Leveraging genome-scale metabolic models to understand aerobic methanotrophs
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, systematický přehled, přehledy
Grantová podpora
21-17322M
Czech Science Foundation
PubMed
38861460
PubMed Central
PMC11195481
DOI
10.1093/ismejo/wrae102
PII: 7691183
Knihovny.cz E-zdroje
- Klíčová slova
- metabolic modelling, methane oxidisers, systems biology,
- MeSH
- aerobióza MeSH
- biologické modely MeSH
- metabolické sítě a dráhy genetika MeSH
- methan * metabolismus MeSH
- oxidace-redukce MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- systematický přehled MeSH
- Názvy látek
- methan * MeSH
Genome-scale metabolic models (GEMs) are valuable tools serving systems biology and metabolic engineering. However, GEMs are still an underestimated tool in informing microbial ecology. Since their first application for aerobic gammaproteobacterial methane oxidizers less than a decade ago, GEMs have substantially increased our understanding of the metabolism of methanotrophs, a microbial guild of high relevance for the natural and biotechnological mitigation of methane efflux to the atmosphere. Particularly, GEMs helped to elucidate critical metabolic and regulatory pathways of several methanotrophic strains, predicted microbial responses to environmental perturbations, and were used to model metabolic interactions in cocultures. Here, we conducted a systematic review of GEMs exploring aerobic methanotrophy, summarizing recent advances, pointing out weaknesses, and drawing out probable future uses of GEMs to improve our understanding of the ecology of methane oxidizers. We also focus on their potential to unravel causes and consequences when studying interactions of methane-oxidizing bacteria with other methanotrophs or members of microbial communities in general. This review aims to bridge the gap between applied sciences and microbial ecology research on methane oxidizers as model organisms and to provide an outlook for future studies.
Zobrazit více v PubMed
Palsson BØ. Systems biology: constraint-based reconstruction and analysis. Cambridge (GB): Cambridge University Press, 2015. 10.1017/CBO9781139854610 DOI
Fang X, Lloyd CJ, Palsson BO. Reconstructing organisms in silico: genome-scale models and their emerging applications. Nat Rev Microbiol 2020;18:731–43. 10.1038/s41579-020-00440-4 PubMed DOI PMC
Machado D, Costa RS, Ferreira ECet al. . Exploring the gap between dynamic and constraint-based models of metabolism. Metab Eng 2012;14:112–9. 10.1016/j.ymben.2012.01.003 PubMed DOI PMC
Mahadevan R, Edwards JS, Doyle FJ. Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J 2002;83:1331–40. 10.1016/S0006-3495(02)73903-9 PubMed DOI PMC
Chassagnole C, Noisommit-Rizzi N, Schmid JWet al. . Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotechnol Bioeng 2002;79:53–73. 10.1002/bit.10288 PubMed DOI
Gilbert D, Heiner M, Jayaweera Yet al. . Towards dynamic genome-scale models. Brief Bioinform 2019;20:1167–80. 10.1093/bib/bbx096 PubMed DOI PMC
Orth JD, Thiele I, Palsson BØ. What is flux balance analysis? Nat Biotechnol 2010;28:245–8. 10.1038/nbt.1614 PubMed DOI PMC
Gupta A, Ahmad A, Chothwe Det al. . Genome-scale metabolic reconstruction and metabolic versatility of an obligate methanotroph Methylococcus capsulatus str. Bath. PeerJ 2019;7:e6685. 10.7717/peerj.6685 PubMed DOI PMC
Islam MM, Le T, Daggumati SRet al. . Investigation of microbial community interactions between Lake Washington methanotrophs using genome-scale metabolic modeling. PeerJ 2020;8:e9464. 10.7717/peerj.9464 PubMed DOI PMC
Mai DHA, Nguyen TT, Lee EY. The ethylmalonyl-CoA pathway for methane-based biorefineries: a case study of using Methylosinus trichosporium OB3b, an alpha-proteobacterial methanotroph, for producing 2-hydroxyisobutyric acid and 1,3-butanediol from methane. Green Chem 2021;23:7712–23. 10.1039/D1GC02866A DOI
Nguyen TT, Lee OK, Naizabekov Set al. . Bioconversion of methane to cadaverine and lysine using an engineered type II methanotroph, Methylosinus trichosporium OB3b. Green Chem 2020;22:7803–11. 10.1039/D0GC02232B DOI
Villada JC, Duran MF, Lim CKet al. . Integrative genome-scale metabolic modeling reveals versatile metabolic strategies for methane utilisation in Methylomicrobium album BG8. mSystems 2022;7:e00073–22. 10.1128/msystems.00073-22 PubMed DOI PMC
Colarusso AV, Goodchild-Michelman I, Rayle Met al. . Computational modeling of metabolism in microbial communities on a genome-scale. Curr Opin Syst Biol 2021;26:46–57. 10.1016/j.coisb.2021.04.001 DOI
Feist AM, Herrgård MJ, Thiele Iet al. . Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 2009;7:129–43. 10.1038/nrmicro1949 PubMed DOI PMC
Feist AM, Palsson BØ. The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat Biotechnol 2008;26:659–67. 10.1038/nbt1401 PubMed DOI PMC
Zampieri G, Campanaro S, Angione Cet al. . Metatranscriptomics-guided genome-scale metabolic modeling of microbial communities. Cell rep. Methods 2023;3:100383. 10.1016/j.crmeth.2022.100383 PubMed DOI PMC
Cuevas DA, Edirisinghe J, Henry CSet al. . From DNA to FBA: how to build your own genome-scale metabolic model. Front Microbiol 2016;7:907. 10.3389/fmicb.2016.00907 PubMed DOI PMC
Liu L, Agren R, Bordel Set al. . Use of genome-scale metabolic models for understanding microbial physiology. FEBS Lett 2010;584:2556–64. 10.1016/j.febslet.2010.04.052 PubMed DOI
Santos F, Boele J, Teusink B. A practical guide to genome-scale metabolic models and their analysis. In: Jameson D, Verma M, Westerhoff HV (eds.), Methods in Enzymology. Academic Press, 2011, 509–32. PubMed
Seif Y, Palsson BØ. Path to improving the life cycle and quality of genome-scale models of metabolism. Cell Syst 2021;12:842–59. 10.1016/j.cels.2021.06.005 PubMed DOI PMC
Thiele I, Palsson BØ. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 2010;5:93–121. 10.1038/nprot.2009.203 PubMed DOI PMC
Bosi E, Bacci G, Mengoni Aet al. . Perspectives and challenges in microbial communities metabolic modeling. Front Genet 2017;8:88. 10.3389/fgene.2017.00088 PubMed DOI PMC
Diener C, Gibbons SM. More is different: metabolic modeling of diverse microbial communities. mSystems. 2023;8:e01270–22. 10.1128/msystems.01270-22 PubMed DOI PMC
Esvap E, Ulgen KO. Advances in genome-scale metabolic modeling toward microbial community analysis of the human microbiome. ACS Synth Biol 2021;10:2121–37. 10.1021/acssynbio.1c00140 PubMed DOI
Reed JL. Genome-scale metabolic modeling and its application to microbial communities. In: National Academies of Sciences, Engineering, and Medicine; Division on Earth and Life Studies; Board on Chemical Sciences and Technology; Chemical Sciences Roundtable. The Chemistry of Microbiomes: Proceedings of a Seminar Series. Washington (DC), National Academies Press (US), 2017. PubMed
Geng J, Ji B, Li Get al. . CODY enables quantitatively spatiotemporal predictions on in vivo gut microbial variability induced by diet intervention. Proc Natl Acad Sci USA 2021;118:e2019336118. 10.1073/pnas.2019336118 PubMed DOI PMC
Diener C, Gibbons SM, Resendis-Antonio O. MICOM: metagenome-scale modeling to infer metabolic interactions in the gut microbiota. mSystems 2020;5:e00606–19. 10.1128/mSystems.00606-19 PubMed DOI PMC
Carere CR, Hards K, Houghton KMet al. . Mixotrophy drives niche expansion of verrucomicrobial methanotrophs. ISME J. 2017;11:2599–610. 10.1038/ismej.2017.112 PubMed DOI PMC
Crombie AT, Murrell JC. Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris. Nature 2014;510:148–51. 10.1038/nature13192 PubMed DOI
Dedysh SN, Knief C, Dunfield PF. Methylocella species are facultatively methanotrophic. J Bacteriol 2005;187:4665–70. 10.1128/JB.187.13.4665-4670.2005 PubMed DOI PMC
Guerrero-Cruz S, Vaksmaa A, Horn MAet al. . Methanotrophs: discoveries, environmental relevance, and a perspective on current and future applications. Front Microbiol 2021;12:678057. 10.3389/fmicb.2021.678057 PubMed DOI PMC
Hakobyan A, Liesack W. Unexpected metabolic versatility among type II methanotrophs in the Alphaproteobacteria. Biol Chem 2020;401:1469–77. 10.1515/hsz-2020-0200 PubMed DOI
Kato S, Takashino M, Igarashi Ket al. . Isolation and genomic characterisation of a proteobacterial methanotroph requiring lanthanides. Microbes Environ 2020;35:n/a. 10.1264/jsme2.ME19128 PubMed DOI PMC
Schmitz RA, Peeters SH, Mohammadi SSet al. . Simultaneous sulfide and methane oxidation by an extremophile. Nat Commun 2023;14:2974. 10.1038/s41467-023-38699-9 PubMed DOI PMC
Mohammadi S, Pol A, van Alen TAet al. . Methylacidiphilum fumariolicum SolV, a thermoacidophilic ‘Knallgas’ methanotroph with both an oxygen-sensitive and -insensitive hydrogenase. ISME J. 2017;11:945–58. 10.1038/ismej.2016.171 PubMed DOI PMC
Sharp CE, Martínez-Lorenzo A, Brady ALet al. . Methanotrophic bacteria in warm geothermal spring sediments identified using stable-isotope probing. FEMS Microbiol Ecol 2014;90:92–102. 10.1111/1574-6941.12375 PubMed DOI
Tveit AT, Hestnes AG, Robinson SLet al. . Widespread soil bacterium that oxidises atmospheric methane. Proc Natl Acad Sci USA 2019;116:8515–24. 10.1073/pnas.1817812116 PubMed DOI PMC
van Spanning RJM, Guan Q, Melkonian Cet al. . Methanotrophy by a Mycobacterium species that dominates a cave microbial ecosystem. Nat Microbiol 2022;7:2089–100. 10.1038/s41564-022-01252-3 PubMed DOI
Edwards JS, Palsson BO. Systems properties of the Haemophilus influenzae Rd metabolic genotype. J Biol Chem 1999;274:17410–6. 10.1074/jbc.274.25.17410 PubMed DOI
Edwards JS, Palsson BO. Robustness analysis of the Escherichia coli metabolic network. Biotechnol Prog 2000;16:927–39. 10.1021/bp0000712 PubMed DOI
Förster J, Famili I, Fu Pet al. . Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 2003;13:244–53. 10.1101/gr.234503 PubMed DOI PMC
de la Torre A, Metivier A, Chu Fet al. . Genome-scale metabolic reconstructions and theoretical investigation of methane conversion in Methylomicrobium buryatense strain 5G(B1). Microb Cell Factories 2015;14:188. 10.1186/s12934-015-0377-3 PubMed DOI PMC
Akberdin IR, Thompson M, Kalyuzhnaya MG. Systems biology and metabolic modeling of C1-metabolism. In: Kalyuzhnaya MG, Xing XH (eds.), Methane Biocatalysis: Paving the Way to Sustainability. Cham: Springer International Publishing, 2018, 99–115. 10.1007/978-3-319-74866-5_7 DOI
Comesaña-Gándara B, García-Depraect O, Santos-Beneit Fet al. . Recent trends and advances in biogas upgrading and methanotrophs-based valorisation. Chem Eng J Adv 2022;11:100325. 10.1016/j.ceja.2022.100325 DOI
Guo S, Nguyen DTN, Chau THTet al. . Systems metabolic engineering of methanotrophic bacteria for biological conversion of methane to value-added sompounds. Adv Biochem Eng Biotechnol 2022;180:91–126 10.1007/10_2021_184 PubMed DOI
Kabimoldayev I, Nguyen AD, Yang Let al. . Basics of genome-scale metabolic modeling and applications on C1-utilization. FEMS Microbiol Lett 2018;365:fny241. 10.1093/femsle/fny241 PubMed DOI
Kulyashov MA, Kolmykov SK, Khlebodarova TMet al. . State-of the-art constraint-based modeling of microbial metabolism: from basics to context-specific models with a focus on methanotrophs. Microorganisms 2023;11:2987. 10.3390/microorganisms11122987 PubMed DOI PMC
Lieven C, Herrgård MJ, Sonnenschein N. Microbial methylotrophic metabolism: recent metabolic modeling efforts and their applications in industrial biotechnology. Biotechnol J 2018;13:1800011. 10.1002/biot.201800011 PubMed DOI
Lund J, Woodland MP, Dalton H. Electron transfer reactions in the soluble methane monooxygenase of Methylococcus capsulatus (Bath). Eur J Biochem 1985;147:297–305. 10.1111/j.1432-1033.1985.tb08750.x PubMed DOI
Hakemian AS, Rosenzweig AC. The biochemistry of methane oxidation. Annu Rev Biochem 2007;76:223–41. 10.1146/annurev.biochem.76.061505.175355 PubMed DOI
Dedysh SN, Knief C. Diversity and phylogeny of described aerobic methanotrophs. In: Kalyuzhnaya MG, Xing XH (eds.), Methane Biocatalysis: Paving the Way to Sustainability. Cham: Springer International Publishing, 2018, 17–42. 10.1007/978-3-319-74866-5_2 DOI
Nguyen AD, Lee EY. Engineered methanotrophy: a sustainable solution for methane-based industrial biomanufacturing. Trends Biotechnol 2021;39:381–96. 10.1016/j.tibtech.2020.07.007 PubMed DOI
Akberdin IR, Thompson M, Hamilton Ret al. . Methane utilisation in Methylomicrobium alcaliphilum 20ZR: a systems approach. Sci Rep 2018;8:2512. 10.1038/s41598-018-20574-z PubMed DOI PMC
Lieven C, Petersen LAH, Jørgensen SBet al. . A genome-scale metabolic model for Methylococcus capsulatus (Bath) suggests reduced efficiency electron transfer to the particulate methane monooxygenase. Front Microbiol 2018;9:2947. 10.3389/fmicb.2018.02947 PubMed DOI PMC
Bordel S, Rodríguez Y, Hakobyan Aet al. . Genome scale metabolic modeling reveals the metabolic potential of three type II methanotrophs of the genus Methylocystis. Metab Eng 2019;54:191–9. 10.1016/j.ymben.2019.04.001 PubMed DOI
Bordel S, Rojas A, Muñoz R. Reconstruction of a genome scale metabolic model of the polyhydroxybutyrate producing methanotroph Methylocystis parvus OBBP. Microb Cell Factories 2019;18:104. 10.1186/s12934-019-1154-5 PubMed DOI PMC
Naizabekov S, Lee EY. Genome-scale metabolic model reconstruction and in silico investigations of methane metabolism in Methylosinus trichosporium OB3b. Microorganisms 2020;8:437. 10.3390/microorganisms8030437 PubMed DOI PMC
Kalyuzhnaya MG. Methane biocatalysis. In: Eckert CA, Trinh CT (eds.), Biotechnology for Biofuel Production and Optimisation. Elsevier, 2016, 353–83.
Bordel S, Crombie AT, Muñoz Ret al. . Genome scale metabolic model of the versatile methanotroph Methylocella silvestris. Microb Cell Factories 2020;19:144. 10.1186/s12934-020-01395-0 PubMed DOI PMC
Pieja AJ, Sundstrom ER, Criddle CS. Poly-3-hydroxybutyrate metabolism in the type II methanotroph Methylocystis parvus OBBP. Appl Environ Microbiol 2011;77:6012–9. 10.1128/AEM.00509-11 PubMed DOI PMC
Altieri AH, Gedan KB. Climate change and dead zones. Glob Change Biol 2015;21:1395–406. 10.1111/gcb.12754 PubMed DOI
Foley B, Jones ID, Maberly SCet al. . Long-term changes in oxygen depletion in a small temperate lake: effects of climate change and eutrophication. Freshw Biol 2012;57:278–89. 10.1111/j.1365-2427.2011.02662.x DOI
Gilman A, Fu Y, Hendershott Met al. . Oxygen-limited metabolism in the methanotroph Methylomicrobium buryatense 5GB1C. PeerJ 2017;5:e3945. 10.7717/peerj.3945 PubMed DOI PMC
Kalyuzhnaya MG, Yang S, Rozova ONet al. . Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat Commun 2013;4:2785. 10.1038/ncomms3785 PubMed DOI
Beck DAC, Kalyuzhnaya MG, Malfatti Set al. . A metagenomic insight into freshwater methane-utilising communities and evidence for cooperation between the Methylococcaceae and the Methylophilaceae. PeerJ 2013;1:e23. 10.7717/peerj.23 PubMed DOI PMC
Oshkin IY, Beck DA, Lamb AEet al. . Methane-fed microbial microcosms show differential community dynamics and pinpoint taxa involved in communal response. ISME J. 2015;9:1119–29. 10.1038/ismej.2014.203 PubMed DOI PMC
Krause SMB, Johnson T, Samadhi Karunaratne Yet al. . Lanthanide-dependent cross-feeding of methane-derived carbon is linked by microbial community interactions. Proc Natl Acad Sci USA 2017;114:358–63. 10.1073/pnas.1619871114 PubMed DOI PMC
Tavormina PL, Kellermann MY, Antony CPet al. . Starvation and recovery in the deep-sea methanotroph Methyloprofundus sedimenti. Mol Microbiol 2017;103:242–52. 10.1111/mmi.13553 PubMed DOI
Fu Y, He L, Reeve Jet al. . Core metabolism shifts during growth on methanol versus methane in the methanotroph Methylomicrobium buryatense 5GB1. MBio 2019;10:e00406–19. 10.1128/mBio.00406-19 PubMed DOI PMC
Nguyen AD, Park JY, Hwang IYet al. . Genome-scale evaluation of core one-carbon metabolism in gammaproteobacterial methanotrophs grown on methane and methanol. Metab Eng 2020;57:1–12. 10.1016/j.ymben.2019.10.004 PubMed DOI
Sugden S, Lazic M, Sauvageau Det al. . Transcriptomic and metabolomic responses to carbon and nitrogen sources in Methylomicrobium album BG8. Appl Environ Microbiol 2021;87:e00385–21. 10.1128/AEM.00385-21 PubMed DOI PMC
Awala SI, Gwak JH, Kim YMet al. . Verrucomicrobial methanotrophs grow on diverse C3 compounds and use a homolog of particulate methane monooxygenase to oxidise acetone. ISME J 2021;15:3636–47. 10.1038/s41396-021-01037-2 PubMed DOI PMC
Dunfield PF, Yuryev A, Senin Pet al. . Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 2007;450:879–82. 10.1038/nature06411 PubMed DOI
Khadem AF, Pol A, Wieczorek Aet al. . Autotrophic methanotrophy in Verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin-Benson-Bassham cycle for carbon dioxide fixation. J Bacteriol 2011;193:4438–46. 10.1128/JB.00407-11 PubMed DOI PMC
Picone N, Mohammadi SS, Waajen ACet al. . More than a methanotroph: a broader substrate spectrum for Methylacidiphilum fumariolicum SolV. Front Microbiol 2020;11:604485. 10.3389/fmicb.2020.604485 PubMed DOI PMC
Pol A, Heijmans K, Harhangi HRet al. . Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 2007;450:874–8. 10.1038/nature06222 PubMed DOI
Schmitz RA, Peeters SH, Versantvoort Wet al. . Verrucomicrobial methanotrophs: ecophysiology of metabolically versatile acidophiles. FEMS Microbiol Rev 2021;45:fuab007. 10.1093/femsre/fuab007 PubMed DOI PMC
Saldivar A, Ruiz-Ruiz P, Revah Set al. . Genome-scale flux balance analysis reveals redox trade-offs in the metabolism of the thermoacidophile Methylacidiphilum fumariolicum under auto-, hetero-and methanotrophic conditions. Front Syst Biol 2024;4:1291612. 10.3389/fsysb.2024.1291612 DOI
He L, Groom JD, Wilson EHet al. . A methanotrophic bacterium to enable methane removal for climate mitigation. Proc Natl Acad Sci USA 2023;120:e2310046120. 10.1073/pnas.2310046120 PubMed DOI PMC
Stein LY. Microbial methane munchers offer a shield from the scorch. Proc Natl Acad Sci USA 2023;120:e2313579120. 10.1073/pnas.2313579120 PubMed DOI PMC
Badr K, He QP, Wang J. Identifying interspecies interactions within a model methanotroph-photoautotroph coculture using semi-structured and structured modeling. IFAC-Pap 2022;55:106–11. 10.1016/j.ifacol.2022.07.429 DOI
Zomorrodi AR, Maranas CD. OptCom: a multi-level optimisation framework for the metabolic modeling and analysis of microbial communities. PLoS Comput Biol 2012;8:e1002363. 10.1371/journal.pcbi.1002363 PubMed DOI PMC
Baldini F, Heinken A, Heirendt Let al. . The microbiome Modeling toolbox: from microbial interactions to personalised microbial communities. Bioinformatics 2019;35:2332–4. 10.1093/bioinformatics/bty941 PubMed DOI PMC
Mendoza SN, Olivier BG, Molenaar Det al. . A systematic assessment of current genome-scale metabolic reconstruction tools. Genome Biol 2019;20:158. 10.1186/s13059-019-1769-1 PubMed DOI PMC
Gu C, Kim GB, Kim WJet al. . Current status and applications of genome-scale metabolic models. Genome Biol 2019;20:121. 10.1186/s13059-019-1730-3 PubMed DOI PMC
Demidenko A, Akberdin IR, Allemann Met al. . Fatty acid biosynthesis pathways in Methylomicrobium buryatense 5G(B1). Front Microbiol 2017;7:2167. 10.3389/fmicb.2016.02167 PubMed DOI PMC
Novère NL, Finney A, Hucka Met al. . Minimum information requested in the annotation of biochemical models (MIRIAM). Nat Biotechnol 2005;23:1509–15. 10.1038/nbt1156 PubMed DOI
Lieven C, Beber ME, Olivier BGet al. . MEMOTE for standardised genome-scale metabolic model testing. Nat Biotechnol 2020;38:272–6. 10.1038/s41587-020-0446-y PubMed DOI PMC
Bordel S, Agren R, Nielsen J. Sampling the solution space in genome-scale metabolic networks reveals transcriptional regulation in key enzymes. PLoS Comput Biol 2010;6:e1000859. 10.1371/journal.pcbi.1000859 PubMed DOI PMC
Bordel S, Pérez R, Rodríguez Eet al. . Halotolerance mechanisms of the methanotroph Methylomicrobium alcaliphilum. Biotechnol Bioeng 2020;117:3459–74. 10.1002/bit.27506 PubMed DOI
Blazier AS, Papin JA. Integration of expression data in genome-scale metabolic network reconstructions. Front Physiol 2012;3:299. PubMed PMC
Baani M, Liesack W. Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2. Proc Natl Acad Sci USA 2008;105:10203–8. 10.1073/pnas.0702643105 PubMed DOI PMC
Stolyar S, Costello AM, Peeples TLet al. . Role of multiple gene copies in particulate methane monooxygenase activity in the methane-oxidising bacterium Methylococcus capsulatus Bath. Microbiology 1999;145:1235–44. 10.1099/13500872-145-5-1235 PubMed DOI
Tavormina PL, Orphan VJ, Kalyuzhnaya MGet al. . A novel family of functional operons encoding methane/ammonia monooxygenase-related proteins in gammaproteobacterial methanotrophs. Environ Microbiol Rep 2011;3:91–100. 10.1111/j.1758-2229.2010.00192.x PubMed DOI
Dam B, Dam S, Blom Jet al. . Genome analysis coupled with physiological studies reveals a diverse nitrogen metabolism in Methylocystis sp. strain SC2. PLoS One 2013;8:e74767. 10.1371/journal.pone.0074767 PubMed DOI PMC
Kits KD, Klotz MG, Stein LY. Methane oxidation coupled to nitrate reduction under hypoxia by the Gammaproteobacterium Methylomonas denitrificans, sp. nov. type strain FJG1. Environ Microbiol 2015;17:3219–32. 10.1111/1462-2920.12772 PubMed DOI
Heirendt L, Arreckx S, Pfau Tet al. . Creation and analysis of biochemical constraint-based models using the COBRA toolbox v.3.0. Nat Protoc 2019;14:639–702. 10.1038/s41596-018-0098-2 PubMed DOI PMC
Ebrahim A, Lerman JA, Palsson BØet al. . COBRApy: constraints-based reconstruction and analysis for python. BMC Syst Biol 2013;7:74. 10.1186/1752-0509-7-74 PubMed DOI PMC
Gelius-Dietrich G, Desouki AA, Fritzemeier CJet al. . Sybil – efficient constraint-based modelling in R. BMC Syst Biol 2013;7:125. 10.1186/1752-0509-7-125 PubMed DOI PMC
Khmelenina VN, Rozova ON, But SYet al. . Biosynthesis of secondary metabolites in methanotrophs: biochemical and genetic aspects (review). Appl Biochem Microbiol 2015;51:150–8. 10.1134/S0003683815020088 PubMed DOI
Puri AW. Specialised metabolites from methylotrophic Proteobacteria. Curr Issues Mol Biol 2019;33:211–24. 10.21775/cimb.033.211 PubMed DOI PMC
Puri AW, Schaefer AL, Fu Yet al. . Quorum sensing in a methane-oxidising bacterium. J Bacteriol 2017;199:e00773–16. 10.1128/JB.00773-16 PubMed DOI PMC
Puri AW, Mevers E, Ramahdar TRet al. . Tundrenone: an atypical secondary metabolite from bacteria with highly restricted primary metabolism. J Am Chem Soc 2018;140:2002–6. 10.1021/jacs.7b12240 PubMed DOI PMC
Puri AW, Liu D, Schaefer ALet al. . Interspecies chemical signaling in a methane-oxidising bacterial community. Appl Environ Microbiol 2019;85:e02702–18. 10.1128/AEM.02702-18 PubMed DOI PMC
Ushasree MV, Anh DMH, Shyam Ket al. . Methanotrophs as a reservoir for bioactive secondary metabolites: pitfalls, insights and promises. Biotechnol Adv 2023;63:108097. 10.1016/j.biotechadv.2023.108097 PubMed DOI
Milucka J, Kirf M, Lu Let al. . Methane oxidation coupled to oxygenic photosynthesis in anoxic waters. ISME J 2015;9:1991–2002. 10.1038/ismej.2015.12 PubMed DOI PMC
Roberts N, Hilliard M, He QPet al. . A microalgae-methanotroph coculture is a promising platform for fuels and chemical production from wastewater. Front Energy Res 2020;8:563352. 10.3389/fenrg.2020.563352 DOI
van der Ha D, Bundervoet B, Verstraete Wet al. . A sustainable, carbon neutral methane oxidation by a partnership of methane oxidising communities and microalgae. Water Res 2011;45:2845–54. 10.1016/j.watres.2011.03.005 PubMed DOI
Kip N, van Winden JF, Pan Yet al. . Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems. Nat Geosci 2010;3:617–21. 10.1038/ngeo939 DOI
Larmola T, Tuittila ES, Tiirola Met al. . The role of sphagnum mosses in the methane cycling of a boreal mire. Ecology 2010;91:2356–65. 10.1890/09-1343.1 PubMed DOI
Liebner S, Zeyer J, Wagner Det al. . Methane oxidation associated with submerged brown mosses reduces methane emissions from Siberian polygonal tundra. J Ecol 2011;99:914–22. 10.1111/j.1365-2745.2011.01823.x DOI
Raghoebarsing AA, Smolders AJP, Schmid MCet al. . Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature 2005;436:1153–6. 10.1038/nature03802 PubMed DOI
Petersen JM, Dubilier N. Methanotrophic symbioses in marine invertebrates. Environ Microbiol Rep 2009;1:319–35. 10.1111/j.1758-2229.2009.00081.x PubMed DOI
Ho A, Angel R, Veraart AJet al. . Biotic interactions in microbial communities as modulators of biogeochemical processes: methanotrophy as a model system. Front Microbiol 2016;7:1285. 10.3389/fmicb.2016.01285 PubMed DOI PMC
Stock M, Hoefman S, Kerckhof FMet al. . Exploration and prediction of interactions between methanotrophs and heterotrophs. Res Microbiol 2013;164:1045–54. 10.1016/j.resmic.2013.08.006 PubMed DOI
Takeuchi M, Ozaki H, Hiraoka Set al. . Possible cross-feeding pathway of facultative methylotroph Methyloceanibacter caenitepidi Gela4 on methanotroph Methylocaldum marinum S8. PLoS One 2019;14:e0213535. 10.1371/journal.pone.0213535 PubMed DOI PMC
Veraart AJ, Garbeva P, van Beersum Fet al. . Living apart together—bacterial volatiles influence methanotrophic growth and activity. ISME J 2018;12:1163–6. 10.1038/s41396-018-0055-7 PubMed DOI PMC
Yu Z, Beck DAC, Chistoserdova L. Natural selection in synthetic communities highlights the roles of Methylococcaceae and Methylophilaceae and suggests differential roles for alternative methanol dehydrogenases in methane consumption. Front Microbiol 2017;8:2392. 10.3389/fmicb.2017.02392 PubMed DOI PMC
Hernandez ME, Beck DAC, Lidstrom MEet al. . Oxygen availability is a major factor in determining the composition of microbial communities involved in methane oxidation. PeerJ. 2015;3:e801. 10.7717/peerj.801 PubMed DOI PMC
Praeg N, Schachner I, Schuster Let al. . Carbon-dependent growth, community structure and methane oxidation performance of a soil-derived methanotrophic mixed culture. FEMS Microbiol Lett 2021;368:fnaa212. 10.1093/femsle/fnaa212 PubMed DOI
Heinken A, Hertel J, Acharya Get al. . Genome-scale metabolic reconstruction of 7,302 human microorganisms for personalised medicine. Nat Biotechnol 2023;41:1320–31. 10.1038/s41587-022-01628-0 PubMed DOI PMC
Magnúsdóttir S, Heinken A, Kutt Let al. . Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat Biotechnol 2017;35:81–9. 10.1038/nbt.3703 PubMed DOI
Murase J, Frenzel P. Selective grazing of methanotrophs by protozoa in a rice field soil: protozoan grazing on methanotrophs. FEMS Microbiol Ecol 2008;65:408–14. 10.1111/j.1574-6941.2008.00511.x PubMed DOI
Cai J, Tan T, Chan SHJ. Predicting Nash equilibria for microbial metabolic interactions. Bioinformatics 2021;36:5649–55. 10.1093/bioinformatics/btaa1014 PubMed DOI
Schäfer M, Pacheco AR, Künzler Ret al. . Metabolic interaction models recapitulate leaf microbiota ecology. Science 2023;381:eadf5121. 10.1126/science.adf5121 PubMed DOI
Marschmann GL, Tang J, Zhalnina Ket al. . Predictions of rhizosphere microbiome dynamics with a genome-informed and trait-based energy budget model. Nat Microbiol 2024;9:421–33. 10.1038/s41564-023-01582-w PubMed DOI PMC
He L, Fu Y, Lidstrom ME. Quantifying methane and methanol metabolism of “Methylotuvimicrobium buryatense” 5GB1C under substrate limitation. mSystems 2019;4:e00748–19. 10.1128/mSystems.00748-19 PubMed DOI PMC
Stone K, Hilliard M, Badr Ket al. . Comparative study of oxygen-limited and methane-limited growth phenotypes of Methylomicrobium buryatense 5GB1. Biochem Eng J 2020;161:107707. 10.1016/j.bej.2020.107707 DOI
He L, Groom JD, Lidstrom ME. The Entner-Doudoroff pathway is an essential metabolic route for Methylotuvimicrobium buryatense 5GB1C. Appl Environ Microbiol 2021;87:e02481–20. 10.1128/AEM.02481-20 PubMed DOI PMC
Akberdin IR, Collins DA, Hamilton Ret al. . Rare earth elements alter redox balance in Methylomicrobium alcaliphilum 20ZR. Front Microbiol 2018;9:2735. 10.3389/fmicb.2018.02735 PubMed DOI PMC
Nguyen AD, Hwang IY, Lee OKet al. . Systematic metabolic engineering of Methylomicrobium alcaliphilum 20Z for 2,3-butanediol production from methane. Metab Eng 2018;47:323–33. 10.1016/j.ymben.2018.04.010 PubMed DOI
Henard CA, Akberdin IR, Kalyuzhnaya MGet al. . Muconic acid production from methane using rationally-engineered methanotrophic biocatalysts. Green Chem 2019;21:6731–7. 10.1039/C9GC03722E DOI
Nguyen LT, Lee EY. Biological conversion of methane to putrescine using genome-scale model-guided metabolic engineering of a methanotrophic bacterium Methylomicrobium alcaliphilum 20Z. Biotechnol Biofuels 2019;12:147. 10.1186/s13068-019-1490-z PubMed DOI PMC
Nguyen AD, Nam G, Kim Det al. . Metabolic role of pyrophosphate-linked phosphofructokinase pfk for C1 assimilation in Methylotuvimicrobium alcaliphilum 20Z. Microb Cell Factories 2020;19:131. 10.1186/s12934-020-01382-5 PubMed DOI PMC
Nguyen AD, Pham DN, Chau THTet al. . Enhancing sesquiterpenoid production from methane via synergy of the methylerythritol phosphate pathway and a short-cut route to 1-deoxy-D-xylulose 5-phosphate in methanotrophic bacteria. Microorganisms 2021;9:1236. 10.3390/microorganisms9061236 PubMed DOI PMC
Nguyen AD, Hoang Trung Chau T, Yeol LE. Methanotrophic microbial cell factory platform for simultaneous conversion of methane and xylose to value-added chemicals. Chem Eng J 2021;420:127632. 10.1016/j.cej.2020.127632 DOI
Chiciudean I, Russo G, Bogdan DFet al. . Competition-cooperation in the chemoautotrophic ecosystem of Movile cave: first metagenomic approach on sediments. Environ Microbiome 2022;17:44. 10.1186/s40793-022-00438-w PubMed DOI PMC
Eren AM, Kiefl E, Shaiber Aet al. . Community-led, integrated, reproducible multi-omics with anvi’o. Nat Microbiol 2021;6:3–6. 10.1038/s41564-020-00834-3 PubMed DOI PMC
Mistry J, Finn RD, Eddy SRet al. . Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res 2013;41:e121–1. 10.1093/nar/gkt263 PubMed DOI PMC
Hyatt D, Chen GL, LoCascio PFet al. . Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010;11:119. 10.1186/1471-2105-11-119 PubMed DOI PMC
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792–7. 10.1093/nar/gkh340 PubMed DOI PMC
Minh BQ, Schmidt HA, Chernomor Oet al. . IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 2020;37:1530–4. 10.1093/molbev/msaa015 PubMed DOI PMC
Hoang DT, Chernomor O, Von Haeseler Aet al. . UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 2018;35:518–22. 10.1093/molbev/msx281 PubMed DOI PMC
Peyraud R, Schneider K, Kiefer Pet al. . Genome-scale reconstruction and system level investigation of the metabolic network of Methylobacterium extorquens AM1. BMC Syst Biol 2011;5:189. 10.1186/1752-0509-5-189 PubMed DOI PMC