Halophilic bacteria are extremophiles that thrive in saline environment. Their ability to withstand such harsh conditions makes them an ideal choice for industrial applications such as lignocellulosic biomass degradation. In this study, a halophilic bacterium with the ability to produce extracellular cellulases and hemicellulases, designated as Nesterenkonia sp. CL21, was isolated from mangrove sediment in Tanjung Piai National Park, Malaysia. Thus far, studies on lignocellulolytic enzymes concerning bacterial species under this genus are limited. To gain a comprehensive understanding of its lignocellulose-degrading potential, the whole genome was sequenced using the Illumina NovaSeq 6000 platform. The genome of strain CL21 was assembled into 25 contigs with 3,744,449 bp and a 69.74% GC content and was predicted to contain 3,348 coding genes. Based on taxonomy analysis, strain CL21 shares 73.8 to 82.0% average nucleotide identity with its neighbouring species, below the 95% threshold, indicating its possible status as a distinct species in Nesterenkonia genus. Through in-depth genomic mining, a total of 81 carbohydrate-active enzymes were encoded. Among these, 24 encoded genes were identified to encompass diverse cellulases (GH3), xylanases (GH10, GH11, GH43, GH51, GH127 and CE4), mannanases (GH38 and GH106) and pectinases (PL1, PL9, and PL11). The production of lignocellulolytic enzymes was tested in the presence of several substrates. This study revealed that strain CL21 can produce a diverse array of enzymes which are active at different time points. By combining experimental data with genomic information, the ability of strain CL21 to produce lignocellulolytic enzymes has been elucidated, with potential applications in biorefinery industry.
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- celulasy genetika metabolismus MeSH
- fylogeneze * MeSH
- genom bakteriální * MeSH
- genomika * MeSH
- geologické sedimenty mikrobiologie MeSH
- glykosidhydrolasy * genetika metabolismus MeSH
- lignin * metabolismus MeSH
- RNA ribozomální 16S genetika MeSH
- sekvenování celého genomu MeSH
- zastoupení bazí MeSH
- Publikační typ
- časopisecké články MeSH
Pichia pastoris, a methylotrophic yeast, is known to be an efficient host for heterologous proteins production. In this study, a recombinant P. pastoris Y11430 was found better for β-glucosidase activity in comparison with a wild type P. pastoris Y11430 strain, and thereby, subjected to methanol intermittent feed profiling for β-glucosidase production. The results showed that at 72 h of cultivation time, the cultures with 16.67% and 33.33% methanol feeding with constant rate could produce the total dry cell weight of 52.23 and 118.55 g/L, respectively, while the total mutant β-glucosidase activities were 1001.59 and 3259.82 units, respectively. The methanol feeding profile was kept at 33% with three methanol feeding strategies such as constant feed rate, linear feed rate, and exponential feed rate which were used in fed-batch fermentation. At 60 h of cultivation, the highest total mutant β-glucosidase activity was 2971.85 units for exponential feed rate culture. On the other hand, total mutant β-glucosidase activity of the constant feed rate culture and linear feed rate culture were 1682.25 and 1975.43 units, respectively. The kinetic parameters of exponential feed rate culture were specific growth rate on glycerol 0.228/h, specific growth of methanol 0.061/h, maximum total dry cell weight 196.73 g, yield coefficient biomass per methanol ([Formula: see text]) 0.57 gcell/gMeOH, methanol consumption rate ([Formula: see text]) 5.76 gMeOH/h, and enzyme productivity ([Formula: see text]) 75.96 units/h. In conclusion, higher cell mass and β- glucosidase activity were produced under exponential feed rate than constant and linear feed rates.
Marine microorganisms represent virtually unlimited sources of novel biological compounds and can survive extreme conditions. Cellulases, a group of enzymes that are able to degrade cellulosic materials, are in high demand in various industrial and biotechnological applications, such as in the medical and pharmaceutical industries, food, fuel, agriculture, and single-cell protein, and as probiotics in aquaculture. The cellulosic biopolymer is a renewable resource and is a linearly arranged polysaccharide of glucose, with repeating units of disaccharide connected via β-1,4-glycosidic bonds, which are broken down by cellulase. A great deal of biodiversity resides in the ocean, and marine systems produce a wide range of distinct, new bioactive compounds that remain available but dormant for many years. The marine environment is filled with biomass from known and unknown vertebrates and invertebrate microorganisms, with much potential for use in medicine and biotechnology. Hence, complex polysaccharides derived from marine sources are a rich resource of microorganisms equipped with enzymes for polysaccharides degradation. Marine cellulases' extracts from the isolates are tested for their functional role in degrading seaweed and modifying wastes to low molecular fragments. They purify and renew environments by eliminating possible feedstocks of pollution. This review aims to examine the various types of marine cellulase producers and assess the ability of these microorganisms to produce these enzymes and their subsequent biotechnological applications.
Detergent enzymes are currently added to all powder and liquid detergents that are manufactured. Cellulases, lipases, amylases, and proteases are used in the detergency to replace toxic phosphates and silicates and to reduce high energy consumption. This makes the use of enzymes in detergent formulation cost effective. Fungi are producers of important extracellular enzymes for industrial use. The fungal and bacterial cellulases maintain the shape and color of the washed garments. There is a high demand for cellulases at the market by detergent industries. With this high demand, genetic engineering has been a solution due to its high production of detergent-compatible cellulases. Fungi are the famous source for detergent-compatible cellulases production, but still, there is a lack of the cost-effective process of alkaline fungal cellulase production. Review papers on detergent-compatible bacterial cellulase and amylase and detergent-compatible fungal and bacterial proteases and lipases are available, but there is no review on detergent fungal cellulases. This review aims to highlight the production, properties, stability, and compatibility of fungal cellulases. It will help other academic and industrial researchers to study, produce, and commercialize the fungal cellulases with good aspects.
- MeSH
- celulasy chemie genetika izolace a purifikace metabolismus MeSH
- detergenty chemie MeSH
- fungální proteiny chemie genetika izolace a purifikace metabolismus MeSH
- genetické inženýrství MeSH
- houby genetika růst a vývoj izolace a purifikace metabolismus MeSH
- stabilita enzymů MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Efficient hydrolysis of holocellulose depends on a proper balance between cellulase (endoglucanase, exoglucanase, β-glucosidase) and xylanase activities. The present study aimed to induce the production of cellulases and xylanases using liquid cultures (one, two, three, and four fungal strains on the same bioreactor) of wild strains of Trichoderma harzianum, Aspergillus niger, and Fusarium oxysporum. The strains were identified by amplification and analysis of the ITS rDNA region and the obtained sequences were deposited in Genbank. Enzymes (endoglucanase, exoglucansae, β-glucosidase, and xylanase activities) and the profile of extracellular protein isoforms (SDS-PAGE) produced by different fungal combinations (N = 14) were analyzed by Pearson's correlation matrix and principal component analysis (PCA). According to our results, induction of endoglucanase (19.02%) and β-glucosidase (6.35%) were obtained after 4 days when A. niger and F. oxysporum were cocultured. The combination of A. niger-T. harzianum produced higher endoglucanase in a shorter time than monocultures. On the contrary, when more than two strains were cultured in the same reactor, the relationships of competition were established, trending to diminish the amount of enzymes and the extracellular protein isoforms produced. The xylanase production was sensible to stress produced by mixed cultures, decreasing their activity. This is important when the aim is to produce cellulase-free xylanase. In addition, exoglucanase activity did not change in the combinations tested.
- MeSH
- Ascomycota enzymologie růst a vývoj izolace a purifikace metabolismus MeSH
- Aspergillus niger enzymologie růst a vývoj izolace a purifikace metabolismus MeSH
- biomasa MeSH
- bioreaktory mikrobiologie MeSH
- celulasy biosyntéza metabolismus MeSH
- celulosa metabolismus MeSH
- fermentace MeSH
- fungální proteiny biosyntéza metabolismus MeSH
- Fusarium enzymologie růst a vývoj izolace a purifikace metabolismus MeSH
- kokultivační techniky * MeSH
- mikrobiální interakce fyziologie MeSH
- průmyslová mikrobiologie metody MeSH
- Trichoderma enzymologie růst a vývoj izolace a purifikace metabolismus MeSH
- xylosidasy biosyntéza metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
The phylogenetic and physiological characteristics of cultivable-dependent approaches were determined to establish the diversity of marine bacteria associated with the intestines of benthonic organisms and seawater samples from the Argentina's Beagle Channel. A total of 737 isolates were classified as psychrophlic and psychrotolerant culturable marine bacteria. These cold-adapted microorganisms are capable of producing cold-active glycosyl hydrolases, such as β-glucosidases, celulases, β-galactosidases, xylanases, chitinases, and proteases. These enzymes could have potential biotechnological applications for use in low-temperature manufacturing processes. According to polymerase chain reaction-restriction fragment length polymorphism analysis of part of genes encoding 16S ribosomal DNA (ARDRA) and DNA gyrase subunit B (gyrB-RFLP), 11 operational taxonomic units (OTU) were identified and clustered in known genera using InfoStat software. The 50 isolates selected were sequenced based on near full sequence analysis of 16S rDNA and gyrB sequences and identified by their nearest neighbors ranging between 96 and 99 % of identities. Phylogenetic analyses using both genes allowed relationships between members of the cultured marine bacteria belonging to the γ-Proteobacteria group (Aeromonas, Halteromonas, Pseudomonas, Pseudoalteromonas, Shewanella, Serratia, Colwellia, Glacielocola, and Psychrobacter) to be evaluated. Our research reveals a high diversity of hydrolytic bacteria, and their products actuality has an industrial use in several bioprocesses at low-temperature manufacturing.
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- biodiverzita MeSH
- celulasy chemie genetika metabolismus MeSH
- DNA bakterií genetika MeSH
- fylogeneze * MeSH
- Gammaproteobacteria klasifikace enzymologie genetika izolace a purifikace MeSH
- molekulární sekvence - údaje MeSH
- mořská voda mikrobiologie MeSH
- nízká teplota MeSH
- proteasy chemie genetika metabolismus MeSH
- ribozomální DNA genetika MeSH
- RNA ribozomální 16S genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Argentina MeSH
Cellulase (CEL) presently constitutes a major group of industrial enzyme based on its diverse ranges of utilization. Apart from such current and well-established applications-as in cotton processing, paper recycling, detergent formulation, juice extraction, and animal feed additives-their uses in agricultural biotechnology and bioenergy have been exploited. Supplementation of CELs to accelerate decomposition of plant residues in soil results in improved soil fertility. So far, applying CELs/antagonistic cellulolytic fungi to crops has shown to promote plant growth performance, including enhanced seed germination and protective effects. Their actions are believed mainly to trigger plant defense mechanisms and/or to act as biocontrol agents that mediate disease suppression. However, the exact interaction between the enzymes/fungi and plants has not been clearly elucidated. Under mild conditions, removal of plant cell wall polysaccharides by CELs for protoplast preparation results in reduced protoplast damage and increased viability and yields. CELs have recently shown great potential in enzyme aid extraction of bioactive compounds from plant materials before selective extraction through enhancing release of target molecules, especially those associated with the wall matrix. To date, attempts have been made to formulate CEL preparation for cellulosic-based bioethanol production. The high cost of CELs has created a bottleneck, resulting in an uneconomic production process. The utilization of low-cost carbohydrates, strain improvement, and gene manipulations has been alternatively aimed at reducing the cost of CEL production. In this review, we focus on and discuss current knowledge of CELs and their applications in agriculture, biotechnology, and bioenergy.
Earthworms Eisenia andrei, similarly to other invertebrates, rely on innate defense mechanisms based on the capability to recognize and respond to nonself. Here, we show a correlation between the expression of CCF, a crucial pattern-recognition receptor, and lysozyme, with enzyme activities in the gut of E. andrei earthworms following a microbial challenge. These data suggest that enzyme activities important for the release and recognition of molecular patterns by pattern-recognition molecules, as well as enzymes involved in effector pathways, are modulated during the microbial challenge. In particular, protease, laminarinase, and glucosaminidase activities were increased in parallel to up-regulated CCF and lysozyme expression.
- MeSH
- Bacillus subtilis imunologie MeSH
- celulasy metabolismus MeSH
- Escherichia coli imunologie MeSH
- hexosaminidasy metabolismus MeSH
- messenger RNA metabolismus MeSH
- muramidasa metabolismus fyziologie MeSH
- Oligochaeta enzymologie imunologie mikrobiologie MeSH
- přirozená imunita MeSH
- proteasy metabolismus MeSH
- Saccharomyces cerevisiae imunologie MeSH
- upregulace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Two cellulases from Scytalidium thermophilum were purified and characterized, exhibiting tolerance to glucose and cellobiose. Characterization of purified cellulases I and II by mass spectrometry revealed primary structure similarities with an exoglucanase and an endoglucanase, respectively. Molecular masses were 51.2 and 45.6 kDa for cellulases I and II, respectively, as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Cellulases I and II exhibited isoelectric points of 6.2 and 6.9 and saccharide contents of 11 and 93 %, respectively. Optima of temperature and pH were 60-65 °C and 4.0 for purified cellulase I and 65 °C and 6.5 for purified cellulase II. Both cellulases maintained total CMCase activity after 60 min at 60 °C. Cysteine, Mn(2+), dithiotreitol and ß-mercaptoethanol-stimulated cellulases I and II. The tolerance to cellulose hydrolysis products and the high thermal stabilities of Scytalidium cellulases suggest good potential for industrial applications.
- MeSH
- aktivátory enzymů analýza MeSH
- Ascomycota enzymologie MeSH
- celobiosa metabolismus MeSH
- celulasy chemie izolace a purifikace metabolismus MeSH
- elektroforéza v polyakrylamidovém gelu MeSH
- glukosa metabolismus MeSH
- hmotnostní spektrometrie MeSH
- inhibitory enzymů metabolismus MeSH
- izoelektrický bod MeSH
- koncentrace vodíkových iontů MeSH
- molekulová hmotnost MeSH
- stabilita enzymů MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The expression of Ruminococcus flavefaciens 007S cellulases in different incubation time points (growth stages) and their substrate inducibility were analyzed by comparing the zymogram expression profiles of cultures grown on insoluble cellulose (Avicel) with cellobiose-grown cultures. The molecular weights of the enzymes were compared to (putative) cellulases encoded in the R. flavefaciens FD-1 genome.
- MeSH
- bakteriální proteiny chemie genetika metabolismus MeSH
- celobiosa metabolismus MeSH
- celulasy chemie genetika metabolismus MeSH
- celulosa metabolismus MeSH
- enzymatické testy MeSH
- exprese genu MeSH
- molekulární sekvence - údaje MeSH
- molekulová hmotnost MeSH
- Ruminococcus chemie enzymologie genetika růst a vývoj MeSH
- terciární struktura proteinů MeSH
- Publikační typ
- časopisecké články MeSH