An automated workflow based on data independent acquisition for practical and high-throughput personalized assay development and minimal residual disease monitoring in multiple myeloma patients
Language English Country Germany Media electronic-print
Document type Journal Article
PubMed
38872409
DOI
10.1515/cclm-2024-0306
PII: cclm-2024-0306
Knihovny.cz E-resources
- Keywords
- M-protein, data independent acquisition, mass spectrometry, multiple myeloma, quantitative biomarker,
- MeSH
- Automation MeSH
- Precision Medicine methods MeSH
- Humans MeSH
- Multiple Myeloma * diagnosis blood MeSH
- Workflow * MeSH
- Neoplasm, Residual * diagnosis MeSH
- High-Throughput Screening Assays methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
OBJECTIVES: Minimal residual disease (MRD) status in multiple myeloma (MM) is an important prognostic biomarker. Personalized blood-based targeted mass spectrometry detecting M-proteins (MS-MRD) was shown to provide a sensitive and minimally invasive alternative to MRD-assessment in bone marrow. However, MS-MRD still comprises of manual steps that hamper upscaling of MS-MRD testing. Here, we introduce a proof-of-concept for a novel workflow using data independent acquisition-parallel accumulation and serial fragmentation (dia-PASEF) and automated data processing. METHODS: Using automated data processing of dia-PASEF measurements, we developed a workflow that identified unique targets from MM patient sera and personalized protein sequence databases. We generated patient-specific libraries linked to dia-PASEF methods and subsequently quantitated and reported M-protein concentrations in MM patient follow-up samples. Assay performance of parallel reaction monitoring (prm)-PASEF and dia-PASEF workflows were compared and we tested mixing patient intake sera for multiplexed target selection. RESULTS: No significant differences were observed in lowest detectable concentration, linearity, and slope coefficient when comparing prm-PASEF and dia-PASEF measurements of serial dilutions of patient sera. To improve assay development times, we tested multiplexing patient intake sera for target selection which resulted in the selection of identical clonotypic peptides for both simplex and multiplex dia-PASEF. Furthermore, assay development times improved up to 25× when measuring multiplexed samples for peptide selection compared to simplex. CONCLUSIONS: Dia-PASEF technology combined with automated data processing and multiplexed target selection facilitated the development of a faster MS-MRD workflow which benefits upscaling and is an important step towards the clinical implementation of MS-MRD.
Biochemistry Laboratory Hospital of Nantes Nantes France
Bruker Daltonics GmbH Bremen Germany
Bruker S R O Brno City Czech Republic
Department of Neurology Erasmus MC University Medical Center Rotterdam The Netherlands
See more in PubMed
van de Donk, N, Pawlyn, C, Yong, KL. Multiple myeloma. Lancet 2021;397:410–27. https://doi.org/10.1016/s0140-6736(21)00135-5 . DOI
Dimopoulos, M, Kyle, R, Fermand, JP, Rajkumar, SV, San Miguel, J, Chanan-Khan, A, et al.. Consensus recommendations for standard investigative workup: report of the international myeloma workshop consensus panel 3. Blood 2011;117:4701–5. https://doi.org/10.1182/blood-2010-10-299529 . DOI
Mills, JR, Kohlhagen, MC, Dasari, S, Vanderboom, PM, Kyle, RA, Katzmann, JA, et al.. Comprehensive assessment of M-proteins using nanobody enrichment coupled to MALDI-TOF mass spectrometry. Clin Chem 2016;62:1334–44. https://doi.org/10.1373/clinchem.2015.253740 . DOI
Puig, N, Contreras, MT, Agullo, C, Martinez-Lopez, J, Oriol, A, Blanchard, MJ, et al.. Mass spectrometry vs immunofixation for treatment monitoring in multiple myeloma. Blood Adv 2022;6:3234–9. https://doi.org/10.1182/bloodadvances.2021006762 . DOI
Kumar, S, Paiva, B, Anderson, KC, Durie, B, Landgren, O, Moreau, P, et al.. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol 2016;17:328–46. https://doi.org/10.1016/s1470-2045(16)30206-6 . DOI
Bertamini, L, Oliva, S, Rota-Scalabrini, D, Paris, L, More, S, Corradini, P, et al.. High levels of circulating tumor plasma cells as a key hallmark of aggressive disease in transplant-eligible patients with newly diagnosed multiple myeloma. J Clin Oncol 2022;40:3120–31. https://doi.org/10.1200/jco.21.01393 . DOI
Derman, BA, Fonseca, R. Measurable residual disease and decision-making in multiple myeloma. Hematol Oncol Clin N Am 2024;38:477–95. https://doi.org/10.1016/j.hoc.2023.12.009 . DOI
Garces, JJ, Cedena, MT, Puig, N, Burgos, L, Perez, JJ, Cordon, L, et al.. Circulating tumor cells for the staging of patients with newly diagnosed transplant-eligible multiple myeloma. J Clin Oncol 2022;40:3151–61. https://doi.org/10.1200/jco.21.01365 . DOI
Jelinek, T, Bezdekova, R, Zihala, D, Sevcikova, T, Anilkumar Sithara, A, Pospisilova, L, et al.. More than 2 % of circulating tumor plasma cells defines plasma cell leukemia-like multiple myeloma. J Clin Oncol 2023;41:1383–92. https://doi.org/10.1200/jco.22.01226 . DOI
Mack, EKM, Hartmann, S, Ross, P, Wollmer, E, Mann, C, Neubauer, A, et al.. Monitoring multiple myeloma in the peripheral blood based on cell-free DNA and circulating plasma cells. Ann Hematol 2022;101:811–24. https://doi.org/10.1007/s00277-022-04771-5 . DOI
Barnidge, DR, Tschumper, RC, Theis, JD, Snyder, MR, Jelinek, DF, Katzmann, JA, et al.. Monitoring M-proteins in patients with multiple myeloma using heavy-chain variable region clonotypic peptides and LC-MS/MS. J Proteome Res 2014;13:1905–10. https://doi.org/10.1021/pr5000544 . DOI
Bergen, HR3rd, Dasari, S, Dispenzieri, A, Mills, JR, Ramirez-Alvarado, M, Tschumper, RC, et al.. Clonotypic light chain peptides identified for monitoring minimal residual disease in multiple myeloma without bone marrow aspiration. Clin Chem 2016;62:243–51. https://doi.org/10.1373/clinchem.2015.242651 . DOI
Liyasova, M, McDonald, Z, Taylor, P, Gorospe, K, Xu, X, Yao, C, et al.. A personalized mass spectrometry-based assay to monitor M-protein in patients with multiple myeloma (EasyM). Clin Cancer Res 2021;27:5028–37. https://doi.org/10.1158/1078-0432.ccr-21-0649 . DOI
Martins, CO, Huet, S, Yi, SS, Ritorto, MS, Landgren, O, Dogan, A, et al.. Mass spectrometry-based method targeting Ig variable regions for assessment of minimal residual disease in multiple myeloma. J Mol Diagn 2020;22:901–11. https://doi.org/10.1016/j.jmoldx.2020.04.002 . DOI
McDonald, Z, Taylor, P, Liyasova, M, Liu, Q, Ma, B. Mass spectrometry provides a highly sensitive noninvasive means of sequencing and tracking M-protein in the blood of multiple nyeloma patients. J Proteome Res 2021;20:4176–85. https://doi.org/10.1021/acs.jproteome.0c01022 . DOI
Noori, S, Wijnands, C, Langerhorst, P, Bonifay, V, Stingl, C, Touzeau, C, et al.. Dynamic monitoring of myeloma minimal residual disease with targeted mass spectrometry. Blood Cancer J 2023;13:30. https://doi.org/10.1038/s41408-023-00803-z . DOI
Remily-Wood, ER, Benson, K, Baz, RC, Chen, YA, Hussein, M, Hartley-Brown, MA, et al.. Quantification of peptides from immunoglobulin constant and variable regions by LC-MRM MS for assessment of multiple myeloma patients. Proteonomics Clin Appl 2014;8:783–95. https://doi.org/10.1002/prca.201300077 . DOI
Wijnands, C, Langerhorst, P, Noori, S, Keizer-Garritsen, J, Wessels, H, Gloerich, J, et al.. M-protein diagnostics in multiple myeloma patients using ultra-sensitive targeted mass spectrometry and an off-the-shelf calibrator. Clin Chem Lab Med 2024;62:540–50. https://doi.org/10.1515/cclm-2023-0781 . DOI
Zajec, M, Jacobs, JFM, Groenen, P, de Kat Angelino, CM, Stingl, C, Luider, TM, et al.. Development of a targeted mass-spectrometry serum assay to quantify M-protein in the presence of therapeutic monoclonal antibodies. J Proteome Res 2018;17:1326–33. https://doi.org/10.1021/acs.jproteome.7b00890 . DOI
Langerhorst, P, Noori, S, Zajec, M, De Rijke, YB, Gloerich, J, van Gool, AJ, et al.. Multiple myeloma minimal residual disease detection: targeted mass spectrometry in blood vs next-generation sequencing in bone marrow. Clin Chem 2021;67:1689–98. https://doi.org/10.1093/clinchem/hvab187 . DOI
Di Noia, JM, Neuberger, MS. Molecular mechanisms of antibody somatic hypermutation. Annu Rev Biochem 2007;76:1–22. https://doi.org/10.1146/annurev.biochem.76.061705.090740 . DOI
Dudley, DD, Chaudhuri, C, Bassing, CH, Alt, FW. Mechanism and control of V(D)J recombination versus class switch recombination: similarities and differences. Adv Immunol 2005;86:43–112. https://doi.org/10.1016/s0065-2776(04)86002-4 . DOI
Mendes, ML, Dittmar, G. Targeted proteomics on its way to discovery. Proteomics 2022;22:e2100330. https://doi.org/10.1002/pmic.202100330 . DOI
Integraal kankercentrum Nederland. Available from: https://iknl.nl/kankersoorten/hemato-oncologie/nkr-cijfers/mm [Accessed November 2023].
Lesur, A, Bernardin, F, Koncina, E, Letellier, E, Kruppa, G, Schmit, PO, et al.. Quantification of 782 plasma peptides by multiplexed targeted proteomics. J Proteome Res 2023;22:1630–8. https://doi.org/10.1021/acs.jproteome.2c00575 . DOI
Krasny, L, Huang, PH. Data-independent acquisition mass spectrometry (DIA-MS) for proteomic applications in oncology. Mol Omics 2021;17:29–42. https://doi.org/10.1039/d0mo00072h . DOI
Attal, M, Lauwers-Cances, V, Hulin, C, Leleu, X, Caillot, D, Escoffre, M, et al.. Lenalidomide, bortezomib, and dexamethasone with transplantation for myeloma. N Engl J Med 2017;376:1311–20. https://doi.org/10.1056/nejmoa1611750 . DOI
MacLean, B, Tomazela, DM, Shulman, N, Chambers, M, Finney, GL, Frewen, B, et al.. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 2010;26:966–8. https://doi.org/10.1093/bioinformatics/btq054 . DOI
Xu, T, Park, SK, Venable, JD, Wohlschlegel, JA, Diedrich, JK, Cociorva, D, et al.. ProLuCID: an improved SEQUEST-like algorithm with enhanced sensitivity and specificity. J Proteonomics 2015;129:16–24. https://doi.org/10.1016/j.jprot.2015.07.001 . DOI
Bolotin, DA, Poslavsky, S, Mitrophanov, I, Shugay, M, Mamedov, IZ, Putintseva, EV, et al.. MiXCR: software for comprehensive adaptive immunity profiling. Nat Methods 2015;12:380–1. https://doi.org/10.1038/nmeth.3364 . DOI
Stingl, C, Luider, TM. Applying log-normal peak fitting to parallel reaction monitoring data analysis. J Proteome Res 2021;20:4186–92. https://doi.org/10.1021/acs.jproteome.1c00371 . DOI
Demichev, V, Messner, CB, Vernardis, SI, Lilley, KS, Ralser, M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat Methods 2020;17:41–4. https://doi.org/10.1038/s41592-019-0638-x . DOI
Food and Drug Administration . Bioanalytical method validation guidance for industry. Available from: https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf [Accessed June 2023].
Perez-Riverol, Y, Bai, J, Bandla, C, Garcia-Seisdedos, D, Hewapathirana, S, Kamatchinathan, S, et al.. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res 2022;50:543–52. https://doi.org/10.1093/nar/gkab1038 . DOI
Wijnands, C, Noori, S, Donk, N, VanDuijn, MM, Jacobs, JFM. Advances in minimal residual disease monitoring in multiple myeloma. Crit Rev Clin Lab Sci 2023;60:518–34. https://doi.org/10.1080/10408363.2023.2209652 . DOI
Li, C, Chu, S, Tan, S, Yin, X, Jiang, Y, Dai, X, et al.. Towards higher sensitivity of mass spectrometry: a perspective from the mass analyzers. Front Chem 2021;9:813359. https://doi.org/10.3389/fchem.2021.813359 . DOI
Sawicki, R, Korona-Glowniak, I, Boguszewska, A, Stec, A, Polz-Dacewicz, M. Sample pooling as a strategy for community monitoring for SARS-CoV-2. Sci Rep 2021;11:3122. https://doi.org/10.1038/s41598-021-82765-5 . DOI