Biological Sample Collection to Advance Research and Treatment: A Fight Osteosarcoma Through European Research and Euro Ewing Consortium Statement
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, směrnice pro lékařskou praxi
Grantová podpora
BCRT/8422 and BCRT/7721
Bone Cancer Research Trust (BCRT)
Foerderkreis Krebskranke Kinder eV Stuttgart
DKS 2021.13
German Child Cancer Foundation
PubMed
38869831
PubMed Central
PMC11334773
DOI
10.1158/1078-0432.ccr-24-0101
PII: 745917
Knihovny.cz E-zdroje
- MeSH
- banky biologického materiálu MeSH
- Ewingův sarkom * terapie patologie diagnóza MeSH
- lidé MeSH
- nádorové biomarkery MeSH
- nádory kostí * terapie patologie MeSH
- odběr biologického vzorku * metody normy MeSH
- osteosarkom * terapie patologie diagnóza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- směrnice pro lékařskou praxi MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- nádorové biomarkery MeSH
Osteosarcoma and Ewing sarcoma are bone tumors mostly diagnosed in children, adolescents, and young adults. Despite multimodal therapy, morbidity is high and survival rates remain low, especially in the metastatic disease setting. Trials investigating targeted therapies and immunotherapies have not been groundbreaking. Better understanding of biological subgroups, the role of the tumor immune microenvironment, factors that promote metastasis, and clinical biomarkers of prognosis and drug response are required to make progress. A prerequisite to achieve desired success is a thorough, systematic, and clinically linked biological analysis of patient samples, but disease rarity and tissue processing challenges such as logistics and infrastructure have contributed to a lack of relevant samples for clinical care and research. There is a need for a Europe-wide framework to be implemented for the adequate and minimal sampling, processing, storage, and analysis of patient samples. Two international panels of scientists, clinicians, and patient and parent advocates have formed the Fight Osteosarcoma Through European Research consortium and the Euro Ewing Consortium. The consortia shared their expertise and institutional practices to formulate new guidelines. We report new reference standards for adequate and minimally required sampling (time points, diagnostic samples, and liquid biopsy tubes), handling, and biobanking to enable advanced biological studies in bone sarcoma. We describe standards for analysis and annotation to drive collaboration and data harmonization with practical, legal, and ethical considerations. This position paper provides comprehensive guidelines that should become the new standards of care that will accelerate scientific progress, promote collaboration, and improve outcomes.
Balgrist University Hospital Faculty of Medicine University of Zurich Zurich Switzerland
Biomedical Research Centre Norwich Medical School University of East Anglia Norwich United Kingdom
Department of Hematology and Oncology A Trousseau Hospital Sorbonne University APHP Paris France
Department of Medical Oncology Institut Bergonié Bordeaux France
Department of Medical Oncology Institut Curie Paris France
Department of Oncology Oslo University Hospital Oslo Norway
Department of Orthopaedic Surgery and Traumatology Ghent University Hospital Belgium
Department of Orthopaedics and Trauma Medical University of Graz Graz Austria
Department of Pathology Institut Universitaire du Cancer de Toulouse Oncopole Toulouse France
Department of Pathology IRCCS Istituto Ortopedico Rizzoli Bologna Italy
Department of Pathology UCL Cancer Institute University College London London United Kingdom
Department of Pediatrics and AYA Oncology Centre Oscar Lambret Lille France
Department of Public Health and Pediatrics University of Turin Turin Italy
Division of Imaging and Oncology University Medical Center Utrecht Utrecht the Netherlands
EQ ONCOSARC CRCT Inserm UT3 ERL CNRS Toulouse France
Haematology Oncology Children's Health Ireland at Crumlin Dublin Ireland
Histopathology The Royal National Orthopaedic Hospital NHS Trust Stanmore United Kingdom
Institute of Hematology and Pediatric Oncology Léon Bérard Center Lyon France
Institute of Medical Genetics and Pathology University Hospital Basel Basel Switzerland
Laboratory of Experimental Oncology IRCCS Istituto Ortopedico Rizzoli Bologna Italy
Leiden Center for Computational Oncology Leiden University Medical Center Leiden the Netherlands
Medical Oncology Leiden University Medical Center Leiden the Netherlands
Medical Oncology Vall d'Hebron University Hospital Barcelona Spain
Musculoskeletal Radiology Klinikum Rechts der Isar Technical University of Munich Munich Germany
Oncology and Surgical Oncology for Children and Youth Institute of Mother and Child Warsaw Poland
Orthopaedic Oncology Leiden University Medical Centre Leiden the Netherlands
Orthopaedic Oncology The Royal National Orthopaedic Hospital NHS Trust Stanmore United Kingdom
Orthopaedics and Trauma IRCCS Istituto Ortopedico Rizzoli Bologna Italy
Paediatric Haematology and Oncology University Hospital Motol Prague Czech Republic
Pathology Leiden University Medical Center Leiden the Netherlands
Patient and Parent Advocacy Group FOSTER Washington District of Columbia
Pediatric Hematology Oncology Ippokratio General Hospital of Thessaloniki Thessaloniki Greece
Pediatric Oncology Klinikum Kassel Kassel Germany
Pediatric Oncology Regina Margherita Children's Hospital Turin Italy
Pediatric Oncology Unit Karolinska University Hospital Stockholm Sweden
Pediatrics St Anna Children's Hospital Medical University Vienna Vienna Austria
Portuguese Institute of Oncology of Lisbon Lisbon Portugal
Princess Maxima Center for Pediatric Oncology Utrecht the Netherlands
School of Medicine Nantes Université Nantes France
St Anna Children's Cancer Research Institute Vienna Austria
The Christie NHS Foundation Trust Manchester United Kingdom
The Danish Centre for Particle Therapy Aarhus University Hospital Aarhus Denmark
Zobrazit více v PubMed
Stiller CA, Trama A, Serraino D, Rossi S, Navarro C, Chirlaque MD, et al. . Descriptive epidemiology of sarcomas in Europe: report from the RARECARE project. Eur J Cancer 2013;49:684–95. PubMed
Gill J, Gorlick R. Advancing therapy for osteosarcoma. Nat Rev Clin Oncol 2021;18:609–24. PubMed
Gaspar N, Hawkins DS, Dirksen U, Lewis IJ, Ferrari S, Le Deley M-C, et al. . Ewing sarcoma: current management and future approaches through collaboration. J Clin Oncol 2015;33:3036–46. PubMed
Marina NM, Smeland S, Bielack SS, Bernstein M, Jovic G, Krailo MD, et al. . Comparison of MAPIE versus MAP in patients with a poor response to preoperative chemotherapy for newly diagnosed high-grade osteosarcoma (EURAMOS-1): an open-label, international, randomised controlled trial. Lancet Oncol 2016;17:1396–408. PubMed PMC
Bielack SS, Smeland S, Whelan JS, Marina N, Jovic G, Hook JM, et al. . Methotrexate, doxorubicin, and cisplatin (MAP) plus maintenance pegylated interferon Alfa-2b versus MAP alone in patients with resectable high-grade osteosarcoma and good histologic response to preoperative MAP: first results of the EURAMOS-1 good response randomized controlled trial. J Clin Oncol 2015;33:2279–87. PubMed PMC
Lagmay JP, Krailo MD, Dang H, Kim A, Hawkins DS, Beaty O 3rd, et al. . Outcome of patients with recurrent osteosarcoma enrolled in seven phase II trials through Children’s Cancer Group, Pediatric Oncology Group, and Children’s Oncology Group: learning from the past to move forward. J Clin Oncol 2016;34:3031–8. PubMed PMC
Bielack SS, Wulff B, Delling G, Göbel U, Kotz R, Ritter J, et al. . Osteosarcoma of the trunk treated by multimodal therapy: experience of the Cooperative Osteosarcoma study group (COSS). Med Pediatr Oncol 1995;24:6–12. PubMed
Souhami RL, Craft AW, Van der Eijken JW, Nooij M, Spooner D, Bramwell VH, et al. . Randomised trial of two regimens of chemotherapy in operable osteosarcoma: a study of the European Osteosarcoma Intergroup. Lancet 1997;350:911–7. PubMed
Bramwell VH, Burgers M, Sneath R, Souhami R, van Oosterom AT, Voûte PA, et al. . A comparison of two short intensive adjuvant chemotherapy regimens in operable osteosarcoma of limbs in children and young adults: the first study of the European Osteosarcoma Intergroup. J Clin Oncol 1992;10:1579–91. PubMed
Gaspar N, Occean B-V, Pacquement H, Bompas E, Bouvier C, Brisse HJ, et al. . Results of methotrexate-etoposide-ifosfamide based regimen (M-EI) in osteosarcoma patients included in the French OS2006/sarcome-09 study. Eur J Cancer 2018;88:57–66. PubMed
Palmerini E, Meazza C, Tamburini A, Bisogno G, Ferraresi V, Asaftei SD, et al. . Phase 2 study for nonmetastatic extremity high-grade osteosarcoma in pediatric and adolescent and young adult patients with a risk-adapted strategy based on ABCB1/P-glycoprotein expression: an Italian Sarcoma Group Trial (ISG/OS-2). Cancer 2022;128:1958–66. PubMed PMC
Ladenstein R, Pötschger U, Le Deley MC, Whelan J, Paulussen M, Oberlin O, et al. . Primary disseminated multifocal Ewing sarcoma: results of the Euro-EWING 99 trial. J Clin Oncol 2010;28:3284–91. PubMed
Leavey PJ, Laack NN, Krailo MD, Buxton A, Randall RL, DuBois SG, et al. . Phase III trial adding vincristine-topotecan-cyclophosphamide to the initial treatment of patients with nonmetastatic ewing sarcoma: a Children’s Oncology Group report. J Clin Oncol 2021;39:4029–38. PubMed PMC
Brennan B, Kirton L, Marec-Bérard P, Gaspar N, Laurence V, Martín-Broto J, et al. . Comparison of two chemotherapy regimens in patients with newly diagnosed Ewing sarcoma (EE2012): an open-label, randomised, phase 3 trial. Lancet 2022;400:1513–21. PubMed
DuBois SG, Krailo MD, Glade-Bender J, Buxton A, Laack N, Randall RL, et al. . Randomized phase III trial of ganitumab with interval-compressed chemotherapy for patients with newly diagnosed metastatic Ewing sarcoma: a report from the Children’s Oncology Group. J Clin Oncol 2023;41:2098–107. PubMed PMC
Koch R, Gelderblom H, Haveman L, Brichard B, Jürgens H, Cyprova S, et al. . High-Dose treosulfan and melphalan as consolidation therapy versus standard therapy for high-risk (metastatic) Ewing sarcoma. J Clin Oncol 2022;40:2307–20. PubMed
Dirksen U, Brennan B, Le Deley M-C, Cozic N, van den Berg H, Bhadri V, et al. . High-dose chemotherapy compared with standard chemotherapy and lung radiation in Ewing sarcoma with pulmonary metastases: results of the European Ewing Tumour Working Initiative of National Groups, 99 trial and EWING 2008. J Clin Oncol 2019;37:3192–202. PubMed PMC
Womer RB, West DC, Krailo MD, Dickman PS, Pawel BR, Grier HE, et al. . Randomized controlled trial of interval-compressed chemotherapy for the treatment of localized Ewing sarcoma: a report from the Children’s Oncology Group. J Clin Oncol 2012;30:4148–54. PubMed PMC
Strauss SJ, Frezza AM, Abecassis N, Bajpai J, Bauer S, Biagini R, et al. . Bone sarcomas: ESMO-EURACAN-GENTURIS-ERN PaedCan Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol 2021;32:1520–36. PubMed
Bovée JVMG, Webster F, Amary F, Baumhoer D, Bloem JLH, Bridge JA, et al. . Datasets for the reporting of primary tumour in bone: recommendations from the International Collaboration on Cancer Reporting (ICCR). Histopathology 2023;82:531–40. PubMed PMC
Bovee JF, Nielsen A, Bloem G, Akihiko Y, Bloem J. The WHO classification of tumours editorial board: WHO classification of tumours: Soft tissue and bone tumours. 5th ed. Lyon, France: IARC Press; 2020.
van Ewijk R, Herold N, Baecklund F, Baumhoer D, Boye K, Gaspar N, et al. . European standard clinical practice recommendations for children and adolescents with primary and recurrent osteosarcoma. EJC Paediatr Oncol 2023;2:100029.
Dirksen U, Koch R, Bhadri V, Brichard B, Butterfass-Bahloul T, Cyprova S, et al. . Efficacy of maintenance therapy with zoledronic acid in patients with localized Ewing sarcoma: report from the International Ewing 2008 trial. J Clin Oncol 2020;38:11523.
McCabe M, Kirton L, Khan M, Fenwick N, Strauss SJ, Valverde C, et al. . Phase III assessment of topotecan & cyclophosphamide and high-dose ifosfamide in rEECur, an international randomised controlled trial of chemotherapy for the treatment of recurrent and primary refractory Ewing sarcoma (RR-ES). J Clin Oncol 2022;40(suppl 17):abstr LBA2.
Peneder P, Stutz AM, Surdez D, Krumbholz M, Semper S, Chicard M, et al. . Multimodal analysis of cell-free DNA whole-genome sequencing for pediatric cancers with low mutational burden. Nat Commun 2021;12:3230. PubMed PMC
Sheffield NC, Pierron G, Klughammer J, Datlinger P, Schönegger A, Schuster M, et al. . DNA methylation heterogeneity defines a disease spectrum in Ewing sarcoma. Nat Med 2017;23:386–95. PubMed PMC
van Ewijk R, Cleirec M, Herold N, le Deley M-C, van Eijkelenburg N, Boudou-Rouquette P, et al. . A systematic review of recent phase-II trials in refractory or recurrent osteosarcoma: can we inform future trial design? Cancer Treat Rev 2023;120:102625. PubMed
Shu J, Li L, Sarver AE, Pope EA, Varshney J, Thayanithy V, et al. . Imprinting defects at human 14q32 locus alters gene expression and is associated with the pathobiology of osteosarcoma. Oncotarget 2016;7:21298–314. PubMed PMC
Green D, Singh A, Sanghera J, Jeys L, Sumathi V, Dalmay T, et al. . Maternally expressed, paternally imprinted, embryonic non-coding RNA are expressed in osteosarcoma, Ewing sarcoma and spindle cell sarcoma. Pathology 2019;51:113–6. PubMed
Chen X, Bahrami A, Pappo A, Easton J, Dalton J, Hedlund E, et al. . Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep 2014;7:104–12. PubMed PMC
Zhao M, Wang T, Gleber-Netto FO, Chen Z, McGrail DJ, Gomez JA, et al. . Mutant p53 gains oncogenic functions through a chromosomal instability-induced cytosolic DNA response. Nat Commun 2024;15:180. PubMed PMC
Kinnaman MD, Zaccaria S, Makohon-Moore A, Arnold B, Levine MF, Gundem G, et al. . Subclonal somatic copy-number alterations emerge and dominate in recurrent osteosarcoma. Cancer Res 2023;83:3796–812. PubMed PMC
Kovac M, Ameline B, Ribi S, Kovacova M, Cross W, Barenboim M, et al. . The early evolutionary landscape of osteosarcoma provides clues for targeted treatment strategies. J Pathol 2021;254:556–66. PubMed PMC
Marinoff AE, Spurr LF, Fong C, Li YY, Forrest SJ, Ward A, et al. . Clinical targeted next-generation panel sequencing reveals MYC amplification is a poor prognostic factor in osteosarcoma. JCO Precis Oncol 2023;7:e2200334. PubMed PMC
Kovac M, Blattmann C, Ribi S, Smida J, Mueller NS, Engert F, et al. . Exome sequencing of osteosarcoma reveals mutation signatures reminiscent of BRCA deficiency. Nat Commun 2015;6:8940. PubMed PMC
Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, Peter M, et al. . Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature 1992;359:162–5. PubMed
Grünewald TGP, Cidre-Aranaz F, Surdez D, Tomazou EM, de Álava E, Kovar H, et al. . Ewing sarcoma. Nat Rev Dis Primers 2018;4:5. PubMed
Gangwal K, Sankar S, Hollenhorst PC, Kinsey M, Haroldsen SC, Shah AA, et al. . Microsatellites as EWS/FLI response elements in Ewing’s sarcoma. Proc Natl Acad Sci U S A 2008;105:10149–54. PubMed PMC
Guillon N, Tirode F, Boeva V, Zynovyev A, Barillot E, Delattre O. The oncogenic EWS-FLI1 protein binds in vivo GGAA microsatellite sequences with potential transcriptional activation function. PLoS One 2009;4:e4932. PubMed PMC
Shulman DS, Chen S, Hall D, Nag A, Thorner AR, Lessnick SL, et al. . Adverse prognostic impact of the loss of STAG2 protein expression in patients with newly diagnosed localised Ewing sarcoma: a report from the Children’s Oncology Group. Br J Cancer 2022;127:2220–6. PubMed PMC
Adane B, Alexe G, Seong BKA, Lu D, Hwang EE, Hnisz D, et al. . STAG2 loss rewires oncogenic and developmental programs to promote metastasis in Ewing sarcoma. Cancer Cell 2021;39:827–44.e10. PubMed PMC
Surdez D, Zaidi S, Grossetête S, Laud-Duval K, Ferre AS, Mous L, et al. . STAG2 mutations alter CTCF-anchored loop extrusion, reduce cis-regulatory interactions and EWSR1-FLI1 activity in Ewing sarcoma. Cancer Cell 2021;39:810–26.e9. PubMed
Shulman DS, Whittle SB, Surdez D, Bailey KM, de Álava E, Yustein JT, et al. . An international working group consensus report for the prioritization of molecular biomarkers for Ewing sarcoma. NPJ Precis Oncol 2022;6:65. PubMed PMC
Griffin KH, Thorpe SW, Sebastian A, Hum NR, Coonan TP, Sagheb IS, et al. . Engineered bone marrow as a clinically relevant ex vivo model for primary bone cancer research and drug screening. Proc Natl Acad Sci U S A 2023;120:e2302101120. PubMed PMC
Marturano-Kruik A, Villasante A, Yaeger K, Ambati SR, Chramiec A, Raimondi MT, et al. . Biomechanical regulation of drug sensitivity in an engineered model of human tumor. Biomaterials 2018;150:150–61. PubMed PMC
Molina ER, Chim LK, Salazar MC, Koons GL, Menegaz BA, Ruiz-Velasco A, et al. . 3D tissue-engineered tumor model for Ewing’s sarcoma that incorporates bone-like ECM and mineralization. ACS Biomater Sci Eng 2020;6:539–52. PubMed
Lawlor ER, Scheel C, Irving J, Sorensen PHB. Anchorage-independent multi-cellular spheroids as an in vitro model of growth signaling in Ewing tumors. Oncogene 2002;21:307–18. PubMed
Nguyen HTL, Soragni A. Patient-derived tumor organoid rings for histologic characterization and high-throughput screening. STAR Protoc 2020;1:100056. PubMed PMC
Jarvis S, Koumadoraki E, Madouros N, Sharif S, Saleem A, Khan S. Non-rodent animal models of osteosarcoma: a review. Cancer Treat Res Commun 2021;27:100307. PubMed
Manjunathan R, Ragunathan M. Chicken chorioallantoic membrane as a reliable model to evaluate osteosarcoma-an experimental approach using SaOS2 cell line. Biol Proced Online 2015;17:10. PubMed PMC
Jefferies B, Lenze F, Sathe A, Truong N, Anton M, von Eisenhart-Rothe R, et al. . Non-invasive imaging of engineered human tumors in the living chicken embryo. Sci Rep 2017;7:4991. PubMed PMC
da Costa MEM, Droit R, Khneisser P, Gomez-Brouchet A, Adam-de-Beaumais T, Nolla M, et al. . Longitudinal characterization of primary osteosarcoma and derived subcutaneous and orthotopic relapsed patient-derived xenograft models. Front Oncol 2023;13:1166063. PubMed PMC
Green D, Singh A, Tippett VL, Tattersall L, Shah KM, Siachisumo C, et al. . YBX1-interacting small RNAs and RUNX2 can be blocked in primary bone cancer using CADD522. J Bone Oncol 2023;39:100474. PubMed PMC
Sampson VB, Vetter NS, Zhang W, Patil PU, Mason RW, George E, et al. . Integrating mechanisms of response and resistance against the tubulin binding agent Eribulin in preclinical models of osteosarcoma. Oncotarget 2016;7:86594–607. PubMed PMC
Garnett MJ, Edelman EJ, Heidorn SJ, Greenman CD, Dastur A, Lau KW, et al. . Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 2012;483:570–5. PubMed PMC
Odri G, Kim P-P, Lamoureux F, Charrier C, Battaglia S, Amiaud J, et al. . Zoledronic acid inhibits pulmonary metastasis dissemination in a preclinical model of Ewing’s sarcoma via inhibition of cell migration. BMC Cancer 2014;14:169. PubMed PMC
Isakoff MS, Goldsby R, Villaluna D, Krailo MD, Hingorani P, Collier A, et al. . A phase II study of eribulin in recurrent or refractory osteosarcoma: a report from the Children’s Oncology Group. Pediatr Blood Cancer 2019;66:e27524. PubMed PMC
Choy E, Butrynski JE, Harmon DC, Morgan JA, George S, Wagner AJ, et al. . Phase II study of olaparib in patients with refractory Ewing sarcoma following failure of standard chemotherapy. BMC Cancer 2014;14:813. PubMed PMC
Green D, Eyre H, Singh A, Taylor JT, Chu J, Jeys L, et al. . Targeting the MAPK7/MMP9 axis for metastasis in primary bone cancer. Oncogene 2020;39:5553–69. PubMed PMC
Tattersall L, Shah KM, Lath DL, Singh A, Down JM, De Marchi E, et al. . The P2RX7B splice variant modulates osteosarcoma cell behaviour and metastatic properties. J Bone Oncol 2021;31:100398. PubMed PMC
Weekes D, Kashima TG, Zandueta C, Perurena N, Thomas DP, Sunters A, et al. . Regulation of osteosarcoma cell lung metastasis by the c-Fos/AP-1 target FGFR1. Oncogene 2016;35:2852–61. PubMed PMC
Roundhill EA, Jabri S, Burchill SA. ABCG1 and Pgp identify drug resistant, self-renewing osteosarcoma cells. Cancer Lett 2019;453:142–57. PubMed
Landuzzi L, Manara MC, Lollini P-L, Scotlandi K. Patient derived xenografts for genome-driven therapy of osteosarcoma. Cells 2021;10:416. PubMed PMC
Brookes MJ, Roundhill EA, Jeys L, Parry M, Burchill SA, Rankin KS. Membrane-type 1 matrix metalloproteinase as predictor of survival and candidate therapeutic target in Ewing sarcoma. Pediatr Blood Cancer 2022;69:e29959. PubMed
Surdez D, Landuzzi L, Scotlandi K, Manara MC. Ewing sarcoma PDX models. Methods Mol Biol 2021;2226:223–42. PubMed
Gopisetty A, Federico A, Surdez D, Iddir Y, Zaidi S, Saint-Charles A, et al. . Abstract 234: ITCC-P4: genomic profiling and analyses of pediatric patient tumor and patient-derived xenograft (PDX) models for high throughput in vivo testing. Cancer Res 2023;83(Suppl 7):234.
Kool M, Federico A, Surdez D, Gopisetty A, Saberi-Ansari E, Saint-Charles A, et al. . INSP-15. ITCC-P4: a sustainable platform of molecularly well-characterized PDX models of pediatric cancers for high throughput in vivo testing. Neuro-Oncol 2022;24(Suppl 1):i189.
Marques Da Costa ME, Zaidi S, Scoazec J-Y, Droit R, Lim WC, Marchais A, et al. . A biobank of pediatric patient-derived-xenograft models in cancer precision medicine trial MAPPYACTS for relapsed and refractory tumors. Commun Biol 2023;6:949. PubMed PMC
Sayles LC, Breese MR, Koehne AL, Leung SG, Lee AG, Liu H-Y, et al. . Genome-informed targeted therapy for osteosarcoma. Cancer Discov 2019;9:46–63. PubMed PMC
Schott CR, Koehne AL, Sayles LC, Young EP, Luck C, Yu K, et al. . Osteosarcoma PDX-derived cell line models for preclinical drug evaluation demonstrate metastasis inhibition by dinaciclib through a genome-targeted approach. Clin Cancer Res 2023;30:849–64. PubMed PMC
Nanni P, Landuzzi L, Manara MC, Righi A, Nicoletti G, Cristalli C, et al. . Bone sarcoma patient-derived xenografts are faithful and stable preclinical models for molecular and therapeutic investigations. Sci Rep 2019;9:12174. PubMed PMC
Roundhill EA, Chicon-Bosch M, Jeys L, Parry M, Rankin KS, Droop A, et al. . RNA sequencing and functional studies of patient-derived cells reveal that neurexin-1 and regulators of this pathway are associated with poor outcomes in Ewing sarcoma. Cell Oncol (Dordr) 2021;44:1065–85. PubMed PMC
Vassal G, Blanc P, Copland C, Pearson A. Will the revised class waiver list make it? Lancet Oncol 2015;16:e425–6. PubMed
Felix A, Berlanga P, Toulmonde M, Landman-Parker J, Dumont S, Vassal G, et al. . Systematic review of phase-I/II trials enrolling refractory and recurrent Ewing sarcoma: actual knowledge and future directions to optimize the research. Cancer Med 2021;10:1589–604. PubMed PMC
Anderson PM, Bielack SS, Gorlick RG, Skubitz K, Daw NC, Herzog CE, et al. . A phase II study of clinical activity of SCH 717454 (robatumumab) in patients with relapsed osteosarcoma and Ewing sarcoma. Pediatr Blood Cancer 2016;63:1761–70. PubMed PMC
Juergens H, Daw NC, Geoerger B, Ferrari S, Villarroel M, Aerts I, et al. . Preliminary efficacy of the anti-insulin-like growth factor type 1 receptor antibody figitumumab in patients with refractory Ewing sarcoma. J Clin Oncol 2011;29:4534–40. PubMed PMC
Pappo AS, Patel SR, Crowley J, Reinke DK, Kuenkele KP, Chawla SP, et al. . R1507, a monoclonal antibody to the insulin-like growth factor 1 receptor, in patients with recurrent or refractory Ewing sarcoma family of tumors: results of a phase II Sarcoma Alliance for Research through Collaboration Study. J Clin Oncol 2011;29:4541–7. PubMed PMC
Pappo AS, Vassal G, Crowley JJ, Bolejack V, Hogendoorn PCW, Chugh R, et al. . A phase 2 trial of R1507, a monoclonal antibody to the insulin-like growth factor-1 receptor (IGF-1R), in patients with recurrent or refractory rhabdomyosarcoma, osteosarcoma, synovial sarcoma, and other soft tissue sarcomas: results of a Sarcoma Alliance for Research through Collaboration study. Cancer 2014;120:2448–56. PubMed PMC
Tap WD, Demetri G, Barnette P, Desai J, Kavan P, Tozer R, et al. . Phase II study of ganitumab, a fully human anti-type-1 insulin-like growth factor receptor antibody, in patients with metastatic Ewing family tumors or desmoplastic small round cell tumors. J Clin Oncol 2012;30:1849–56. PubMed
Weigel B, Malempati S, Reid JM, Voss SD, Cho SY, Chen HX, et al. . Phase 2 trial of cixutumumab in children, adolescents, and young adults with refractory solid tumors: a report from the Children’s Oncology Group. Pediatr Blood Cancer 2014;61:452–6. PubMed PMC
Grignani G, Palmerini E, Dileo P, Asaftei SD, D’Ambrosio L, Pignochino Y, et al. . A phase II trial of sorafenib in relapsed and unresectable high-grade osteosarcoma after failure of standard multimodal therapy: an Italian Sarcoma Group Study. Ann Oncol 2012;23:508–16. PubMed
Duffaud F, Mir O, Boudou-Rouquette P, Piperno-Neumann S, Penel N, Bompas E, et al. . Efficacy and safety of regorafenib in adult patients with metastatic osteosarcoma: a non-comparative, randomised, double-blind, placebo-controlled, phase 2 study. Lancet Oncol 2019;20:120–33. PubMed
Gaspar N, Campbell-Hewson Q, Gallego Melcon S, Locatelli F, Venkatramani R, Hecker-Nolting S, et al. . Phase I/II study of single-agent lenvatinib in children and adolescents with refractory or relapsed solid malignancies and young adults with osteosarcoma (ITCC-050)☆. ESMO Open 2021;6:100250. PubMed PMC
Attia S, Bolejack V, Ganjoo KN, George S, Agulnik M, Rushing D, et al. . A phase II trial of regorafenib in patients with advanced Ewing sarcoma and related tumors of soft tissue and bone: SARC024 trial results. Cancer Med 2023;12:1532–9. PubMed PMC
Italiano A, Mir O, Mathoulin-Pelissier S, Penel N, Piperno-Neumann S, Bompas E, et al. . Cabozantinib in patients with advanced Ewing sarcoma or osteosarcoma (CABONE): a multicentre, single-arm, phase 2 trial. Lancet Oncol 2020;21:446–55. PubMed PMC
Duffaud F, Blay J-Y, Mir O, Chevreau CM, Rouquette PB, Kalbacher E, et al. . LBA68 Results of the randomized, placebo (PL)-controlled phase II study evaluating the efficacy and safety of regorafenib (REG) in patients (pts) with metastatic relapsed Ewing sarcoma (ES), on behalf of the French Sarcoma Group (FSG) and UNICANCER. Ann Oncol 2020;31(Suppl 4):S1199.
Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, et al. . Five-year survival outcomes for patients with advanced melanoma treated with pembrolizumab in KEYNOTE-001. Ann Oncol 2019;30:582–8. PubMed PMC
Garbe C, Keim U, Suciu S, Amaral T, Eigentler TK, Gesierich A, et al. . Prognosis of patients with stage III melanoma according to American Joint Committee on Cancer Version 8: a reassessment on the basis of 3 independent stage III melanoma cohorts. J Clin Oncol 2020;38:2543–51. PubMed PMC
Andreou D, Bielack SS, Carrle D, Kevric M, Kotz R, Winkelmann W, et al. . The influence of tumor- and treatment-related factors on the development of local recurrence in osteosarcoma after adequate surgery. An analysis of 1355 patients treated on neoadjuvant Cooperative Osteosarcoma Study Group Protocols. Ann Oncol 2011;22:1228–35. PubMed
Blay J-Y, Soibinet P, Penel N, Bompas E, Duffaud F, Stoeckle E, et al. . Improved survival using specialized multidisciplinary board in sarcoma patients. Ann Oncol 2017;28:2852–9. PubMed PMC
Liu PT, Valadez SD, Chivers FS, Roberts CC, Beauchamp CP. Anatomically based guidelines for core needle biopsy of bone tumors: implications for limb-sparing surgery. Radiographics 2007;27:189–205. PubMed
Oliveira MP, de Andrade Lima PM, de Mello RJV. Tumor contamination in the BIOPSY path of primary malignant bone tumors. Rev Bras Ortop 2012;47:631–7. PubMed PMC
Barrientos-Ruiz I, Ortiz-Cruz EJ, Serrano-Montilla J, Bernabeu-Taboada D, Pozo-Kreilinger JJ. Are biopsy tracts a concern for seeding and local recurrence in sarcomas? Clin Orthop Relat Res 2017;475:511–18. PubMed PMC
Toomayan GA, Robertson F, Major NM. Lower extremity compartmental anatomy: clinical relevance to radiologists. Skeletal Radiol 2005;34:307–13. PubMed
Toomayan GA, Robertson F, Major NM, Brigman BE. Upper extremity compartmental anatomy: clinical relevance to radiologists. Skeletal Radiol 2006;35:195–201. PubMed
Tomasian A, Hillen TJ, Jennings JW. Bone biopsies: what radiologists need to know. AJR Am J Roentgenol 2020;215:523–33. PubMed
Saifuddin A, Palloni V, du Preez H, Junaid SE. Review article: the current status of CT-guided needle biopsy of the spine. Skeletal Radiol 2021;50:281–99. PubMed
Taupin T, Decouvelaere A-V, Vaz G, Thiesse P. Accuracy of core needle biopsy for the diagnosis of osteosarcoma: a retrospective analysis of 73 patients. Diagn Interv Imaging 2016;97:327–31. PubMed
Birgin E, Yang C, Hetjens S, Reissfelder C, Hohenberger P, Rahbari NN. Core needle biopsy versus incisional biopsy for differentiation of soft-tissue sarcomas: a systematic review and meta-analysis. Cancer 2020;126:1917–28. PubMed
Marchais A, Marques da Costa ME, Job B, Abbas R, Drubay D, Piperno-Neumann S, et al. . Immune infiltrate and tumor microenvironment transcriptional programs stratify pediatric osteosarcoma into prognostic groups at diagnosis. Cancer Res 2022;82:974–85. PubMed
Wu JS, Goldsmith JD, Horwich PJ, Shetty SK, Hochman MG. Bone and soft-tissue lesions: what factors affect diagnostic yield of image-guided core-needle biopsy? Radiology 2008;248:962–70. PubMed
Dietz MS, Whiteway S, Gupta S, Davis JL, Montgomery N, Cohen-Gogo S, et al. . Optimising Ewing sarcoma and osteosarcoma biopsy acquisition: consensus recommendations from the children’s oncology group bone tumor committee. In: Presented at the Connective Tissue Oncology Society 2023 Annual Meeting; Dublin, Ireland; 2023.
Tassé AM, Budin-Ljøsne I, Knoppers BM, Harris JR. Retrospective access to data: the ENGAGE consent experience. Eur J Hum Genet 2010;18:741–5. PubMed PMC