Developmental effect of RASopathy mutations on neuronal network activity on a chip
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38910965
PubMed Central
PMC11190344
DOI
10.3389/fncel.2024.1388409
Knihovny.cz E-zdroje
- Klíčová slova
- Noonan syndrome, excitation/inhibition balance, mouse models, multielectrode array, network establishment and maturation, neurodevelopmental disorder, principal component analysis, rare diseases,
- Publikační typ
- časopisecké články MeSH
RASopathies are a group of genetic disorders caused by mutations in genes encoding components and regulators of the RAS/MAPK signaling pathway, resulting in overactivation of signaling. RASopathy patients exhibit distinctive facial features, cardiopathies, growth and skeletal abnormalities, and varying degrees of neurocognitive impairments including neurodevelopmental delay, intellectual disabilities, or attention deficits. At present, it is unclear how RASopathy mutations cause neurocognitive impairment and what their neuron-specific cellular and network phenotypes are. Here, we investigated the effect of RASopathy mutations on the establishment and functional maturation of neuronal networks. We isolated cortical neurons from RASopathy mouse models, cultured them on multielectrode arrays and performed longitudinal recordings of spontaneous activity in developing networks as well as recordings of evoked responses in mature neurons. To facilitate the analysis of large and complex data sets resulting from long-term multielectrode recordings, we developed MATLAB-based tools for data processing, analysis, and statistical evaluation. Longitudinal analysis of spontaneous network activity revealed a convergent developmental phenotype in neurons carrying the gain-of-function Noonan syndrome-related mutations Ptpn11 D61Y and Kras V14l. The phenotype was more pronounced at the earlier time points and faded out over time, suggesting the emergence of compensatory mechanisms during network maturation. Nevertheless, persistent differences in excitatory/inhibitory balance and network excitability were observed in mature networks. This study improves the understanding of the complex relationship between genetic mutations and clinical manifestations in RASopathies by adding insights into functional network processes as an additional piece of the puzzle.
Zobrazit více v PubMed
Adviento B., Corbin I. L., Widjaja F., Desachy G., Enrique N., Rosser T., et al. (2014). Autism traits in the RASopathies. J. Med. Genet. 51, 10–20. doi: 10.1136/jmedgenet-2013-101951, PMID: PubMed DOI PMC
Alfieri P., Piccini G., Caciolo C., Perrino F., Gambardella M. L., Mallardi M., et al. (2014). Behavioral profile in RASopathies. Am. J. Med. Genet. A 164, 934–942. doi: 10.1002/ajmg.a.36374, PMID: PubMed DOI
Altmuller F., Pothula S., Annamneedi A., Nakhaei-Rad S., Montenegro-Venegas C., Pina-Fernandez E., et al. (2017). Aberrant neuronal activity-induced signaling and gene expression in a mouse model of RASopathy. PLoS Genet, 13, e1006684. PubMed PMC
Altmuller F., Pothula S., Annamneedi A., Nakhaei-Rad S., Montenegro-Venegas C., Pina-Fernández E., et al. (2017). Aberrant neuronal activity-induced signaling and gene expression in a mouse model of RASopathy. PLoS Genet. 13:e1006684. doi: 10.1371/journal.pgen.1006684, PMID: PubMed DOI PMC
Anni D., Weiss E. M., Guhathakurta D., Akdas Y. E., Klueva J., Zeitler S., et al. (2021). Abeta1-16 controls synaptic vesicle pools at excitatory synapses via cholinergic modulation of synapsin phosphorylation. Cell. Mol. Life Sci. 78, 4973–4992. doi: 10.1007/s00018-021-03835-5 PubMed DOI PMC
Araki T., Chan G., Newbigging S., Morikawa L., Bronson R. T., Neel B. G. (2009). Noonan syndrome cardiac defects are caused by PTPN11 acting in endocardium to enhance endocardial-mesenchymal transformation. Proc Natl Acad Sci U S A, 106, 4736–41. PubMed PMC
Armour C. M., Allanson J. E. (2008). Further delineation of cardio-facio-cutaneous syndrome: clinical features of 38 individuals with proven mutations. J. Med. Genet. 45, 249–254. doi: 10.1136/jmg.2007.054460, PMID: PubMed DOI
Bang S., Hwang K. S., Jeong S., Cho I. J., Choi N., Kim J., et al. (2021). Engineered neural circuits for modeling brain physiology and neuropathology. Acta Biomater. 132, 379–400. doi: 10.1016/j.actbio.2021.06.024 PubMed DOI
Cesarini L., Alfieri P., Pantaleoni F., Vasta I., Cerutti M., Petrangeli V., et al. (2009). Cognitive profile of disorders associated with dysregulation of the RAS/MAPK signaling cascade. Am. J. Med. Genet. A 149A, 140–146. doi: 10.1002/ajmg.a.32488 PubMed DOI
Chan G., Kalaitzidis D., Usenko T., Kutok J. L., Yang W., Mohi M. G., et al. (2009). Leukemogenic Ptpn11 causes fatal myeloproliferative disorder via cell-autonomous effects on multiple stages of hematopoiesis. Blood 113, 4414–4424. doi: 10.1182/blood-2008-10-182626, PMID: PubMed DOI PMC
Chiappalone M., Massobrio P., Martinoia S. (2008). Network plasticity in cortical assemblies. Eur. J. Neurosci. 28, 221–237. doi: 10.1111/j.1460-9568.2008.06259.x PubMed DOI
Costa R. M., Federov N. B., Kogan J. H., Murphy G. G., Stern J., Ohno M., et al. (2002). Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature 415, 526–530. doi: 10.1038/nature711, PMID: PubMed DOI
Cui Y., Costa R. M., Murphy G. G., Elgersma Y., Zhu Y., Gutmann D. H., et al. (2008). Neurofibromin regulation of ERK signaling modulates GABA release and learning. Cell 135, 549–560. doi: 10.1016/j.cell.2008.09.060 PubMed DOI PMC
Cutts C. S., Eglen S. J. (2014). Detecting pairwise correlations in spike trains: an objective comparison of methods and application to the study of retinal waves. J. Neurosci. 34, 14288–14303. doi: 10.1523/JNEUROSCI.2767-14.2014 PubMed DOI PMC
Enright H. A., Lam D., Sebastian A., Sales A. P., Cadena J., Hum N. R., et al. (2020). Functional and transcriptional characterization of complex neuronal co-cultures. Sci. Rep. 10:11007. doi: 10.1038/s41598-020-67691-2, PMID: PubMed DOI PMC
Goodpaster A. M., Kennedy M. A. (2011). Quantification and statistical significance analysis of group separation in NMR-based metabonomics studies. Chemometr. Intell. Lab. Syst. 109, 162–170. doi: 10.1016/j.chemolab.2011.08.009, PMID: PubMed DOI PMC
Gremer L., Merbitz-Zahradnik T., Dvorsky R., Cirstea I. C., Kratz C. P., Zenker M., et al. (2011). Germline KRAS mutations cause aberrant biochemical and physical properties leading to developmental disorders. Hum. Mutat. 32, 33–43. doi: 10.1002/humu.21377, PMID: PubMed DOI PMC
Guhathakurta D., Akdaş E. Y., Fejtová A., Weiss E. M. (2022). Development and application of automatized routines for optical analysis of synaptic activity evoked by chemical and electrical stimulation. Front. Bioinform. 2:814081. doi: 10.3389/fbinf.2022.814081, PMID: PubMed DOI PMC
Hernandez-Porras I., Fabbiano S., Schuhmacher A. J., Aicher A., Cañamero M., Cámara J. A., et al. (2014). K-RasV14I recapitulates Noonan syndrome in mice. Proc. Natl. Acad. Sci. U.S.A. 111, 16395–16400. doi: 10.1073/pnas.1418126111, PMID: PubMed DOI PMC
Kang M., Lee Y. S. (2019). The impact of RASopathy-associated mutations on CNS development in mice and humans. Mol. Brain 12:96. doi: 10.1186/s13041-019-0517-5, PMID: PubMed DOI PMC
Kim Y. E., Baek S. T. (2019). Neurodevelopmental aspects of RASopathies. Mol. Cells 42, 441–447. doi: 10.14348/molcells.2019.0037 PubMed DOI PMC
Kirkby L. A., Sack G. S., Firl A., Feller M. B. (2013). A role for correlated spontaneous activity in the assembly of neural circuits. Neuron 80, 1129–1144. doi: 10.1016/j.neuron.2013.10.030, PMID: PubMed DOI PMC
Krab L. C., Aarsen F. K., de Goede-Bolder A., Catsman-Berrevoets C. E., Arts W. F., Moll H. A., et al. (2008). Impact of neurofibromatosis type 1 on school performance. J. Child Neurol. 23, 1002–1010. doi: 10.1177/0883073808316366, PMID: PubMed DOI
Lakens D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for PubMed DOI PMC
Lee Y. S., Ehninger D., Zhou M., Oh J. Y., Kang M., Kwak C., et al. (2014). Mechanism and treatment for learning and memory deficits in mouse models of Noonan syndrome. Nat. Neurosci. 17, 1736–1743. doi: 10.1038/nn.3863, PMID: PubMed DOI PMC
Mahalanobis P. C. (1936). On the generalised distance in statistics. Sankhya A 80, 1–7. doi: 10.1007/s13171-019-00164-5 DOI
Makarov V. A., Panetsos F., de Feo O. (2005). A method for determining neural connectivity and inferring the underlying network dynamics using extracellular spike recordings. J. Neurosci. Methods 144, 265–279. doi: 10.1016/j.jneumeth.2004.11.013 PubMed DOI
Mautner V. F., Kluwe L., Thakker S. D., Leark R. A. (2002). Treatment of ADHD in neurofibromatosis type 1. Dev. Med. Child Neurol. 44, 164–170. doi: 10.1111/j.1469-8749.2002.tb00780.x PubMed DOI
Molina J. R., Adjei A. A. (2006). The Ras/Raf/MAPK pathway. J. Thorac. Oncol. 1, 7–9. doi: 10.1016/S1556-0864(15)31506-9 PubMed DOI
Papale A., Disa R., Menna E., Cerovic M., Solari N., Hardingham N., et al. (2017). Severe Intellectual Disability and Enhanced Gamma-Aminobutyric Acidergic Synaptogenesis in a Novel Model of Rare RASopathies. Biol Psychiatry, 81, 179–192. doi: 10.1016/j.biopsych.2016.06.016 PubMed DOI
Payne J. M., Hyman S. L., Shores E. A., North K. N. (2011). Assessment of executive function and attention in children with neurofibromatosis type 1: relationships between cognitive measures and real-world behavior. Child Neuropsychol. 17, 313–329. doi: 10.1080/09297049.2010.542746 PubMed DOI
Pierpont E. I., Kenney-Jung D. L., Shanley R., Zatkalik A. L., Whitmarsh A. E., Kroening S. J., et al. (2022). Neurologic and neurodevelopmental complications in cardiofaciocutaneous syndrome are associated with genotype: a multinational cohort study. Genet. Med. 24, 1556–1566. doi: 10.1016/j.gim.2022.04.004, PMID: PubMed DOI
Pierpont E. I., Tworog-Dube E., Roberts A. E. (2015). Attention skills and executive functioning in children with Noonan syndrome and their unaffected siblings. Dev. Med. Child Neurol. 57, 385–392. doi: 10.1111/dmcn.12621, PMID: PubMed DOI PMC
Roberts A., Allanson J., Jadico S. K., Kavamura M. I., Noonan J., Opitz J. M., et al. (2006). The cardiofaciocutaneous syndrome. J. Med. Genet. 43, 833–842. doi: 10.1136/jmg.2006.042796, PMID: PubMed DOI PMC
Roelofs R. L., Janssen N., Wingbermühle E., Kessels R. P. C., Egger J. I. M. (2016). Intellectual development in Noonan syndrome: a longitudinal study. Brain Behav. 6:e00479. doi: 10.1002/brb3.479, PMID: PubMed DOI PMC
Samuels I. S., Saitta S. C., Landreth G. E. (2009). MAP’ing CNS development and cognition: an ERKsome process. Neuron 61, 160–167. doi: 10.1016/j.neuron.2009.01.001, PMID: PubMed DOI PMC
Schubbert S., Bollag G., Lyubynska N., Nguyen H., Kratz C. P., Zenker M., et al. (2007). Biochemical and functional characterization of germ line KRAS mutations. Mol Cell Biol, 27, 7765–70. PubMed PMC
Schubbert S., Zenker M., Rowe S. L., Böll S., Klein C., Bollag G., et al. (2006). Germline KRAS mutations cause Noonan syndrome. Nat. Genet. 38, 331–336. doi: 10.1038/ng1748 PubMed DOI
Schulz A. L., Albrecht B., Arici C., van der Burgt I., Buske A., Gillessen-Kaesbach G., et al. (2008). Mutation and phenotypic spectrum in patients with cardio-facio-cutaneous and Costello syndrome. Clin. Genet. 73, 62–70. doi: 10.1111/j.1399-0004.2007.00931.x, PMID: PubMed DOI
Sharland M., Burch M., McKenna W. M., Paton M. A. (1992). A clinical study of Noonan syndrome. Arch. Dis. Child. 67, 178–183. doi: 10.1136/adc.67.2.178, PMID: PubMed DOI PMC
Tajan M., Paccoud R., Branka S., Edouard T., Yart A. (2018). The RASopathy family: consequences of germline activation of the RAS/MAPK pathway. Endocr. Rev. 39, 676–700. doi: 10.1210/er.2017-00232, PMID: PubMed DOI
Tartaglia M., Zampino G., Gelb B. D. (2010). Noonan syndrome: clinical aspects and molecular pathogenesis. Mol. Syndromol. 1, 2–26. doi: 10.1159/000276766 PubMed DOI PMC
Welch B. L. (1947). The generalization of ‘stundent’s’ problem when several different population variances are involved. Biometrika 34, 28–35. doi: 10.1093/biomet/34.1-2.28, PMID: PubMed DOI
Wendt H. W. (1972). Dealing with a common problem in social science: a simplified rank-biserial coefficient of correlation based on the DOI
Yoon S., Seger R. (2006). The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24, 21–44. doi: 10.1080/02699050500284218 PubMed DOI
Zenker M., Kutsche K. (2016). RASopathies. Med. Genet. 28, 15–38. doi: 10.1007/s11825-016-0080-8 DOI
Rasopathy-Associated Mutation Ptpn11D61Y has Age-Dependent Effect on Synaptic Vesicle Recycling