Acoustic assessment in mandarin-speaking Parkinson's disease patients and disease progression monitoring and brain impairment within the speech subsystem
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
81671104
National Natural Science Foundation of China (National Science Foundation of China)
61761166004
National Natural Science Foundation of China (National Science Foundation of China)
81830033
National Natural Science Foundation of China (National Science Foundation of China)
PubMed
38866758
PubMed Central
PMC11169641
DOI
10.1038/s41531-024-00720-3
PII: 10.1038/s41531-024-00720-3
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Approximately 90% of Parkinson's patients (PD) suffer from dysarthria. However, there is currently a lack of research on acoustic measurements and speech impairment patterns among Mandarin-speaking individuals with PD. This study aims to assess the diagnosis and disease monitoring possibility in Mandarin-speaking PD patients through the recommended speech paradigm for non-tonal languages, and to explore the anatomical and functional substrates. We examined total of 160 native Mandarin-speaking Chinese participants consisting of 80 PD patients, 40 healthy controls (HC), and 40 MRI controls. We screened the optimal acoustic metric combination for PD diagnosis. Finally, we used the objective metrics to predict the patient's motor status using the Naïve Bayes model and analyzed the correlations between cortical thickness, subcortical volumes, functional connectivity, and network properties. Comprehensive acoustic screening based on prosodic, articulation, and phonation abnormalities allows differentiation between HC and PD with an area under the curve of 0.931. Patients with slowed reading exhibited atrophy of the fusiform gyrus (FDR p = 0.010, R = 0.391), reduced functional connectivity between the fusiform gyrus and motor cortex, and increased nodal local efficiency (NLE) and nodal efficiency (NE) in bilateral pallidum. Patients with prolonged pauses demonstrated atrophy in the left hippocampus, along with decreased NLE and NE. The acoustic assessment in Mandarin proves effective in diagnosis and disease monitoring for Mandarin-speaking PD patients, generalizing standardized acoustic guidelines beyond non-tonal languages. The speech impairment in Mandarin-speaking PD patients not only involves motor aspects of speech but also encompasses the cognitive processes underlying language generation.
Beijing Key Laboratory of Neurostimulation Beijing China
Department of Neurosurgery Beijing Tiantan Hospital Capital Medical University Beijing China
Zobrazit více v PubMed
Roytman S, et al. Cholinergic system correlates of postural control changes in Parkinson’s disease freezers. Brain. 2023;146:3243–3257. doi: 10.1093/brain/awad134. PubMed DOI PMC
Dorsey ER, et al. Projected number of people with Parkinson’s disease in the most populous nations, 2005 through 2030. Neurology. 2007;68:384–386. doi: 10.1212/01.wnl.0000247740.47667.03. PubMed DOI
Zhou X, et al. The Chinese Parkinsonas disease registry (CPDR): study design and baseline patient characteristics. Mov. Disord. 2022;37:1335–1345. doi: 10.1002/mds.29037. PubMed DOI
Qi S, et al. Prevalence of Parkinson’s disease: a community-based study in China. Mov. Disord. 2021;36:2940–2944. doi: 10.1002/mds.28762. PubMed DOI
Arnold C, Gehrig J, Gispert S, Seifried C, Kell CA. Pathomechanisms and compensatory efforts related to Parkinsonian speech. Neuroimage Clin. 2014;4:82–97. doi: 10.1016/j.nicl.2013.10.016. PubMed DOI PMC
Muller J, et al. Progression of dysarthria and dysphagia in postmortem-confirmed Parkinsonian disorders. Arch. Neurol. 2001;58:259–264. doi: 10.1001/archneur.58.2.259. PubMed DOI
Garcia AM, de Leon J, Tee BL, Blasi DE, Gorno-Tempini ML. Speech and language markers of neurodegeneration: a call for global equity. Brain. 2023;146:4870–4879. doi: 10.1093/brain/awad253. PubMed DOI PMC
Rusz J, et al. Speech biomarkers in rapid eye movement sleep behavior disorder and Parkinson disease. Ann. Neurol. 2021;90:62–75. doi: 10.1002/ana.26085. PubMed DOI PMC
Garcia AM, et al. Cognitive determinants of dysarthria in Parkinson’s disease: an automated machine learning approach. Mov. Disord. 2021;36:2862–2873. doi: 10.1002/mds.28751. PubMed DOI
Silbergleit AK, Schultz L, Hamilton K, LeWitt PA, Sidiropoulos C. Self-perception of voice and swallowing handicap in Parkinson’s disease. J. Parkinsons Dis. 2021;11:2027–2034. doi: 10.3233/JPD-212621. PubMed DOI
Rusz J, Tykalova T, Ramig LO, Tripoliti E. Guidelines for speech recording and acoustic analyses in dysarthrias of movement disorders. Mov. Disord. 2021;36:803–814. doi: 10.1002/mds.28465. PubMed DOI
Paulino CE, et al. Relationship between oropharyngeal geometry and vocal parameters in subjects With Parkinson’s disease. J. Voice. 2022;S0892-1997:00021–00022. PubMed
Burris C, Vorperian HK, Fourakis M, Kent RD, Bolt DM. Quantitative and descriptive comparison of four acoustic analysis systems: vowel measurements. J. Speech Lang. Hear. Res. 2014;57:26–45. doi: 10.1044/1092-4388(2013/12-0103). PubMed DOI PMC
Hlavnička, J. Automated Analysis of Speech Disorders in Neurodegenerative Diseases. Czech Technical University (2019).
Macari AT, et al. Association between facial length and width and fundamental frequency. J. Voice. 2017;31:410–415. doi: 10.1016/j.jvoice.2016.12.001. PubMed DOI
Daoudi K, Das B, Tykalova T, Klempir J, Rusz J. Speech acoustic indices for differential diagnosis between Parkinson’s disease, multiple system atrophy and progressive supranuclear palsy. NPJ Parkinsons Dis. 2022;8:142. doi: 10.1038/s41531-022-00389-6. PubMed DOI PMC
Camerino I, et al. Systematic review and meta-analyses of word production abilities in dysfunction of the basal ganglia: stroke, small vessel disease, Parkinson’s disease, and Huntington’s disease. Neuropsychol. Rev. 2022;34:1–26. doi: 10.1007/s11065-022-09570-3. PubMed DOI
Chen Q, et al. Effects of intensive speech treatment on Mandarin speakers with Parkinson’s disease: a review. Medicine. 2023;102:e32900. doi: 10.1097/MD.0000000000032900. PubMed DOI PMC
Zhang, J., Chen, J. & Ding, G. Universality and language specificity of brain reading networks: a developmental perspective. Dev. Sci. e13379 (2023). PubMed
Zhang J, Meng Y, Wu C, Yuan Z. Spoken word recognition across language boundary: ERP evidence of prosodic transfer driven by pitch. Brain Sci. 2023;13:202. doi: 10.3390/brainsci13020202. PubMed DOI PMC
Chen W, van de Weijer J. The role of L1-L2 dissimilarity in L2 segment learning—implications from the acquisition of English post-alveolar fricatives by Mandarin and Mandarin/Wu speakers. Front. Psychol. 2022;13:1017724. doi: 10.3389/fpsyg.2022.1017724. PubMed DOI PMC
Rusz J, et al. Defining speech subtypes in de novo Parkinson disease: response to long-term levodopa therapy. Neurology. 2021;97:e2124–e2135. doi: 10.1212/WNL.0000000000012878. PubMed DOI
Pinto S, et al. Results of a randomized clinical trial of speech after early neurostimulation in Parkinson’s disease. Mov. Disord. 2023;38:212–222. doi: 10.1002/mds.29282. PubMed DOI
Tykalova T, Novotny M, Ruzicka E, Dusek P, Rusz J. Short-term effect of dopaminergic medication on speech in early-stage Parkinson’s disease. NPJ Parkinsons Dis. 2022;8:22. doi: 10.1038/s41531-022-00286-y. PubMed DOI PMC
McKee KE, Gilbert RM, Spigle WA, Tilley BC, Corcos DM. Inclusion of non-english-speaking participants in studies of Parkinson’s disease: a call to action. Mov. Disord. 2022;37:1990–1995. doi: 10.1002/mds.29179. PubMed DOI PMC
Gilbert RM, Standaert DG. Bridging the gaps: more inclusive research needed to fully understand Parkinson’s disease. Mov. Disord. 2020;35:231–234. doi: 10.1002/mds.27906. PubMed DOI
Siddiqi B, Koemeter-Cox A. A call to action: promoting diversity, equity, and inclusion in Parkinson’s research and care. J. Parkinsons Dis. 2021;11:905–908. doi: 10.3233/JPD-212593. PubMed DOI PMC
Tsuboi T, et al. Distinct phenotypes of speech and voice disorders in Parkinson’s disease after subthalamic nucleus deep brain stimulation. J. Neurol. Neurosurg. Psychiatry. 2015;86:856–864. doi: 10.1136/jnnp-2014-308043. PubMed DOI
Zhao X, Li P. An online database of phonological representations for Mandarin Chinese. Behav. Res. Methods. 2009;41:575–583. doi: 10.3758/BRM.41.2.575. PubMed DOI
Rusz J, et al. Speech and gait abnormalities in motor subtypes of de-novo Parkinson’s disease. CNS Neurosci. Ther. 2023;29:2101–2110. doi: 10.1111/cns.14158. PubMed DOI PMC
Pettorino, M., Gu, W., Półrola, P. & Fan, P. Rhythmic characteristics of Parkinsonian speech: a study on Mandarin and Polish, in Interspeech 2017. 3172–3176 (2017).
Fang, H., Gong, C., Zhang, C., Sui, Y. & Li. L. Parkinsonian Chinese speech analysis towards automatic classification of Parkinson’s disease. in Machine Learning for Health. PMLR (2020).
Grobe-Einsler M, et al. Development of SARA(home), a new video-based tool for the assessment of ataxia at home. Mov. Disord. 2021;36:1242–1246. doi: 10.1002/mds.28478. PubMed DOI
Tripoliti E, et al. Predictive factors of speech intelligibility following subthalamic nucleus stimulation in consecutive patients with Parkinson’s disease. Mov. Disord. 2014;29:532–538. doi: 10.1002/mds.25816. PubMed DOI PMC
Kluin KJ, et al. Motor speech effects in subthalamic deep brain stimulation for Parkinson’s disease. J. Neurosurg. 2022;37:722–728. doi: 10.3171/2021.12.JNS211729. PubMed DOI PMC
Hlavnicka J, et al. Automated analysis of connected speech reveals early biomarkers of Parkinson’s disease in patients with rapid eye movement sleep behaviour disorder. Sci. Rep. 2017;7:12. doi: 10.1038/s41598-017-00047-5. PubMed DOI PMC
Bonilha L, et al. Neural structures supporting spontaneous and assisted (entrained) speech fluency. Brain. 2019;142:3951–3962. doi: 10.1093/brain/awz309. PubMed DOI PMC
Moreau C, Pinto S. Misconceptions about speech impairment in Parkinson’s disease. Mov. Disord. 2019;34:1471–1475. doi: 10.1002/mds.27791. PubMed DOI
Piai V, et al. Direct brain recordings reveal hippocampal rhythm underpinnings of language processing. Proc. Natl Acad. Sci. USA. 2016;113:11366–11371. doi: 10.1073/pnas.1603312113. PubMed DOI PMC
Catheline G, et al. Semantic retrieval over time in the aging brain: structural evidence of hippocampal contribution. Hippocampus. 2015;25:1008–1016. doi: 10.1002/hipo.22423. PubMed DOI
Guo J, et al. Abnormal functional connectivity density in post-stroke aphasia. Brain Topogr. 2019;32:271–282. doi: 10.1007/s10548-018-0681-4. PubMed DOI
van de Ven V, Waldorp L, Christoffels I. Hippocampus plays a role in speech feedback processing. Neuroimage. 2020;223:117319. doi: 10.1016/j.neuroimage.2020.117319. PubMed DOI
Chen W, et al. Adaptation of melodic intonation therapy to a tone language: a pilot study of tone-rhythmic therapy in Chinese. Folia Phoniatr. Logop. 2022;75:104–116. doi: 10.1159/000527225. PubMed DOI
Wang HL, et al. Speech silence character as a diagnostic biomarker of early cognitive decline and its functional mechanism: a multicenter cross-sectional cohort study. BMC Med. 2022;20:380. doi: 10.1186/s12916-022-02584-x. PubMed DOI PMC
Krivokapic J, Styler W, Parrell B. Pause postures: the relationship between articulation and cognitive processes during pauses. J. Phon. 2020;79:100953. doi: 10.1016/j.wocn.2019.100953. PubMed DOI PMC
Manes JL, et al. Premotor cortex is hypoactive during sustained vowel production in individuals with Parkinson’s disease and hypophonia. Front. Hum. Neurosci. 2023;17:1250114. doi: 10.3389/fnhum.2023.1250114. PubMed DOI PMC
Klobusiakova P, et al. Articulatory network reorganization in Parkinson’s disease as assessed by multimodal MRI and acoustic measures. Parkinsonism Relat. Disord. 2021;84:122–128. doi: 10.1016/j.parkreldis.2021.02.012. PubMed DOI
Jobard G, Crivello F, Tzourio-Mazoyer N. Evaluation of the dual route theory of reading: a metanalysis of 35 neuroimaging studies. Neuroimage. 2003;20:693–712. doi: 10.1016/S1053-8119(03)00343-4. PubMed DOI
Lu J, et al. Functional maps of direct electrical stimulation-induced speech arrest and anomia: a multicentre retrospective study. Brain. 2021;144:2541–2553. doi: 10.1093/brain/awab125. PubMed DOI PMC
Manes JL, et al. Altered resting-state functional connectivity of the putamen and internal globus pallidus is related to speech impairment in Parkinson’s disease. Brain Behav. 2018;8:e01073. doi: 10.1002/brb3.1073. PubMed DOI PMC
Dastolfo-Hromack C, et al. Articulatory gain predicts motor cortex and subthalamic nucleus activity during speech. Cereb. Cortex. 2022;32:1337–1349. doi: 10.1093/cercor/bhab251. PubMed DOI PMC
Tankus A, Lustig Y, Fried I, Strauss I. Impaired timing of speech-related neurons in the subthalamic nucleus of Parkinson disease patients suffering speech disorders. Neurosurgery. 2021;89:800–809. doi: 10.1093/neuros/nyab293. PubMed DOI
Lipski WJ, et al. Subthalamic nucleus neurons differentially encode early and late aspects of speech production. J. Neurosci. 2018;38:5620–5631. doi: 10.1523/JNEUROSCI.3480-17.2018. PubMed DOI PMC
Albano L, et al. Functional connectivity in Parkinson’s disease candidates for deep brain stimulation. NPJ Parkinsons Dis. 2022;8:4. doi: 10.1038/s41531-021-00268-6. PubMed DOI PMC
Darley FL, Aronson AE, Brown JR. Differential diagnostic patterns of dysarthria. J. Speech Hear Res. 1969;12:246–269. doi: 10.1044/jshr.1202.246. PubMed DOI
Chrabaszcz A, et al. Subthalamic nucleus and sensorimotor cortex activity during speech production. J. Neurosci. 2019;39:2698–2708. doi: 10.1523/JNEUROSCI.2842-18.2019. PubMed DOI PMC
Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry. 1992;55:181–184. doi: 10.1136/jnnp.55.3.181. PubMed DOI PMC
Litvan I, et al. Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force guidelines. Mov. Disord. 2012;27:349–356. doi: 10.1002/mds.24893. PubMed DOI PMC
Wang BR, et al. Comparative diagnostic accuracy of ACE-III and MoCA for detecting mild cognitive impairment. Neuropsychiatr. Dis. Treat. 2019;15:2647–2653. doi: 10.2147/NDT.S212328. PubMed DOI PMC
Fischer E, Goberman AM. Voice onset time in Parkinson disease. J. Commun. Disord. 2010;43:21–34. doi: 10.1016/j.jcomdis.2009.07.004. PubMed DOI
Tanaka Y, et al. Instability of speech in Parkinson disease patients with subthalamic nucleus deep brain stimulation. Parkinsonism Relat. Disord. 2021;93:8–11. doi: 10.1016/j.parkreldis.2021.10.029. PubMed DOI
Chen Y, et al. Brain morphological changes in hypokinetic dysarthria of Parkinson’s disease and use of machine learning to predict severity. CNS Neurosci. Ther. 2020;26:711–719. doi: 10.1111/cns.13304. PubMed DOI PMC
Chu C, et al. Subthalamic and pallidal stimulation in Parkinson’s disease induce distinct brain topological reconstruction. Neuroimage. 2022;255:119196. doi: 10.1016/j.neuroimage.2022.119196. PubMed DOI
Liu Z, et al. Resolving heterogeneity in schizophrenia through a novel systems approach to brain structure: individualized structural covariance network analysis. Mol. Psychiatry. 2021;26:7719–7731. doi: 10.1038/s41380-021-01229-4. PubMed DOI