Use of nanotechnology-based nanomaterial as a substitute for antibiotics in monogastric animals
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
38845989
PubMed Central
PMC11153202
DOI
10.1016/j.heliyon.2024.e31728
PII: S2405-8440(24)07759-4
Knihovny.cz E-zdroje
- Klíčová slova
- Antibiotics, Monogastric animals, Nanoparticles, Nanotechnology,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Nanotechnology has emerged as a promising solution for tackling antibiotic resistance in monogastric animals, providing innovative methods to enhance animal health and well-being. This review explores the novel use of nanotechnology-based nanomaterials as substitutes for antibiotics in monogastric animals. With growing global concerns about antibiotic resistance and the need for sustainable practices in animal husbandry, nanotechnology offers a compelling avenue to address these challenges. The objectives of this review are to find out the potential of nanomaterials in improving animal health while reducing reliance on conventional antibiotics. We examine various forms of nanomaterials and their roles in promoting gut health and also emphasize fresh perspectives brought by integrating nanotechnology into animal healthcare. Additionally, we delve into the mechanisms underlying the antibacterial properties of nanomaterials and their effectiveness in combating microbial resistance. By shedding light on the transformative role of nanotechnology in animal production systems. This review contributes to our understanding of how nanotechnology can provide safer and more sustainable alternatives to antibiotics.
Department of Cell Biology School of Life Sciences Central South University Changsha China
Department of Chemistry University of Ha'il Ha'il 81441 Saudi Arabia
Faculty of Pharmacy Gomal University Dera Ismail Khan Khyber Pakhtunkhwa Peshawar Pakistan
Livestock and Dairy Development Khyber Pakhtunkhwa Peshawar Pakistan
School of Biodiversity One Health and Veterinary Medicine University of Glasgow UK
Zobrazit více v PubMed
Pokrajac L., Abbas A., Chrzanowski W., Dias G.M., Eggleton B.J., Maguire S., Maine E., Malloy T., Nathwani J., Nazar L., Sips A., Sone J.i., van den Berg A., Weiss P.S., Mitra S. Nanotechnology for a sustainable future: addressing global challenges with the international Network4Sustainable nanotechnology. ACS Nano. 2021;15:18608–18623. doi: 10.1021/acsnano.1c10919. PubMed DOI
M G., Pearlin V B., Ramasamy D.k., Shanmathy M., Govindasamy P. Role of nanoparticles in animal and poultry nutrition: modes of action and applications in formulating feed additives and food processing. Int. J. Pharmacol. 2017;13:724–731. doi: 10.3923/ijp.2017.724.731. DOI
Hill E., Li J. Current and future prospects for nanotechnology in animal production. J. Anim. Sci. Biotechnol. 2017;8 doi: 10.1186/s40104-017-0157-5. PubMed DOI PMC
Wang J., Qi L., Han F. Antibiotic with different antibacterial spectrum changed intestinal microflora structure and reduced immune response of Lingnan yellow broiler. Res J Biotechnol. 2016;11:121–129.
Silbergeld E.K., Graham J., Price L.B. Industrial food animal production, antimicrobial resistance, and human health. Annu. Rev. Publ. Health. 2008;29:151–169. doi: 10.1146/annurev.publhealth.29.020907.090904. PubMed DOI
Carlson M.S., Hill G.M., Link J.E. Early- and traditionally weaned nursery pigs benefit from phase-feeding pharmacological concentrations of zinc oxide: effect on metallothionein and mineral concentrations. J. Anim. Sci. 1999;77:1199–1207. doi: 10.2527/1999.7751199x. PubMed DOI
Højberg O., Canibe N., Poulsen H.D., Hedemann M.S., Jensen B.B. Influence of dietary zinc oxide and copper sulfate on the gastrointestinal ecosystem in newly weaned piglets. Appl. Environ. Microbiol. 2005;71:2267–2277. doi: 10.1128/AEM.71.5.2267-2277.2005. PubMed DOI PMC
Li B.T., Van Kessel A., Caine W.R., Huang S., Kirkwood R. Small intestinal morphology and bacterial populations in ileal digesta and feces of newly weaned pigs receiving a high dietay level of zinc oxide, Can. J. Anim. Sci. 2001;81:511–516. doi: 10.4141/A01-043. DOI
Hedemann M.S., Jensen B.B., Poulsen H.D. Influence of dietary zinc and copper on digestive enzyme activity and intestinal morphology in weaned pigs. J. Anim. Sci. 2006;84:3310–3320. doi: 10.2527/jas.2005-701. PubMed DOI
Rahman M.R.T., Fliss I., Biron E. Insights in the development and uses of alternatives to antibiotic growth promoters in poultry and Swine production. Antibiotics. 2022;11 doi: 10.3390/antibiotics11060766. PubMed DOI PMC
Burt S. Essential oils: their antibacterial properties and potential applications in foods--a review. Int. J. Food Microbiol. 2004;94:223–253. doi: 10.1016/j.ijfoodmicro.2004.03.022. PubMed DOI
Mul A., Perry F. vol. 3. 2001. pp. 79–104. (The Role of Fructo-Oligosaccharides in Animal Nutrition, Recent Developments in Pig Nutrition).
Gardiner G.E., Casey P.G., Casey G., Lynch P.B., Lawlor P.G., Hill C., Fitzgerald G.F., Stanton C., Ross R.P. Relative ability of orally administered Lactobacillus murinus to predominate and persist in the porcine gastrointestinal tract. Appl. Environ. Microbiol. 2004;70:1895–1906. doi: 10.1128/aem.70.4.1895-1906.2004. PubMed DOI PMC
Cervantes Valencia M.E., Alcala-Canto Y., M S.A.Z., Kholif A., Watty A., Bernad-Bernad M., Olvera C. Influence of curcumin (Curcuma longa) as a natural anticoccidial alternative in adult rabbits: first results. Ital. J. Anim. Sci. 2015;14:299–303. doi: 10.4081/ijas.2015.3838. DOI
Xun W., Shi L., Zhou H., Hou G., Cao T., Zhao C. Effects of curcumin on growth performance, jejunal mucosal membrane integrity, morphology and immune status in weaned piglets challenged with enterotoxigenic Escherichia coli. Int. Immunopharm. 2015;27:46–52. doi: 10.1016/j.intimp.2015.04.038. PubMed DOI
Nm J., Joseph A., Maliakel B., Im K. Dietary addition of a standardized extract of turmeric (TurmaFEED(TM)) improves growth performance and carcass quality of broilers. J. Anim. Sci. Technol. 2018;60:8. doi: 10.1186/s40781-018-0167-7. PubMed DOI PMC
M V S., Nair A., Damodaran A., V V T., Cc S., Vijayasree A., Oommen O., Lekha D. Dietary curcumin influences leptin, growth hormone and hepatic growth factors in Tilapia (Oreochromis mossambicus) Aquaculture. 2018;496 doi: 10.1016/j.aquaculture.2018.06.083. DOI
Grenni P., Ancona V., Barra Caracciolo A. Ecological effects of antibiotics on natural ecosystems: a review. Microchem. J. 2018;136:25–39. doi: 10.1016/j.microc.2017.02.006. DOI
Gaiser B.K., Fernandes T.F., Jepson M., Lead J.R., Tyler C.R., Stone V. Assessing exposure, uptake and toxicity of silver and cerium dioxide nanoparticles from contaminated environments. Environ. Health. 2009;8:1–4. doi: 10.1186/1476-069X-8-S1-S2. PubMed DOI PMC
Qadeer A., Ullah H., Sohail M., Safi S.Z., Rahim A., Saleh T.A., Arbab S., Slama P., Horky P. Potential application of nanotechnology in the treatment, diagnosis, and prevention of schistosomiasis. Front. Bioeng. Biotechnol. 2022;10 doi: 10.3389/fbioe.2022.1013354. PubMed DOI PMC
Jebali A., Kazemi B. Nano-based antileishmanial agents: a toxicological study on nanoparticles for future treatment of cutaneous leishmaniasis. Toxicol. Vitro. 2013;27:1896–1904. doi: 10.1016/j.tiv.2013.06.002. PubMed DOI
Uniyal S., Dutta N., Raza M., Jaiswal S., Sahoo J., K A. Application of nano minerals in the field of animal nutrition. Bull. Environ. Pharmacol. Life Sci. 2017;6:4–8. doi: 10.1080/23311932.2023.2290308. DOI
Sinha R., Kim G., Nie S., Shin D. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol. Cancer Therapeut. 2006;5:1909–1917. doi: 10.1158/1535-7163.MCT-06-0141. PubMed DOI
Ross S.A., Srinivas P.R., Clifford A.J., Lee S.C., Philbert M.A., Hettich R.L. New technologies for nutrition research. J. Nutr. 2004;134:681–685. doi: 10.1093/jn/134.3.681. PubMed DOI
Bowman K., Leong K.W. Chitosan nanoparticles for oral drug and gene delivery. Int. J. Nanomed. 2006;1:117–128. doi: 10.2147/nano.2006.1.2.117. PubMed DOI PMC
Rahmani M., Golian A., Kermanshahi H., Bassami M. Effects of curcumin and nanocurcumin on growth performance, blood gas indices and ascites mortalities of broiler chickens reared under normal and cold stress conditions. Ital. J. Anim. Sci. 2017;16:1–9. doi: 10.1080/1828051X.2017.1290510. DOI
Marchiori M., Oliveira R., de Freitas Souza C., Baldissera M., Ribeiro Q., Wagner R., Gündel S., Ourique A., Kirinus J., Stefani L., Boiago M., Silva A. Curcumin in the diet of quail in cold stress improves performance and egg quality. Adv. Filtr. Sep. Technol. 2019;254 doi: 10.1016/j.anifeedsci.2019.05.015. DOI
Galli G.M., Da Silva A.S., Biazus A.H., Reis J.H., Boiago M.M., Topazio J.P., Migliorini M.J., Guarda N.S., Moresco R.N., Ourique A.F., Santos C.G., Lopes L.S., Baldissera M.D., Stefani L.M. Feed addition of curcumin to laying hens showed anticoccidial effect, and improved egg quality and animal health. Res. Vet. Sci. 2018;118:101–106. doi: 10.1016/j.rvsc.2018.01.022. PubMed DOI
Ruan D., Wang W.C., Lin C.X., Fouad A.M., Chen W., Xia W.G., Wang S., Luo X., Zhang W.H., Yan S.J., Zheng C.T., Yang L. Effects of curcumin on performance, antioxidation, intestinal barrier and mitochondrial function in ducks fed corn contaminated with ochratoxin A. Animal. 2019;13:42–52. doi: 10.1017/s1751731118000678. PubMed DOI
Dar A.H., Rashid N., Majid I., Hussain S., Dar M.A. Nanotechnology interventions in aquaculture and seafood preservation. Crit. Rev. Food Sci. Nutr. 2020;60:1912–1921. doi: 10.1080/10408398.2019.1617232. PubMed DOI
Sharmin S., Rahaman M.M., Sarkar C., Atolani O., Islam M.T., Adeyemi O.S. Nanoparticles as antimicrobial and antiviral agents: a literature-based perspective study. Heliyon. 2021;7 doi: 10.1016/j.heliyon.2021.e06456. PubMed DOI PMC
Murthy S.K. Nanoparticles in modern medicine: state of the art and future challenges. Int. J. Nanomed. 2007;2:129–141. PubMed PMC
Jain N., Gupta H. Nanomedicine: potential devices for diagnostics. Recent Pat. Nanomed. 2012;2:146–155. doi: 10.2174/1877912311202020146. DOI
El-Kady M.M., Ansari I., Arora C., Rai N., Soni S., Verma D.K., Singh P., Mahmoud A.E.D. Nanomaterials: a comprehensive review of applications, toxicity, impact, and fate to environment. J. Mol. Liq. 2023;370 doi: 10.1016/j.molliq.2022.121046. DOI
Blum J.L., Xiong J.Q., Hoffman C., Zelikoff J.T. Cadmium associated with inhaled cadmium oxide nanoparticles impacts fetal and neonatal development and growth. Toxicol. Sci. 2012;126:478–486. doi: 10.1093/toxsci/kfs008. PubMed DOI PMC
Sun J., Zhang Q., Wang Z., Yan B. Effects of nanotoxicity on female reproductivity and fetal development in animal models. Int. J. Mol. Sci. 2013;14:9319–9337. doi: 10.3390/ijms14059319. PubMed DOI PMC
Trickler W.J., Lantz S.M., Murdock R.C., Schrand A.M., Robinson B.L., Newport G.D., Schlager J.J., Oldenburg S.J., Paule M.G., Slikker W., Jr. Silver nanoparticle induced blood-brain barrier inflammation and increased permeability in primary rat brain microvessel endothelial cells. Toxicol. Sci. 2010;118:160–170. doi: 10.1093/toxsci/kfq244. PubMed DOI
Yang C., Tian A., Li Z. Reversible cardiac hypertrophy induced by PEG-coated gold nanoparticles in mice. Sci. Rep. 2016;6 doi: 10.1038/srep20203. PubMed DOI PMC
Bacchetta R., Santo N., Fascio U., Moschini E., Freddi S., Chirico G., Camatini M., Mantecca P. Nano-sized CuO, TiO2 and ZnO affect Xenopus laevis development. Nanotoxicology. 2012;6:381–398. doi: 10.3109/17435390.2011.579634. PubMed DOI
Kakakhel M.A., Wu F., Sajjad W., Zhang Q., Khan I., Ullah K., Wang W. Long-term exposure to high-concentration silver nanoparticles induced toxicity, fatality, bioaccumulation, and histological alteration in fish (Cyprinus carpio) Environ. Sci. Eur. 2021;33:1–11. doi: 10.1186/s12302-021-00453-7. DOI
Falugi C., Aluigi M., Chiantore M., Privitera D., Ramoino P., Gatti M., Fabrizi A., Pinsino A., Matranga V. Toxicity of metal oxide nanoparticles in immune cells of the sea urchin. Mar. Environ. Res. 2012;76:114–121. doi: 10.1016/j.marenvres.2011.10.003. PubMed DOI
Yeh Y.C., Creran B., Rotello V.M. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale. 2012;4:1871–1880. doi: 10.1039/c1nr11188d. PubMed DOI PMC
Jardón-Maximino N., M P., Sierra-Ávila R., Avila-Orta C., Jiménez-Regalado E., Bello A., González-Morones P., cadenas-pliego G. Oxidation of copper nanoparticles protected with different coatings and stored under ambient conditions. J. Nanomater. 2018;2018:1–8. doi: 10.1155/2018/9512768. DOI
Gunti L., Dass R.S., Kalagatur N.K. Phytofabrication of selenium nanoparticles from Emblica officinalis fruit extract and exploring its biopotential applications: antioxidant, antimicrobial, and biocompatibility. Front. Microbiol. 2019;10:931. doi: 10.3389/fmicb.2019.00931. PubMed DOI PMC
Phan T.T.V., Huynh T.C., Manivasagan P., Mondal S., Oh J. An up-to-date review on biomedical applications of palladium nanoparticles. Nanomaterials. 2019;10 doi: 10.3390/nano10010066. PubMed DOI PMC
Travan A., Pelillo C., Donati I., Marsich E., Benincasa M., Scarpa T., Semeraro S., Turco G., Gennaro R., Paoletti S. Non-cytotoxic silver nanoparticle-polysaccharide nanocomposites with antimicrobial activity. Biomacromolecules. 2009;10:1429–1435. doi: 10.1021/bm900039x. PubMed DOI
Choi S.J., Oh J.M., Choy J.H. Biocompatible nanoparticles intercalated with anticancer drug for target delivery: pharmacokinetic and biodistribution study. J. Nanosci. Nanotechnol. 2010;10:2913–2916. doi: 10.1166/jnn.2010.1415. PubMed DOI
Konkol D., Wojnarowski K. The use of nanominerals in animal nutrition as a way to improve the composition and quality of animal products. J. Chem. 2018;2018:1–7. doi: 10.1155/2018/5927058. DOI
Mungroo N.A., Neethirajan S. Biosensors for the detection of antibiotics in poultry industry—a review. Biosensors. 2014;4:472–493. doi: 10.3390/bios4040472. PubMed DOI PMC
Kaittanis C., Santra S., Perez J.M. Emerging nanotechnology-based strategies for the identification of microbial pathogenesis. Adv. Drug Deliv. Rev. 2010;62:408–423. doi: 10.1016/j.addr.2009.11.013. PubMed DOI PMC
El Sabry M., Tzschentke B., Stino F. Potential use of Interleukin-2-rich supernatant adjuvant in Fayoumi hens. Archiv fur Geflugelkunde. 2012;76:162–167.
Emami T., Madani R., Rezayat S.M., Golchinfar F., Sarkar S. Applying of gold nanoparticle to avoid diffusion of the conserved peptide of avian influenza nonstructural protein from membrane in Western blot. JAPR. 2012;21:563–566. doi: 10.3382/japr.2011-00456. DOI
de la Rua-Domenech R. Human Mycobacterium bovis infection in the United Kingdom: incidence, risks, control measures and review of the zoonotic aspects of bovine tuberculosis. Tuberculosis. 2006;86:77–109. doi: 10.1016/j.tube.2005.05.002. PubMed DOI
LoBue P.A., Enarson D.A., Thoen C.O. Tuberculosis in humans and animals: an overview. Int. J. Tubercul. Lung Dis. 2010;14:1075–1078. PubMed
Humblet M.F., Boschiroli M.L., Saegerman C. Classification of worldwide bovine tuberculosis risk factors in cattle: a stratified approach. Vet. Res. 2009;40:50. doi: 10.1051/vetres/2009033. PubMed DOI PMC
Peled N., Ionescu R., Nol P., Barash O., McCollum M., VerCauteren K., Koslow M., Stahl R., Rhyan J., Haick H. Detection of volatile organic compounds in cattle naturally infected with Mycobacterium bovis. Sensor. Actuator. B Chem. 2012;171–172:588–594. doi: 10.1016/j.snb.2012.05.038. DOI
Scott N.R. Nanotechnology and animal health. Rev Sci Tech. 2005;24:425–432. doi: 10.20506/rst.24.1.1579. PubMed DOI
Simon L.C., Stout R.W., Sabliov C. Bioavailability of orally delivered alpha-tocopherol by poly(lactic-Co-glycolic) acid (PLGA) nanoparticles and chitosan covered PLGA nanoparticles in F344 rats. Nanobiomedicine (Rij) 2016;3:8. doi: 10.5772/63305. PubMed DOI PMC
Feng S.S., Mei L., Anitha P., Gan C.W., Zhou W. Poly(lactide)-vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel. Biomaterials. 2009;30:3297–3306. doi: 10.1016/j.biomaterials.2009.02.045. PubMed DOI
Peek L.J., Middaugh C.R., Berkland C. Nanotechnology in vaccine delivery. Adv. Drug Deliv. Rev. 2008;60:915–928. doi: 10.1016/j.addr.2007.05.017. PubMed DOI PMC
Hilton L.S., Bean A.G., Lowenthal J.W. The emerging role of avian cytokines as immunotherapeutics and vaccine adjuvants. Vet. Immunol. Immunopathol. 2002;85:119–128. doi: 10.1016/s0165-2427(01)00414-7. PubMed DOI
Zhao L., Seth A., Wibowo N., Zhao C.X., Mitter N., Yu C., Middelberg A.P. vol. 32. 2014. pp. 327–337. (Nanoparticle Vaccines, Vaccine). PubMed DOI
Sekhon B. Nanotechnology in agri-food production: an overview. Nanotechnol. Sci. Appl. 2014;7:31–53. doi: 10.2147/NSA.S39406. PubMed DOI PMC
Jain A., Reddy V.A., Muntimadugu E., Khan W. Nanotechnology in vaccine delivery. Curr. Trends Pharm. Sci. 2014:17–27.
El Sabry M.I., McMillin K.W., Sabliov C.M. Nanotechnology considerations for poultry and livestock production systems–a review. Ann. Anim. Sci. 2018;18:319–334. doi: 10.1515/aoas-2017-0047. DOI
Cai C., Qu X., Wei Y., Yang A. Nano-selenium: nutritional characteristics and application in chickens. Chinese Journal of Animal Nutrition. 2013;25:2818–2823.
Swain P.S., Rajendran D., Rao S., Dominic G. Preparation and effects of nano mineral particle feeding in livestock: a review. Vet. World. 2015;8:888. doi: 10.14202/vetworld.2015.888-891. PubMed DOI PMC
Wang M.Q., Xu Z.R., Zha L.Y., Lindemann M.D. Effects of chromium nanocomposite supplementation on blood metabolites, endocrine parameters and immune traits in finishing pigs. Adv. Filtr. Sep. Technol. 2007;139:69–80. doi: 10.1016/j.anifeedsci.2006.12.004. DOI
Scott A., Vadalasetty K., Sawosz E., Łukasiewicz M., Vadalasetty R., Jaworski S., Chwalibog A. Effect of copper nanoparticles and copper sulphate on metabolic rate and development of broiler embryos. Adv. Filtr. Sep. Technol. 2016;220:151–158.
Jelle B.P. Traditional, state-of-the-art and future thermal building insulation materials and solutions – properties, requirements and possibilities. Energy Build. 2011;43:2549–2563. doi: 10.1016/j.enbuild.2011.05.015. DOI
Chen J., Poon C.-s. Photocatalytic construction and building materials: from fundamentals to applications. Build. Environ. 2009;44:1899–1906. doi: 10.1016/j.buildenv.2009.01.002. DOI
Page K., Palgrave R.G., Parkin I.P., Wilson M., Savin S.L., Chadwick A.V. Titania and silver–titania composite films on glass—potent antimicrobial coatings. J. Mater. Chem. 2007;17:95–104. doi: 10.1039/B611740F. DOI
Deshmukh S.P., Patil S., Mullani S., Delekar S. Silver nanoparticles as an effective disinfectant: a review. Mater. Sci. Eng. C. 2019;97:954–965. doi: 10.1016/j.msec.2018.12.102. PubMed DOI PMC
Bumbudsanpharoke N., Ko S. Nano-food packaging: an overview of market, migration research, and safety regulations. J. Food Sci. 2015;80:R910–R923. doi: 10.1111/1750-3841.12861. PubMed DOI
Cruz-Romero M.C., Murphy T., Morris M., Cummins E., Kerry J.P. Antimicrobial activity of chitosan, organic acids and nano-sized solubilisates for potential use in smart antimicrobially-active packaging for potential food applications. Food Control. 2013;34:393–397. doi: 10.1016/j.foodcont.2013.04.042. DOI
Hemeg H.A. Nanomaterials for alternative antibacterial therapy. Int. J. Nanomed. 2017;12:8211–8225. doi: 10.2147/ijn.S132163. PubMed DOI PMC
Wang L., Hu C., Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 2017;12:1227–1249. doi: 10.2147/ijn.S121956. PubMed DOI PMC
Pelgrift R.Y., Friedman A.J. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug Deliv. Rev. 2013;65:1803–1815. doi: 10.1016/j.addr.2013.07.011. PubMed DOI
Beyth N., Houri-Haddad Y., Domb A., Khan W., Hazan R. Alternative antimicrobial approach: nano-antimicrobial materials. Evid Based Complement Alternat Med. 2015;2015 doi: 10.1155/2015/246012. PubMed DOI PMC
Patra J.K., Baek K.H. Antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against foodborne pathogenic bacteria along with its anticandidal and antioxidant effects. Front. Microbiol. 2017;8:167. doi: 10.3389/fmicb.2017.00167. PubMed DOI PMC
Sportelli M.C., Picca R.A., Ronco R., Bonerba E., Tantillo G., Pollini M., Sannino A., Valentini A., Cataldi T.R.I., Cioffi N. Investigation of industrial polyurethane foams modified with antimicrobial copper nanoparticles. Materials. 2016;9 doi: 10.3390/ma9070544. PubMed DOI PMC
Khurana C., Vala A.K., Andhariya N., Pandey O.P., Chudasama B. Influence of antibiotic adsorption on biocidal activities of silver nanoparticles. IET Nanobiotechnol. 2016;10:69–74. doi: 10.1049/iet-nbt.2015.0005. PubMed DOI PMC
Tamilvanan A., Balamurugan K., Ponappa K., Kumar B.M. Copper nanoparticles: synthetic strategies, properties and multifunctional application. Int. J. Nanosci. 2014;13
Joshua P.P., Valli C., Balakrishnan V. Effect of in ovo supplementation of nano forms of zinc, copper, and selenium on post-hatch performance of broiler chicken. Vet. World. 2016;9:287. doi: 10.14202/vetworld.2016.287-294. PubMed DOI PMC
Ba C.-F., Arenas-Arrocena M.C., Martínez-Alvarez O., Garcia-Contreras R., Argueta-Figueroa L., Fuente-Hernández J., Ls A.-T., Cortázar J., Guanajuato M., Acosta-Torres L. Copper: synthesis techniques in nanoscale and powerful application as an antimicrobial agent. J. Nanomater. 2015;36969 doi: 10.1155/2015/415238. DOI
Scott A., Prasad K., Chwalibog A., Sawosz E. Copper nanoparticles as an alternative feed additives in poultry diet: a review. Nanotechnol. Rev. 2017;7 doi: 10.1515/ntrev-2017-0159. DOI
Shankar S., Rhim J.-W. Effect of copper salts and reducing agents on characteristics and antimicrobial activity of copper nanoparticles. Mater. Lett. 2014;132:307–311. doi: 10.1016/j.matlet.2014.06.014. DOI
Zaboli K., Aliarabi H., Bahari A., Abbasalipourkabir R. vol. 2. 2013. pp. 19–26. (Role of Dietary Nano-Zinc Oxide on Growth Performance and Blood Levels of Mineral: A Study on Iranian Angora (Markhoz) Goat Kids, JPHS).
Thulasi A., D R., Jash S., Sellappan S., Jose L., Velusamy S., Mathivanan S. 2013. Nanobiotechnology in Animal Nutrition; pp. 499–516.
Das R., Gang S., Nath S., Bhattacharjee R. Linoleic acid capped copper nanoparticles for antibacterial activity. J. Bionanoscience. 2011;4:82–86. doi: 10.1166/jbns.2010.1035. DOI
Rajasekaran P., Santra S. Hydrothermally treated chitosan hydrogel loaded with copper and zinc particles as a potential micronutrient-based antimicrobial feed additive. Front. Vet. Sci. 2015;2:62. doi: 10.3389/fvets.2015.00062. PubMed DOI PMC
Chatterjee A.K., Chakraborty R., Basu T. Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology. 2014;25 doi: 10.1088/0957-4484/25/13/135101. PubMed DOI
Ramyadevi J., Jeyasubramanian K., Marikani A., Rajakumar G., Rahuman A.A. Synthesis and antimicrobial activity of copper nanoparticles. Mater. Lett. 2012;71:114–116. doi: 10.1016/j.matlet.2011.12.055. DOI
Piccinno F., Gottschalk F., Seeger S., Nowack B. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J. Nanoparticle Res. 2011;14:1109. doi: 10.1007/s11051-012-1109-9. DOI
Padmavathy N., Vijayaraghavan R. Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study. Sci. Technol. Adv. Mater. 2008;9 doi: 10.1088/1468-6996/9/3/035004. PubMed DOI PMC
Palanikumar L., Ramasamy S., Balachandran C. Size-dependent antimicrobial response of zinc oxide nanoparticles, Nanobiotechnology. IET. 2014;8:111–117. doi: 10.1049/iet-nbt.2012.0008. PubMed DOI
Nghia S., Huy T., Mai T., Trung C., Thanh L. Effects of supplementation of mineral nano particles on weaned piglet growth. IJHAF. 2019;3:37–40. doi: 10.22161/ijhaf.3.2.1. DOI
Pasquet J., Chevalier Y., Pelletier J., Couval E., Bouvier D., Bolzinger M.-A. The contribution of zinc ions to the antimicrobial activity of zinc oxide. Colloids Surf. A Physicochem. Eng. Asp. 2014;457:263–274. doi: 10.1016/j.colsurfa.2014.05.057. DOI
Alekish M., Ismail Z.B., Albiss B., Nawasrah S. In vitro antibacterial effects of zinc oxide nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and Escherichia coli: an alternative approach for antibacterial therapy of mastitis in sheep. Vet. World. 2018;11:1428. doi: 10.14202/vetworld.2018.1428-1432. PubMed DOI PMC
Siddiqi K.S., Ur RahmanTajuddin A., Husen A. Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res. Lett. 2018;13:141. doi: 10.1186/s11671-018-2532-3. PubMed DOI PMC
Yousef J.M., Danial E.N. In vitro antibacterial activity and minimum inhibitory concentration of zinc oxide and nano-particle zinc oxide against pathogenic strains. J. Health Sci. 2012;2:38–42. doi: 10.5923/j.health.20120204.04. DOI
Marino A., Genchi G.G., Sinibaldi E., Ciofani G. Piezoelectric effects of materials on bio-interfaces. ACS Appl. Mater. Interfaces. 2017;9:17663–17680. PubMed
Pati R., Mehta R.K., Mohanty S., Padhi A., Sengupta M., Vaseeharan B., Goswami C., Sonawane A. Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomedicine: NBM (NMR Biomed.) 2014;10:1195–1208. doi: 10.1016/j.nano.2014.02.012. PubMed DOI
Barreto M.S., Andrade C.T., da Silva L.C.R., Cabral L.M., Flosi Paschoalin V.M., Del Aguila E.M. In vitro physiological and antibacterial characterization of ZnO nanoparticle composites in simulated porcine gastric and enteric fluids. BMC Vet. Res. 2017;13:1–10. doi: 10.1186/s12917-017-1101-9. PubMed DOI PMC
Sahoo A., Swain R.K., Mishra S.K. Effect of inorganic, organic and nano zinc supplemented diets on bioavailability and immunity status of broilers. Int. J. Adv. Res. 2014;2:828–837.
Abumourad I., Refai M., Em E.-M., Mostafa M., Tawfik M. 2017. Evaluation of Nano Zinc Oxide Feed Additive on tilapia Growth and Immunity.
Yip J., Liu L., Wong K.H., Leung P., Yuen C.W., Cheung M.-C. Investigation of antifungal and antibacterial effects of fabric padded with highly stable selenium nanoparticles. J. Appl. Polym. Sci. 2014;131 doi: 10.1002/app.40728. DOI
Youssef Y. Effect of inclusion inorganic, organic or nano selenium forms in broiler diets on: 1-growth performance, carcass and meat characteristics. Int. J. Poultry Sci. 2015;14:135–143.
Huang X., Chen X., Chen Q., Yu Q., Sun D., Liu J. Investigation of functional selenium nanoparticles as potent antimicrobial agents against superbugs. Acta Biomater. 2016;30:397–407. doi: 10.1016/j.actbio.2015.10.041. PubMed DOI
Guisbiers G., Wang Q., Khachatryan E., Mimun L.C., Mendoza-Cruz R., Larese-Casanova P., Webster T.J., Nash K.L. Inhibition of E. coli and S. aureus with selenium nanoparticles synthesized by pulsed laser ablation in deionized water. Int. J. Nanomed. 2016;11:3731–3736. doi: 10.2147/ijn.S106289. PubMed DOI PMC
Panacek A., Kvitek L., Prucek R., Kolar M., Večeřová R., Pizurova N., Sharma V., Nevecna T.j., Zboril R. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J. Phys. Chem. 2006;110:16248–16253. doi: 10.1021/jp063826h. B. PubMed DOI
Dibrov P., Dzioba J., Gosink K.K., Häse C.C. Chemiosmotic mechanism of antimicrobial activity of Ag(+) in Vibrio cholerae. Antimicrob. Agents Chemother. 2002;46:2668–2670. doi: 10.1128/aac.46.8.2668-2670.2002. PubMed DOI PMC
Beyth N., Yudovin-Farber I., Perez-Davidi M., Domb A.J., Weiss E.I. Polyethyleneimine nanoparticles incorporated into resin composite cause cell death and trigger biofilm stress in vivo. Proc. Natl. Acad. Sci. U. S. A. 2010;107:22038–22043. doi: 10.1073/pnas.1010341107. PubMed DOI PMC
Choi O., Deng K.K., Kim N.-J., Ross L., Surampalli R.Y., Hu Z. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res. 2008;42:3066–3074. doi: 10.1016/j.watres.2008.02.021. PubMed DOI
Hiremath J. Growth kinetics and mechanistic action of reactive oxygen species released by silver nanoparticles from Aspergillus nigeron Escherichia coli. Nanomedicine (N. Y., NY, U. S.)icine. 2014;3(2):168–171. doi: 10.1016/j.nano.2007.02.001. PubMed DOI PMC
Shahverdi A.R., Fakhimi A., Shahverdi H.R., Minaian S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine (N. Y., NY, U. S.) 2007;3:168–171. doi: 10.1016/j.nano.2007.02.001. PubMed DOI
Durán N., Durán M., de Jesus M.B., Seabra A.B., Fávaro W.J., Nakazato G. Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine: NBM (NMR Biomed.) 2016;12:789–799. doi: 10.1016/j.nano.2015.11.016. PubMed DOI
Fondevila M., Herrer R.M., Casallas M., Abecia L., Ducha J. Silver nanoparticles as a potential antimicrobial additive for weaned pigs. Anim. Feed Sci. Technol. 2009;150:259–269. doi: 10.1016/j.anifeedsci.2008.09.003. DOI
Gholami-Ahangaran M., Zia-Jahromi N. Nanosilver effects on growth parameters in experimental aflatoxicosis in broiler chickens. Toxicol. Ind. Health. 2013;29:121–125. doi: 10.1177/0748233711425078. PubMed DOI
Moses V. Biological synthesis of copper nanoparticles and its impact - a review. Int. J. Pharm. Sci. Invent. 2014;3:6–28.
Pramanik A., Laha D., Bhattacharya D., Pramanik P., Karmakar P. A novel study of antibacterial activity of copper iodide nanoparticle mediated by DNA and membrane damage. Colloids Surf. B Biointerfaces. 2012;96:50–55. doi: 10.1016/j.colsurfb.2012.03.021. PubMed DOI
Negahdary M. Investigation anti-bacterial effect of zinc oxide nanoparticles upon life of Listeria monocytogenes. Ann. Biol. Res. 2012;3(7) (2012) 3679-3368 3675.
Jin T., Sun D., Su J.Y., Zhang H., Sue H.J. Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7. J. Food Sci. 2009;74:M46–M52. doi: 10.1111/j.1750-3841.2008.01013.x. PubMed DOI
Reddy L.S., Nisha M.M., Joice M., Shilpa P.N. Antimicrobial activity of zinc oxide (ZnO) nanoparticle against Klebsiella pneumoniae. Pharm. Biol. 2014;52:1388–1397. doi: 10.3109/13880209.2014.893001. PubMed DOI
Kasraei S., Sami L., Hendi S., Alikhani M.Y., Rezaei-Soufi L., Khamverdi Z. Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus. Restor Dent Endod. 2014;39:109–114. doi: 10.5395/rde.2014.39.2.109. PubMed DOI PMC
Liu Y., He L., Mustapha A., Li H., Hu Z.Q., Lin M. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J. Appl. Microbiol. 2009;107:1193–1201. doi: 10.1111/j.1365-2672.2009.04303.x. PubMed DOI
Rajendra R., Balakumar C., Ahammed H.A.M., Jayakumar S., Vaideki K., Rajesh E. Use of zinc oxide nano particles for production of antimicrobial textiles. Int. J. Eng. Sci. Technol. 2010;2:202–208.
Feris K., Otto C., Tinker J., Wingett D., Punnoose A., Thurber A., Kongara M., Sabetian M., Quinn B., Hanna C. Electrostatic interactions affect nanoparticle-mediated toxicity to gram-negative bacterium Pseudomonas aeruginosa PAO1. Langmuir. 2010;26:4429–4436. doi: 10.1021/la903491z. PubMed DOI
Sinha R., Karan R., Sinha A., Khare S. Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells. Bioresour. Technol. 2011;102:1516–1520. doi: 10.1016/j.biortech.2010.07.117. PubMed DOI
Tran P.A., Webster T.J. Selenium nanoparticles inhibit Staphylococcus aureus growth. Int. J. Nanomed. 2011:1553–1558. 10.2147/IJN.S21729. PubMed PMC
Sondi I., Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004;275:177–182. doi: 10.1016/j.jcis.2004.02.012. PubMed DOI
Li P., Li J., Wu C., Wu Q., Li J. Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. Nanotechnology. 2005;16:1912. 0.1088/0957-4484/16/9/082.
Park H., Park H.-J., Kim J.A., Lee S.H., Kim J.H., Yoon J., Park T.H. Inactivation of Pseudomonas aeruginosa PA01 biofilms by hyperthermia using superparamagnetic nanoparticles. J. Microbiol. Methods. 2011;84:41–45. doi: 10.1016/j.mimet.2010.10.010. PubMed DOI
Ansari M., Khan H., Khan A., Cameotra S.S., Saquib Q., Musarrat J. Interaction of Al2O3 nanoparticles with Escherichia coli and their cell envelope biomolecules. J. Appl. Microbiol. 2014;116:772–783. doi: 10.1111/jam.12423. PubMed DOI
Blecher K., Nasir A., Friedman A. The growing role of nanotechnology in combating infectious disease. Virulence. 2011;2:395–401. doi: 10.4161/viru.2.5.17035. PubMed DOI
Park E.-J., Bae E., Yi J., Kim Y., Choi K., Lee S.H., Yoon J., Lee B.C., Park K. Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ. Toxicol. Pharmacol. 2010;30:162–168. doi: 10.1016/j.etap.2010.05.004. PubMed DOI
Hendrickson O.D., Klochkov S.G., Novikova O.V., Bravova I.M., Shevtsova E.F., Safenkova I.V., Zherdev A.V., Bachurin S.O., Dzantiev B.B. Toxicity of nanosilver in intragastric studies: biodistribution and metabolic effects. Toxicol. Lett. 2016;241:184–192. doi: 10.1016/j.toxlet.2015.11.018. PubMed DOI
Skalska J., Frontczak-Baniewicz M., Strużyńska L. Synaptic degeneration in rat brain after prolonged oral exposure to silver nanoparticles. Neurotoxicology. 2015;46:145–154. doi: 10.1016/j.neuro.2014.11.002. PubMed DOI
Ahmed B., Ameen F., Rizvi A., Ali K., Sonbol H., Zaidi A., Khan M.S., Musarrat J. Destruction of cell topography, morphology, membrane, inhibition of respiration, biofilm formation, and bioactive molecule production by nanoparticles of Ag, ZnO, CuO, TiO2, and Al2O3 toward beneficial soil bacteria. ACS Omega. 2020;5:7861–7876. doi: 10.1021/acsomega.9b04084. PubMed DOI PMC
Sarwar S., Chakraborti S., Bera S., Sheikh I.A., Hoque K.M., Chakrabarti P. The antimicrobial activity of ZnO nanoparticles against Vibrio cholerae: variation in response depends on biotype. Nanomedicine. 2016;12:1499–1509. doi: 10.1016/j.nano.2016.02.006. PubMed DOI
Natan M., Banin E. From Nano to Micro: using nanotechnology to combat microorganisms and their multidrug resistance. FEMS Microbiol. Rev. 2017;41:302–322. doi: 10.1093/femsre/fux003. PubMed DOI
Malka E., Perelshtein I., Lipovsky A., Shalom Y., Naparstek L., Perkas N., Patick T., Lubart R., Nitzan Y., Banin E., Gedanken A. Eradication of multi-drug resistant bacteria by a novel Zn-doped CuO nanocomposite. Small. 2013;9:4069–4076. doi: 10.1002/smll.201301081. PubMed DOI
Slavin Y.N., Asnis J., Häfeli U.O., Bach H. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 2017;15:65. doi: 10.1186/s12951-017-0308-z. PubMed DOI PMC
Cheloni G., Marti E., Slaveykova V.I. Interactive effects of copper oxide nanoparticles and light to green alga Chlamydomonas reinhardtii. Aquat. Toxicol. 2016;170:120–128. doi: 10.1016/j.aquatox.2015.11.018. PubMed DOI
Ortiz-Benítez E.A., Velázquez-Guadarrama N., Durán Figueroa N.V., Quezada H., Olivares-Trejo J.J. Antibacterial mechanism of gold nanoparticles on Streptococcus pneumoniae. Metallomics. 2019;11:1265–1276. doi: 10.1039/c9mt00084d. PubMed DOI
Kariminezhad H., Mousapour M., Khorram S., Amani H. Photodynamic inactivation of Staphylococcus epidermidis: application of PEGylated gold nanoparticles. Arabian J. Sci. Eng. 2020;45:71–79. doi: 10.1007/s13369-019-04248-0. DOI
Priyadarshini S., Mainal A., Sonsudin F., Yahya R., Alyousef A.A., Mohammed A. Biosynthesis of TiO2 nanoparticles and their superior antibacterial effect against human nosocomial bacterial pathogens. Res. Chem. Intermed. 2020;46:1077–1089. doi: 10.1007/s11164-019-03857-6. DOI
Karimi F., Dabbagh S., Alizadeh S., Rostamnia S. Evaluation of AgClNPs@SBA-15/IL nanoparticle-induced oxidative stress and DNA mutation in Escherichia coli. Appl. Microbiol. Biotechnol. 2016;100:7161–7170. doi: 10.1007/s00253-016-7593-6. PubMed DOI
Le Ouay B., Stellacci F. Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today. 2015;10:339–354. doi: 10.1016/j.nantod.2015.04.002. DOI
Swasey S.M., Leal L.E., Lopez-Acevedo O., Pavlovich J., Gwinn E.G. Silver (I) as DNA glue: Ag(+)-mediated guanine pairing revealed by removing Watson-Crick constraints. Sci. Rep. 2015;5 doi: 10.1038/srep10163. PubMed DOI PMC
Molleman B. Time, pH, and size dependency of silver nanoparticle dissolution: the road to equilibrium. Environ. Sci.: Nano. 2017;4:1314. doi: 10.1039/C6EN00564K. DOI
Muthukrishnan L., Chellappa M., Nanda A. Bio-engineering and cellular imaging of silver nanoparticles as weaponry against multidrug resistant human pathogens. J. Photochem. Photobiol., B. 2019;194:119–127. doi: 10.1016/j.jphotobiol.2019.03.021. PubMed DOI
Dong Y., Zhu H., Shen Y., Zhang W., Zhang L. Antibacterial activity of silver nanoparticles of different particle size against Vibrio Natriegens. PLoS One. 2019;14 doi: 10.1371/journal.pone.0222322. PubMed DOI PMC
Dakal T.C., Kumar A., Majumdar R.S., Yadav V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol. 2016;7:1831. doi: 10.3389/fmicb.2016.01831. PubMed DOI PMC
Durán N., Durán M., de Jesus M.B., Seabra A.B., Fávaro W.J., Nakazato G. Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine (N. Y., NY, U. S.) 2016;12:789–799. doi: 10.1016/j.nano.2015.11.016. PubMed DOI
Ramalingam B., Parandhaman T., Das S.K. Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Appl. Mater. Interfaces. 2016;8:4963–4976. doi: 10.1021/acsami.6b00161. PubMed DOI
Jiang H.S., Zhang Y., Lu Z.W., Lebrun R., Gontero B., Li W. Interaction between silver nanoparticles and two dehydrogenases: role of thiol groups. Small. 2019;15 doi: 10.1002/smll.201900860. PubMed DOI
Nallanthighal S., Tierney L., Cady N.C., Murray T.M., Chittur S.V., Reliene R. Surface coatings alter transcriptional responses to silver nanoparticles following oral exposure. NanoImpact. 2020;17 doi: 10.1016/j.impact.2019.100205. PubMed DOI PMC
Zou L., Wang J., Gao Y., Ren X., Rottenberg M.E., Lu J., Holmgren A. Synergistic antibacterial activity of silver with antibiotics correlating with the upregulation of the ROS production. Sci. Rep. 2018;8 doi: 10.1038/s41598-018-29313-w. PubMed DOI PMC
Shamaila S., Zafar N., Riaz S., Sharif R., Nazir J., Naseem S. Gold nanoparticles: an efficient antimicrobial agent against enteric bacterial human pathogen. Nanomaterials. 2016;6 doi: 10.3390/nano6040071. PubMed DOI PMC
Gupta A., Landis R.F., Rotello V.M. Nanoparticle-based antimicrobials: surface functionality is critical. F1000Res. 2016;5 doi: 10.12688/f1000research.7595.1. PubMed DOI PMC
Shikha S., Chaudhuri S.R., Bhattacharyya M.S. Facile one pot Greener synthesis of sophorolipid capped gold nanoparticles and its antimicrobial activity having special efficacy against gram negative Vibrio cholerae. Sci. Rep. 2020;10:1463. doi: 10.1038/s41598-019-57399-3. PubMed DOI PMC
Katas H., Lim C.S., Nor Azlan A.Y.H., Buang F., Mh Busra M.F. Antibacterial activity of biosynthesized gold nanoparticles using biomolecules from Lignosus rhinocerotis and chitosan. Saudi Pharmaceut. J. 2019;27:283–292. doi: 10.1016/j.jsps.2018.11.010. PubMed DOI PMC
Lee H., Lee D.G. Gold nanoparticles induce a reactive oxygen species-independent apoptotic pathway in Escherichia coli. Colloids Surf. B Biointerfaces. 2018;167:1–7. doi: 10.1016/j.colsurfb.2018.03.049. PubMed DOI
Kőrösi L., Bognár B., Horváth M., Schneider G., Kovács J., Scarpellini A., Castelli A., Colombo M., Prato M. Hydrothermal evolution of PF-co-doped TiO2 nanoparticles and their antibacterial activity against carbapenem-resistant Klebsiella pneumoniae. Appl. Catal. B Environ. 2018;231:115–122. doi: 10.1016/j.apcatb.2018.03.012. DOI
Ripolles-Avila C., Martínez Garcia M., Hascoët A.-S., Rodriguez-Jerez J.J. Bactericidal efficacy of UV activated TiO2 nanoparticles against Gram-positive and Gram-negative bacteria on suspension. CyTA - J. Food Sci. 2019;17:408. doi: 10.1080/19476337.2019.1590461. DOI
Khater M., Kulkarni G., Khater S., Gholap H., Patil R. Study to elucidate effect of titanium dioxide nanoparticles on bacterial membrane potential and membrane permeability. Mater. Res. Express. 2020;7 doi: 10.1088/2053-1591/ab731a. DOI
Yadav S., Gautam J. Review on undoped/doped TiO 2 nanomaterial; synthesis and photocatalytic and antimicrobial activity: review on undoped/doped TiO 2 nanomaterial. JCCS. 2016;64 doi: 10.1002/jccs.201600735. DOI
Györgyey Á., Janovák L., Ádám A., Kopniczky J., Tóth K.L., Deák Á., Panayotov I., Cuisinier F., Dékány I., Turzó K. Investigation of the in vitro photocatalytic antibacterial activity of nanocrystalline TiO2 and coupled TiO2/Ag containing copolymer on the surface of medical grade titanium. J. Biomater. Appl. 2016;31:55–67. doi: 10.1177/0885328216633374. PubMed DOI
Veres A., Janovák L., Bujdosó T., Rica T., Fodor E., Tallósy S., Buzás N., Nagy E., Dekany I. Silver and phosphate functionalized reactive TiO2/polymer composite films for destructions of resistent bacteria using visible light. AOPs. 2012;15 doi: 10.1515/jaots-2012-0124. DOI
Fahimmunisha B.A., Ishwarya R., AlSalhi M.S., Devanesan S., Govindarajan M., Vaseeharan B. Green fabrication, characterization and antibacterial potential of zinc oxide nanoparticles using Aloe socotrina leaf extract: a novel drug delivery approach, J. Drug Deliv. Sci. Technol. 2020;55 doi: 10.1016/j.jddst.2019.101465. DOI
Karimzadeh M.R., Soltanian S., Sheikhbahaei M., Mohamadi N. Characterization and biological activities of synthesized zinc oxide nanoparticles using the extract of Acantholimon serotinum. Green Process. Synth. 2020;9:722–733. 10.1515/gps-2020-0058.
Singh R., Cheng S., Singh S. Oxidative stress-mediated genotoxic effect of zinc oxide nanoparticles on Deinococcus radiodurans. 3 Biotech. 2020;10:66. doi: 10.1007/s13205-020-2054-4. PubMed DOI PMC
Liang S.X.T., Wong L.S., Lim Y.M., Lee P.F., Djearamane S. Effects of zinc oxide nanoparticles on Streptococcus pyogenes. South Afr. J. Chem. Eng. 2020;34:63–71. doi: 10.1016/j.sajce.2020.05.009. DOI
McIllmurray M.B., Lascelles J. Anaerobiosis and the activity of enzymes of pyrimidine biosynthesis in Staphylococcus aureus. J. Gen. Microbiol. 1970;64:269–277. doi: 10.1099/00221287-64-3-269. PubMed DOI
Kadiyala U., Turali-Emre E.S., Bahng J.H., Kotov N.A., VanEpps J.S. Unexpected insights into antibacterial activity of zinc oxide nanoparticles against methicillin resistant Staphylococcus aureus (MRSA) Nanoscale. 2018;10:4927–4939. doi: 10.1039/c7nr08499d. PubMed DOI PMC
Baptista P.V., McCusker M.P., Carvalho A., Ferreira D.A., Mohan N.M., Martins M., Fernandes A.R. Nano-strategies to fight multidrug resistant bacteria-"A battle of the Titans". Front. Microbiol. 2018;9:1441. doi: 10.3389/fmicb.2018.01441. PubMed DOI PMC
El Zowalaty M.E., Hussein Al Ali S.H., Husseiny M.I., Geilich B.M., Webster T.J., Hussein M.Z. The ability of streptomycin-loaded chitosan-coated magnetic nanocomposites to possess antimicrobial and antituberculosis activities. Int. J. Nanomed. 2015;10:3269–3274. doi: 10.2147/ijn.S74469. PubMed DOI PMC
Hashimoto M., Yanagiuchi H., Kitagawa H., Honda Y. Inhibitory effect of platinum nanoparticles on biofilm formation of oral bacteria. Nano Biomedicine. 2018;9:77–82. doi: 10.11344/nano.9.77. DOI
Roy K., Sarkar C.K., Ghosh C.K. Antibacterial mechanism of biogenic copper nanoparticles synthesized using Heliconia psittacorum leaf extract. Nanotechnol. Rev. 2016;5:529–536. 10.1515/ntrev-2016-0040.
Hayat S. Nanoantibiotics Future nanotechnologies to combat antibiotic resistance. Front. Biosci. 2018;10:352–374. doi: 10.2741/e827. PubMed DOI
Lv Q., Zhang B., Xing X., Zhao Y., Cai R., Wang W., Gu Q. Biosynthesis of copper nanoparticles using Shewanella loihica PV-4 with antibacterial activity: novel approach and mechanisms investigation. J. Hazard Mater. 2018;347:141–149. doi: 10.1016/j.jhazmat.2017.12.070. PubMed DOI
Rajivgandhi G., Maruthupandy M., Muneeswaran T., Anand M., Quero F., Manoharan N., Li W.-J. Biosynthesized silver nanoparticles for inhibition of antibacterial resistance and biofilm formation of methicillin-resistant coagulase negative Staphylococci. Bioorg. Chem. 2019;89 doi: 10.1016/j.bioorg.2019.103008. PubMed DOI
Su Y., Zheng X., Chen Y., Li M., Liu K. Alteration of intracellular protein expressions as a key mechanism of the deterioration of bacterial denitrification caused by copper oxide nanoparticles. Sci. Rep. 2015;5 doi: 10.1038/srep15824. PubMed DOI PMC
Huang T., Holden J.A., Heath D.E., O'Brien-Simpson N.M., O'Connor A.J. Engineering highly effective antimicrobial selenium nanoparticles through control of particle size. Nanoscale. 2019;11:14937–14951. doi: 10.1039/c9nr04424h. PubMed DOI
Muzammil S., Hayat S., Fakhar E.A.M., Aslam B., Siddique M.H., Nisar M.A., Saqalein M., Atif M., Sarwar A., Khurshid A., Amin N., Wang Z. Nanoantibiotics: future nanotechnologies to combat antibiotic resistance. Front. Biosci. 2018;10:352–374. doi: 10.2741/e827. PubMed DOI
Jin T., He Y. Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. J. Nanoparticle Res. 2011;13:6877–6885. doi: 10.1007/s11051-011-0595-5. DOI
Cai L., Chen J., Liu Z., Wang H., Yang H., Ding W. Magnesium oxide nanoparticles: effective agricultural antibacterial agent against Ralstonia solanacearum. Front. Microbiol. 2018;9 doi: 10.3389/fmicb.2018.00790. PubMed DOI PMC
He C., Shi Z., Cheng C., Lu H.-Q., Ab A., Sun S., Zhao C. Graphene oxide and sulfonated polyanion co-doped hydrogel films for dual-layered membranes with superior hemocompatibility and antibacterial activity. Biomater. Sci. 2016;4 doi: 10.1039/c6bm00494f. PubMed DOI
Chung N.X., Limpens R., de Weerd C., Lesage A., Fujii M., Gregorkiewicz T. Toward practical carrier multiplication: donor/acceptor codoped Si nanocrystals in SiO2. ACS Photonics. 2018;5:2843–2849. doi: 10.1021/acsphotonics.8b00144. DOI
Bhattacharya P., Swain S., Giri L., Neogi S. Fabrication of magnesium oxide nanoparticles by solvent alteration and its bactericidal applications. J. Mater. Chem. B. 2019;7 doi: 10.1039/C9TB00782B. DOI
Kenawy el R., Worley S.D., Broughton R. The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules. 2007;8:1359–1384. doi: 10.1021/bm061150q. PubMed DOI
Shvero D.K., Zatlsman N., Hazan R., Weiss E.I., Beyth N. Characterisation of the antibacterial effect of polyethyleneimine nanoparticles in relation to particle distribution in resin composite. J. Dent. 2015;43:287–294. doi: 10.1016/j.jdent.2014.05.003. PubMed DOI
Feng Y., Tan H., Li C., Wang Y., Zhang Y., Wen P., Du J., Xu L. Preparation and characterization of nano TiO 2 antibacterial corrugating medium. J. Nanosci. Nanotechnol. 2017;17:8912–8917. doi: 10.1166/jnn.2017.13896. DOI
Villegas C., Arrieta M.P., Rojas A., Torres A., Faba S., Toledo M.J., Gutierrez M.A., Zavalla E., Romero J., Galotto M.J., Valenzuela X. PLA/organoclay bionanocomposites impregnated with thymol and cinnamaldehyde by supercritical impregnation for active and sustainable food packaging. Compos. B Eng. 2019;176 doi: 10.1016/j.compositesb.2019.107336. DOI
Rudramurthy G.R., Swamy M.K., Sinniah U.R., Ghasemzadeh A. Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules. 2016;21(7) doi: 10.3390/molecules21070836. PubMed DOI PMC
Zaidi S., Misba L., Khan A.U. Nano-therapeutics: a revolution in infection control in post antibiotic era. Nanomedicine: NBM. 2017;13:2281–2301. doi: 10.1016/j.nano.2017.06.015. PubMed DOI
Dizaj S.M., Lotfipour F., Barzegar-Jalali M., Zarrintan M.H., Adibkia K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C. 2014;44:278–284. doi: 10.1016/j.msec.2014.08.031. PubMed DOI
Vandebriel R.J., De Jong W.H. A review of mammalian toxicity of ZnO nanoparticles. Nanotechnol. Sci. Appl. 2012;5:61–71. doi: 10.2147/nsa.S23932. PubMed DOI PMC
Chen C.W., Hsu C.Y., Lai S.M., Syu W.J., Wang T.Y., Lai P.S. Metal nanobullets for multidrug resistant bacteria and biofilms. Adv. Drug Deliv. Rev. 2014;78:88–104. doi: 10.1016/j.addr.2014.08.004. PubMed DOI
McBain A.J., Ledder R.G., Moore L.E., Catrenich C.E., Gilbert P. Effects of quaternary-ammonium-based formulations on bacterial community dynamics and antimicrobial susceptibility. Appl. Environ. Microbiol. 2004;70:3449–3456. doi: 10.1128/aem.70.6.3449-3456.2004. PubMed DOI PMC
Demir B., Broughton R.M., Qiao M., Huang T.S., Worley S.D. N-halamine biocidal materials with superior antimicrobial efficacies for wound dressings. Molecules. 2017;22 doi: 10.3390/molecules22101582. PubMed DOI PMC
Bakry R., Vallant R.M., Najam-ul-Haq M., Rainer M., Szabo Z., Huck C.W., Bonn G.K. Medicinal applications of fullerenes. Int. J. Nanomed. 2007;2:639–649. PubMed PMC
Venkataraman A., Amadi E.V., Chen Y., Papadopoulos C. Carbon nanotube assembly and integration for applications. Nanoscale Res. Lett. 2019;14:220. doi: 10.1186/s11671-019-3046-3. PubMed DOI PMC
Dong H., Li L., Wang Y., Ning Q., Wang B., Zeng G. Aging of zero‐valent iron‐based nanoparticles in aqueous environment and the consequent effects on their reactivity and toxicity. WER. 2020;92:646–661. doi: 10.1002/wer.1265. PubMed DOI
Rajkovic S., Bornhöft N.A., van der Weijden R., Nowack B., Adam V. Dynamic probabilistic material flow analysis of engineered nanomaterials in European waste treatment systems. Waste Manag. 2020;113:118–131. doi: 10.1016/j.wasman.2020.05.032. PubMed DOI
Nowack B. Evaluation of environmental exposure models for engineered nanomaterials in a regulatory context. NanoImpact. 2017;8:38–47. doi: 10.1016/j.impact.2017.06.005. DOI
Nowack B., Bucheli T.D. Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut. 2007;150:5–22. doi: 10.1016/j.envpol.2007.06.006. PubMed DOI
Puolamaa M. 2006. The Appropriateness of Existing Methodologies to Assess the Potential Risks Associated with Engineered and Adventitious Products of Nanotechnologies.
AshaRani P., Low Kah Mun G., Hande M.P., Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2009;3:279–290. doi: 10.1021/nn800596w. PubMed DOI
Levard C., Hotze E.M., Lowry G.V., Brown G.E., Jr. Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ. Sci. Technol. 2012;46:6900–6914. doi: 10.1021/es2037405. PubMed DOI
Kareem E.H., Dawood T.N., Al-Samarai F.R. Application of nanoparticle in the veterinary medicine. MSARR. 2022;4 doi: 10.30574/msarr.2022.4.1.0082. 027-038. DOI
Naqvi S.Z., Kiran U., Ali M.I., Jamal A., Hameed A., Ahmed S., Ali N. Combined efficacy of biologically synthesized silver nanoparticles and different antibiotics against multidrug-resistant bacteria. Int. J. Nanomed. 2013;8:3187–3195. doi: 10.2147/ijn.S49284. PubMed DOI PMC
Smekalova M., Aragon V., Panacek A., Prucek R., Zboril R., Kvitek L. Enhanced antibacterial effect of antibiotics in combination with silver nanoparticles against animal pathogens. Vet. J. 2016;209:174–179. doi: 10.1016/j.tvjl.2015.10.032. PubMed DOI
Sondi I., Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004;275:177–182. doi: 10.1016/j.jcis.2004.02.012. PubMed DOI
Roshmi T., Soumya K.R., Jyothis M., Radhakrishnan E.K. Effect of biofabricated gold nanoparticle-based antibiotic conjugates on minimum inhibitory concentration of bacterial isolates of clinical origin. Gold Bull. 2015;48:63–71. doi: 10.1007/s13404-015-0162-4. DOI
Roy A., Parveen A., Koppalkar A., V N A.P.M. Effect of nano - titanium dioxide with different antibiotics against methicillin- resistant Staphylococcus aureus. JBNB. 2010;1:37. doi: 10.4236/jbnb.2010.11005. DOI
Zhang Y., Yuan Y., Chen W., Fan J., Lv H., Wu Q. Integrated nanotechnology of synergism-sterilization and removing-residues for neomycin through nano-Cu2O. Colloids Surf. B Biointerfaces. 2019;183 doi: 10.1016/j.colsurfb.2019.110371. PubMed DOI
Otari S., Patil R., Waghmare S., Ghosh S., Pawar S. A novel microbial synthesis of catalytically active Ag-alginate biohydrogel and its antimicrobial activity. Dalton Trans. 2013:42. doi: 10.1039/c3dt51093j. Cambridge, England : 2003. PubMed DOI
Happy A., Soumya M., Venkat Kumar S., Rajeshkumar S. Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chem. Biol. Interact. 2018;286:60–70. doi: 10.1016/j.cbi.2018.03.008. PubMed DOI
Kruk T., Szczepanowicz K., Stefańska J., Socha R.P., Warszyński P. Synthesis and antimicrobial activity of monodisperse copper nanoparticles. Colloids Surf. B Biointerfaces. 2015;128:17–22. doi: 10.1016/j.colsurfb.2015.02.009. PubMed DOI
Saratale G.D., Saratale R.G., Benelli G., Kumar G., Pugazhendhi A., Kim D.-S., Shin H.-S. Anti-diabetic potential of silver nanoparticles synthesized with Argyreia nervosa leaf extract high synergistic antibacterial activity with standard antibiotics against foodborne bacteria. J. Cluster Sci. 2017;28:1709–1727. doi: 10.1007/s10876-017-1179-z. DOI
Aziz N., Pandey R., Barman I., Prasad R. Leveraging the attributes of mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front. Microbiol. 1984;7(2016) doi: 10.3389/fmicb.2016.01984. PubMed DOI PMC
Shaker M.A., Shaaban M.I. Formulation of carbapenems loaded gold nanoparticles to combat multi-antibiotic bacterial resistance: in vitro antibacterial study. Int. J. Pharm. 2017;525:71–84. doi: 10.1016/j.ijpharm.2017.04.019. PubMed DOI
Immanuel G., Prema P., Inya A. Microbial mediated synthesis, characterization, antibacterial and synergistic effect of gold nanoparticles using Klebsiella pneumoniae (MTCC- 4030) RSC Adv. 2015;6 doi: 10.1039/C5RA23982F. DOI
Kiranmai M., Kadimcharla K., Keesara N., Fatima S., Bommena P., Batchu U. Green synthesis of stable copper nanoparticles and synergistic activity with antibiotics. Indian J. Pharmaceut. Sci. 2017;79 doi: 10.4172/pharmaceutical-sciences.1000281. DOI
Khashan K.S., Sulaiman G.M., Abdulameer F.A. Synthesis and antibacterial activity of CuO nanoparticles suspension induced by laser ablation in liquid. Arabian J. Sci. Eng. 2016;41:301–310. doi: 10.1007/s13369-015-1733-7. DOI
Khurana C., Sharma P., Pandey O.P., Chudasama B. Synergistic effect of metal nanoparticles on the antimicrobial activities of antibiotics against biorecycling microbes. J. Mater. Sci. Technol. 2016;32:524–532. doi: 10.1016/j.jmst.2016.02.004. DOI
Namasivayam S., Prasanna M., Subathra S. vol. 7. 2015. pp. 133–138. (Synergistic Antibacterial Activity of Zinc Oxide Nanoparticles with Antibiotics against the Human Pathogenic Bacteria).
Lopez-Carrizales M., Velasco K.I., Castillo C., Flores A., Magaña M., Martinez-Castanon G.A., Martinez-Gutierrez F. In vitro synergism of silver nanoparticles with antibiotics as an alternative treatment in multiresistant uropathogens. Antibiotics. 2018;7 doi: 10.3390/antibiotics7020050. PubMed DOI PMC
Tarjoman Z., Ganji S.M., Mehrabian S. Synergistic effects of the bismuth nanoparticles along with antibiotics on PKS positive Klebsiella pneumoniae isolates from colorectal cancer patients ; comparison with quinolone antibiotics. Res. J. Med. Med. Sci. 2015;3:387–393.
Bhande R., Khobragade C., Mane R., Bhande S. Enhanced synergism of antibiotics with zinc oxide nanoparticles against extended spectrum β-lactamase producers implicated in urinary tract infections. J. Nanoparticle Res. 2013;15 doi: 10.1007/s11051-012-1413-4. DOI
Hochvaldová L., Večeřová R., Kolář M., Prucek R., Kvítek L., Lapčík L., Panáček A. Antibacterial nanomaterials: upcoming hope to overcome antibiotic resistance crisis. Nanotechnol. Rev. 2022;11:1115–1142. doi: 10.1515/ntrev-2022-0059. DOI
Fayaz A.M., Balaji K., Girilal M., Yadav R., Kalaichelvan P.T., Venketesan R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine (N. Y., NY, U. S.) 2010;6:103–109. doi: 10.1016/j.nano.2009.04.006. PubMed DOI
Qin W., Ding D., Liu J., Yuan W.Z., Hu Y., Liu B., Tang B.Z. Biocompatible nanoparticles with aggregation‐induced emission characteristics as far‐red/near‐infrared fluorescent bioprobes for in vitro and in vivo imaging applications. Adv. Funct. Mater. 2012;22:771–779. doi: 10.1002/adfm.201102191. DOI
Schwartz J.A., Shetty A.M., Price R.E., Stafford R.J., Wang J.C., Uthamanthil R.K., Pham K., McNichols R.J., Coleman C.L., Payne J.D. Feasibility study of particle-assisted laser ablation of brain tumors in orthotopic canine model. Cancer Res. 2009;69:1659–1667. doi: 10.1158/0008-5472.CAN-08-2535. PubMed DOI
Wang Y., Chen L. Quantum dots, lighting up the research and development of nanomedicine. Nanomedicine: N. Mobil. 2011;7:385–402. doi: 10.1016/j.nano.2010.12.006. PubMed DOI
Wagh A., Qian S.Y., Law B. Development of biocompatible polymeric nanoparticles for in vivo NIR and FRET imaging. Bioconjugate Chem. 2012;23:981–992. doi: 10.1021/bc200637h. PubMed DOI
Zhu T., Cheng Y., Cao C., Mao J., Li L., Huang J., Gao S., Dong X., Chen Z., Lai Y. A semi-interpenetrating network ionic hydrogel for strain sensing with high sensitivity, large strain range, and stable cycle performance. J. Chem. Eng. 2020;385 doi: 10.1016/j.cej.2019.123912. DOI
Sanna V., Pintus G., Roggio A.M., Punzoni S., Posadino A.M., Arca A., Marceddu S., Bandiera P., Uzzau S., Sechi M. Targeted biocompatible nanoparticles for the delivery of (−)-epigallocatechin 3-gallate to prostate cancer cells. J. Med. Chem. 2011;54:1321–1332. doi: 10.1021/jm1013715. PubMed DOI
Ravindran Girija A., Sivakumar B., Brahatheeswaran D., Fukuda T., Yoshida Y., Maekawa T., Kumar S. Biocompatible fluorescent zein nanoparticles for simultaneous bioimaging and drug delivery application. ANSN. 2012;3 doi: 10.1088/2043-6262/3/2/025006. DOI
Roullin V.G., Callewaert M., Molinari M., Delavoie F., Seconde A., Andry M.-C. Optimised NSAIDs-loaded biocompatible nanoparticles. Nano-Micro Lett. 2010;2:247–255. doi: 10.1007/BF03353851. DOI
Bhatia P., Vasaikar S., Wali A. A landscape of nanomedicine innovations in India. Nanotechnol. Rev. 2018;7:131–148. doi: 10.1515/ntrev-2017-0196. DOI