen Feedstocks 143–196. https://doi.org/10.1016/b978-0-12-815162-4.00006-9
Kataeva I, Seidel RD, Shah A et al (2002) The fibronectin type 3-like repeat from the clostridium thermocellum cellobiohydrolase cbha promotes hydrolysis of cellulose by modifying its surface. Appl Environ Microbiol 68:4292–4300. https://doi.org/10.1128/aem.68.9.4292-4300.2002 PubMed DOI PMC
Kim DK, Jang YR, Kim KH et al (2011) Isolation and culture properties of a thermophilic agarase-producing strain, Microbulbifer sp. SD-1. Fish Aquat Sci 14:186–191. https://doi.org/10.5657/fas.2011.0186 DOI
Kim JY, Lee HW, Lee SM et al (2019) Overview of the recent advances in lignocellulose liquefaction for producing biofuels, bio-based materials and chemicals. Bioresour Technol 279:373–384. https://doi.org/10.1016/j.biortech.2019.01.055 PubMed DOI
Lam MQ, Vodovnik M, Zorec M et al (2020a) Robertkochia solimangrovi sp. nov., isolated from mangrove soil, and emended description of the genus Robertkochia. J Syst Evol Microbiol 70:1769–1776. https://doi.org/10.1099/ijsem.0.003970 DOI
Lam MQ, Oates NC, Thevarajoo S et al (2020b) Genomic analysis of a lignocellulose degrading strain from the underexplored genus Meridianimaribacter. Genomics 112:952–960. https://doi.org/10.1016/j.ygeno.2019.06.011 PubMed DOI
Lam MQ, Nik Mut NN, Thevarajoo S et al (2018) Characterization of detergent compatible protease from halophilic Virgibacillus sp. CD6. 3 Biotech 8: https://doi.org/10.1007/s13205-018-1133-2
Li W-J, Chen H-H, Zhang Y-Q et al (2004) Nesterenkonia halotolerans sp. nov. and Nesterenkonia xinjiangensis sp. nov., actinobacteria from saline soils in the west of China. Int J Syst Evol Microbiol 54:837–841. https://doi.org/10.1099/ijs.0.02935-0 PubMed DOI
Liew KJ, Zakaria M, Wan C et al (2023) Draft genome sequence of Joostella atrarenae M1–2T with cellulolytic and hemicellulolytic ability. 3 Biotech 13:50. https://doi.org/10.1007/s13205-023-03472-8
Mah MH, Lam MK, Tokiman L et al (2021) Revealing the potential of xylanase from a new halophilic microbulbifer sp. cl37 with paper de-inking ability. Arab Sci Eng 47:6795–6805. https://doi.org/10.1007/s13369-021-06400-1 DOI
Marđetko N, Trontel A, Novak M et al (2021) Screening of lignocellulolytic enzyme activities in fungal species and sequential solid-state and submerged cultivation for the production of enzyme cocktails. Polymers 13:3736. https://doi.org/10.3390/polym13213736 PubMed DOI PMC
Mujtaba M, Fernandes Fraceto L, Fazeli M et al (2023) Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics. J Cleaner Prod 402:136815. https://doi.org/10.1016/j.jclepro.2023.136815 DOI
Nechita P, Roman M, Năstac S (2023) Green approaches on modification of xylan hemicellulose to enhance the functional properties for food packaging materials—a review. Polymers 15:2088. https://doi.org/10.3390/polym15092088 PubMed DOI PMC
Numan MTh, Bhosle NB (2005) α-l-Arabinofuranosidases: the potential applications in biotechnology. J Ind Microbiol Biotechnol 33:247–260. https://doi.org/10.1007/s10295-005-0072-1 PubMed DOI
Ojo AO (2023) An overview of lignocellulose and its biotechnological importance in high-value product production. Ferment 9:990. https://doi.org/10.3390/fermentation9110990 DOI
Patiño-Ruiz M, Ganea C, Călinescu O (2022) Prokaryotic Na+/H+ exchangers—transport mechanism and essential residues. Int J Mol Sci 23:9156. https://doi.org/10.3390/ijms23169156 PubMed DOI PMC
Paysan-Lafosse T, Blum M, Chuguransky S et al (2022) InterPro in 2022. Nucleic Acids Res 51:418–427 https://doi.org/10.1093/nar/gkac993
Raba DA, Yuan M, Fang X et al (2019) Role of subunit d in ubiquinone-binding site of vibrio cholerae nqr: pocket flexibility and inhibitor resistance. ACS Omega 4:19324–19331. https://doi.org/10.1021/acsomega.9b02707 PubMed DOI PMC
Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J (2015) JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32:929–931. https://doi.org/10.1093/bioinformatics/btv681 PubMed DOI PMC
Rohman A, Dijkstra BW, Puspaningsih NNT (2019) β-Xylosidases: structural diversity, catalytic mechanism, and inhibition by monosaccharides. Int J of Mol Sci 20:5524. https://doi.org/10.3390/ijms20225524 DOI
Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass – an overview. Bioresour Technol 199:76–82. https://doi.org/10.1016/j.biortech.2015.08.030 PubMed DOI
Singh N, Singhania RR, Nigam PS et al (2022) Global status of lignocellulosic biorefinery: Challenges and perspectives. Bioresour Technol 344:126415. https://doi.org/10.1016/j.biortech.2021.126415 PubMed DOI
Singh G, Verma AK, Kumar V (2015) Catalytic properties, functional attributes and industrial applications of β-glucosidases. 3 Biotech 6: 3. https://doi.org/10.1007/s13205-015-0328-z
Singh S, Goyal A, Moholkar VS (2018) Synthesis of bioethanol from invasive weeds: process design, optimization, and intensification with ultrasound. Waste Bioref 445–485. https://doi.org/10.1016/b978-0-444-63992-9.00015-x
Soto-Padilla My, GortÁRes-Moroyoqui P, Cira-ChÁVez La, Estrada-Alvarado Mi (2018) Biochemical and molecular characterization of a native haloalkalophilic tolerant strain from the texcoco lake. Pol J Microbiol 67:377–382. https://doi.org/10.21307/pjm-2018-047
Tatusova T, DiCuccio M, Badretdin A et al (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44:6614–6624. https://doi.org/10.1093/nar/gkw569 PubMed DOI PMC
Wagner A, Lackner N, Mutschlechner M et al (2018) Biological pretreatment strategies for second-generation lignocellulosic resources to enhance biogas production. Energies 11:1797. https://doi.org/10.3390/en11071797 PubMed DOI PMC
Walker BJ, Abeel T, Shea T et al (2014) Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9:e112963. https://doi.org/10.1371/journal.pone.0112963 PubMed DOI PMC
Zang X, Liu M, Fan Y et al (2018) The structural and functional contributions of β-glucosidase-producing microbial communities to cellulose degradation in composting. Biotechnol Biofuels 11:51. https://doi.org/10.1186/s13068-018-1045-8 PubMed DOI PMC
Zakaria MR, Lam MQ, Chen SJ et al (2020) Genome sequence data of Mangrovimonas sp. strain CR14 isolated from mangrove forest at Tanjung Piai National Park Malaysia. Data Brief 30:105658. https://doi.org/10.1016/j.dib.2020.105658
Zhang G, Wang L, Xie F et al (2020) Nesterenkonia salmonea sp. nov. and Nesterenkonia sphaerica sp. nov., isolated from the Southern Atlantic Ocean. Int J Syst Evol Microbiol 70:923–928. https://doi.org/10.1099/ijsem.0.003847 PubMed DOI
Zhao B, Al Rasheed H, Ali I, Hu S (2021) Efficient enzymatic saccharification of alkaline and ionic liquid-pretreated bamboo by highly active extremozymes produced by the co-culture of two halophilic fungi. Bioresour Technol 319:124115. https://doi.org/10.1016/j.biortech.2020.124115 PubMed DOI
Zheng J, Ge Q, Yan Y et al (2023) dbCAN3: automated carbohydrate-active enzyme and substrate annotation. Nucleic Acids Res 51:115–121. https://doi.org/10.1093/nar/gkad328 DOI
Zoghlami A, Paës G (2019) Lignocellulosic biomass: understanding recalcitrance and predicting hydrolysis. Front Chem 7:874. https://doi.org/10.3389/fchem.2019.00874 PubMed DOI PMC