Human Aging and Age-Related Diseases: From Underlying Mechanisms to Pro-Longevity Interventions
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
38913049
PubMed Central
PMC12221391
DOI
10.14336/ad.2024.0280
PII: AD.2024.0280
Knihovny.cz E-zdroje
- MeSH
- dlouhověkost * fyziologie MeSH
- lidé MeSH
- naděje dožití MeSH
- stárnutí * fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
As human life expectancy continues to rise, becoming a pressing global concern, it brings into focus the underlying mechanisms of aging. The increasing lifespan has led to a growing elderly population grappling with age-related diseases (ARDs), which strains healthcare systems and economies worldwide. While human senescence was once regarded as an immutable and inexorable phenomenon, impervious to interventions, the emerging field of geroscience now offers innovative approaches to aging, holding the promise of extending the period of healthspan in humans. Understanding the intricate links between aging and pathologies is essential in addressing the challenges presented by aging populations. A substantial body of evidence indicates shared mechanisms and pathways contributing to the development and progression of various ARDs. Consequently, novel interventions targeting the intrinsic mechanisms of aging have the potential to delay the onset of diverse pathological conditions, thereby extending healthspan. In this narrative review, we discuss the most promising methods and interventions aimed at modulating aging, which harbor the potential to mitigate ARDs in the future. We also outline the complexity of senescence and review recent empirical evidence to identify rational strategies for promoting healthy aging.
2nd Department of General Surgery and Surgical Oncology Medical University Hospital Wroclaw Poland
Department of Biosciences Integral University Lucknow Uttar Pradesh India
Department of Surgery School of Medicine Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
Division of Anatomy and Histology The University of Zielona Góra Poland
Graduate Physiology Program North Carolina State University Raleigh NC 27695 USA
Physiology Graduate Faculty North Carolina State University Raleigh NC 27695 USA
Zobrazit více v PubMed
Medawar PB. An Unsolved Problem of Biology: An Inaugural Lecture Delivered at University College, London. H.K. Lewis and Company; 1952.
Campisi J (2005). Aging, tumor suppression and cancer: high wire-act! Mech Ageing Dev, 126:51-58. PubMed
Williams GC (1957). Pleiotropy, Natural Selection, and the Evolution of Senescence. Evolution, 11:398-411.
Gaillard J-M, Lemaître J-F (2017). The Williams’ legacy: A critical reappraisal of his nine predictions about the evolution of senescence. Evolution, 71:2768-2785. PubMed
Kirkwood TBL (2005). Understanding the Odd Science of Aging. Cell, 120:437-447. PubMed
Johnson AA, Shokhirev MN, Shoshitaishvili B (2019). Revamping the evolutionary theories of aging. Ageing Res Rev, 55:100947. PubMed
Kaeberlein M (2016). The Biology of Aging: Citizen Scientists and Their Pets as a Bridge Between Research on Model Organisms and Human Subjects. Vet Pathol, 53:291-298. PubMed PMC
Chmielewski P (2017). Rethinking modern theories of ageing and their classification: the proximate mechanisms and the ultimate explanations. Anthropol Rev, 80:259-272.
Khan SS, Singer BD, Vaughan DE (2017). Molecular and physiological manifestations and measurement of aging in humans. Aging Cell, 16:624-633. PubMed PMC
Li Z, Zhang Z, Ren Y, Wang Y, Fang J, Yue H, et al. (2021). Aging and age-related diseases: from mechanisms to therapeutic strategies. Biogerontology, 22:165-187. PubMed PMC
Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, et al. (2014). Geroscience: Linking Aging to Chronic Disease. Cell, 159:709-713. PubMed PMC
Sierra F, Caspi A, Fortinsky RH, Haynes L, Lithgow GJ, Moffitt TE, et al. (2021). Moving geroscience from the bench to clinical care and health policy. J Am Geriatr Soc, 69:2455-2463. PubMed PMC
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013). The Hallmarks of Aging. Cell, 153:1194-1217. PubMed PMC
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2023). Hallmarks of aging: An expanding universe. Cell, 186:243-278. PubMed
Zhang R, Chen H-Z, Liu D-P (2015). The Four Layers of Aging. Cell Syst, 1:180-186. PubMed
Keshavarz M, Xie K, Schaaf K, Bano D, Ehninger D (2023). Targeting the “hallmarks of aging” to slow aging and treat age-related disease: fact or fiction? Mol Psychiatry, 28:242-255. PubMed PMC
Le Bourg E (2022). Geroscience: the need to address some issues. Biogerontology, 23:145-150. PubMed
Demetrius L (2005). Of mice and men. EMBO Rep, 6:S39-S44. PubMed PMC
Holliday R (2009). The extreme arrogance of anti-aging medicine. Biogerontology, 10:223-228. PubMed
Chmielewski PP (2020). Human ageing as a dynamic, emergent and malleable process: from disease-oriented to health-oriented approaches. Biogerontology, 21:125-130. PubMed PMC
Childs BG, Durik M, Baker DJ, van Deursen JM (2015). Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med, 21:1424-1435. PubMed PMC
Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, et al. (2016). Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature, 530:184-189. PubMed PMC
Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993). A C. elegans mutant that lives twice as long as wild type. Nature, 366:461-464. PubMed
Tatar M, Kopelman A, Epstein D, Tu M-P, Yin C-M, Garofalo RS (2001). A Mutant Drosophila Insulin Receptor Homolog That Extends Life-Span and Impairs Neuroendocrine Function. Science, 292:107-110. PubMed
Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, et al. (2009). Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature, 460:392-395. PubMed PMC
Ge C, Ma C, Cui J, Dong X, Sun L, Li Y, et al. (2023). Rapamycin suppresses inflammation and increases the interaction between p65 and IκBα in rapamycin-induced fatty livers. PLOS ONE, 18:e0281888. PubMed PMC
Ocampo A, Reddy P, Martinez-Redondo P, Platero-Luengo A, Hatanaka F, Hishida T, et al. (2016). In Vivo Amelioration of Age-Associated Hallmarks by Partial Reprogramming. Cell, 167:1719-1733.e12. PubMed PMC
Yeo RWY, Lai RC, Zhang B, Tan SS, Yin Y, Teh BJ, et al. (2013). Mesenchymal stem cell: An efficient mass producer of exosomes for drug delivery. Adv Drug Deliv Rev, 65:336-341. PubMed
Nakamura Y, Miyaki S, Ishitobi H, Matsuyama S, Nakasa T, Kamei N, et al. (2015). Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration. FEBS Lett, 589:1257-1265. PubMed
Muthu S, Bapat A, Jain R, Jeyaraman N, Jeyaraman M (2021). Exosomal therapy—a new frontier in regenerative medicine. Stem Cell Investig. doi: 10.21037/sci-2020-037. PubMed DOI PMC
Cameron AR, Morrison VL, Levin D, Mohan M, Forteath C, Beall C, et al. (2016). Anti-Inflammatory Effects of Metformin Irrespective of Diabetes Status. Circ Res, 119:652-665. PubMed PMC
Yousefzadeh MJ, Zhu Y, McGowan SJ, Angelini L, Fuhrmann-Stroissnigg H, Xu M, et al. (2018). Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine, 36:18-28. PubMed PMC
Chen S, Gan D, Lin S, Zhong Y, Chen M, Zou X, et al. (2022). Metformin in aging and aging-related diseases: clinical applications and relevant mechanisms. Theranostics, 12:2722-2740. PubMed PMC
Koptyug A, Sukhovei Y, Kostolomova E, Unger I, Kozlov V (2023). Novel Strategy in Searching for Natural Compounds with Anti-Aging and Rejuvenating Potential. Int J Mol Sci, 24:8020. PubMed PMC
Campisi J, Kapahi P, Lithgow GJ, Melov S, Newman JC, Verdin E (2019). From discoveries in ageing research to therapeutics for healthy ageing. Nature, 571:183-192. PubMed PMC
Dönertaş HM, Fuentealba M, Partridge L, Thornton JM (2019). Identifying Potential Ageing-Modulating Drugs PubMed PMC
Mkrtchyan GV, Abdelmohsen K, Andreux P, Bagdonaite I, Barzilai N, Brunak S, et al. (2020). ARDD 2020: from aging mechanisms to interventions. Aging, 12:24484-24503. PubMed PMC
Statzer C, Jongsma E, Liu SX, Dakhovnik A, Wandrey F, Mozharovskyi P, et al. (2021). Youthful and age-related matreotypes predict drugs promoting longevity. Aging Cell, 20:e13441. PubMed PMC
Guo J, Huang X, Dou L, Yan M, Shen T, Tang W, et al. (2022). Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct Target Ther, 7:1-40. PubMed PMC
Birch J, Gil J (2020). Senescence and the SASP: many therapeutic avenues. Genes Dev, 34:1565-1576. PubMed PMC
Drew L (2022). Turning back time with epigenetic clocks. Nature, 601:S20-S22. PubMed
Vessoni AT, Filippi-Chiela EC, Menck CF, Lenz G (2013). Autophagy and genomic integrity. Cell Death Differ, 20:1444-1454. PubMed PMC
Barbosa MC, Grosso RA, Fader CM (2019). Hallmarks of Aging: An Autophagic Perspective. Front. Endocrinol. 9:. PubMed PMC
Ren J, Zhang Y (2018). Targeting Autophagy in Aging and Aging-Related Cardiovascular Diseases. Trends Pharmacol Sci, 39:1064-1076. PubMed PMC
Hayflick L, Moorhead PS (1961). The serial cultivation of human diploid cell strains. Exp Cell Res, 25:585-621. PubMed
Smith JR, Pereira-Smith OM (1996). Replicative Senescence: Implications for in Vivo Aging and Tumor Suppression. Science, 273:63-67. PubMed
Rodier F, Campisi J (2011). Four faces of cellular senescence. J Cell Biol, 192:547-556. PubMed PMC
Sikora E, Bielak-Zmijewska A, Mosieniak G (2021). A common signature of cellular senescence; does it exist? Ageing Res Rev, 71:101458. PubMed
Gems D, Kern CC (2022). Is “cellular senescence” a misnomer? GeroScience, 44:2461-2469. PubMed PMC
Kowald A, Passos JF, Kirkwood TBL (2020). On the evolution of cellular senescence. Aging Cell, 19:e13270. PubMed PMC
Pignolo RJ, Passos JF, Khosla S, Tchkonia T, Kirkland JL (2020). Reducing Senescent Cell Burden in Aging and Disease. Trends Mol Med, 26:630-638. PubMed PMC
Nelson G, Wordsworth J, Wang C, Jurk D, Lawless C, Martin-Ruiz C, et al. (2012). A senescent cell bystander effect: senescence-induced senescence. Aging Cell, 11:345-349. PubMed PMC
Nelson G, Kucheryavenko O, Wordsworth J, von Zglinicki T (2018). The senescent bystander effect is caused by ROS-activated NF-κB signalling. Mech Ageing Dev, 170:30-36. PubMed PMC
da Silva PFL, Ogrodnik M, Kucheryavenko O, Glibert J, Miwa S, Cameron K, et al. (2019). The bystander effect contributes to the accumulation of senescent cells in vivo. Aging Cell, 18:e12848. PubMed PMC
Giglia-Mari G, Zotter A, Vermeulen W (2011). DNA Damage Response. Cold Spring Harb Perspect Biol, 3:a000745. PubMed PMC
Ou H-L, Schumacher B (2018). DNA damage responses and p53 in the aging process. Blood, 131:488-495. PubMed PMC
Schumacher B, Pothof J, Vijg J, Hoeijmakers JHJ (2021). The central role of DNA damage in the ageing process. Nature, 592:695-703. PubMed PMC
Campisi J, d’Adda di Fagagna F (2007). Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol, 8:729-740. PubMed
Sun Y, Coppé J-P, Lam EW-F (2018). Cellular Senescence: The Sought or the Unwanted? Trends Mol Med, 24:871-885. PubMed
Crouch J, Shvedova M, Thanapaul RJRS, Botchkarev V, Roh D (2022). Epigenetic Regulation of Cellular Senescence. Cells, 11:672. PubMed PMC
Huang W, Hickson LJ, Eirin A, Kirkland JL, Lerman LO (2022). Cellular senescence: the good, the bad and the unknown. Nat Rev Nephrol, 18:611-627. PubMed PMC
Gal H, Majewska J, Krizhanovsky V (2022). The intricate nature of senescence in development and cell plasticity. Semin Cancer Biol, 87:214-219. PubMed
Rufini A, Tucci P, Celardo I, Melino G (2013). Senescence and aging: the critical roles of p53. Oncogene, 32:5129-5143. PubMed
Mijit M, Caracciolo V, Melillo A, Amicarelli F, Giordano A (2020). Role of p53 in the Regulation of Cellular Senescence. Biomolecules, 10:420. PubMed PMC
Lee BY, Han JA, Im JS, Morrone A, Johung K, Goodwin EC, et al. (2006). Senescence-associated β-galactosidase is lysosomal β-galactosidase. Aging Cell, 5:187-195. PubMed
Hernandez-Segura A, de Jong TV, Melov S, Guryev V, Campisi J, Demaria M (2017). Unmasking Transcriptional Heterogeneity in Senescent Cells. Curr Biol, 27:2652-2660.e4. PubMed PMC
Coppé J-P, Desprez P-Y, Krtolica A, Campisi J (2010). The Senescence-Associated Secretory Phenotype: The Dark Side of Tumor Suppression. Annu Rev Pathol Mech Dis, 5:99-118. PubMed PMC
Roger L, Tomas F, Gire V (2021). Mechanisms and Regulation of Cellular Senescence. Int J Mol Sci, 22:13173. PubMed PMC
Di Micco R, Krizhanovsky V, Baker D, d’Adda di Fagagna F (2021). Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol, 22:75-95. PubMed PMC
Han X, Lei Q, Xie J, Liu H, Li J, Zhang X, et al. (2022). Potential Regulators of the Senescence-Associated Secretory Phenotype During Senescence and Aging. J Gerontol Ser A, 77:2207-2218. PubMed
Zhang L, Pitcher LE, Prahalad V, Niedernhofer LJ, Robbins PD (2023). Targeting cellular senescence with senotherapeutics: senolytics and senomorphics. FEBS J, 290:1362-1383. PubMed
Borghesan M, Hoogaars WMH, Varela-Eirin M, Talma N, Demaria M (2020). A Senescence-Centric View of Aging: Implications for Longevity and Disease. Trends Cell Biol, 30:777-791. PubMed
Cohn RL, Gasek NS, Kuchel GA, Xu M (2023). The heterogeneity of cellular senescence: insights at the single-cell level. Trends Cell Biol, 33:9-17. PubMed PMC
Raffaele M, Vinciguerra M (2022). The costs and benefits of senotherapeutics for human health. Lancet Healthy Longev, 3:e67-e77. PubMed
Zhang L, Pitcher LE, Yousefzadeh MJ, Niedernhofer LJ, Robbins PD, Zhu Y (2022). Cellular senescence: a key therapeutic target in aging and diseases. [J] Clin Invest. doi: 10.1172/JCI158450. PubMed DOI PMC
Kirkland JL, Tchkonia T (2015). Clinical strategies and animal models for developing senolytic agents. Exp Gerontol, 68:19-25. PubMed PMC
Ovadya Y, Krizhanovsky V (2018). Strategies targeting cellular senescence. J Clin Invest, 128:1247-1254. PubMed PMC
Van Deursen M Jan (2014). The role of senescent cells in ageing. Nature, 509:439-446. PubMed PMC
Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H, Giorgadze N, et al. (2015). The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell, 14:644-658. PubMed PMC
Song S, Lam EW-F, Tchkonia T, Kirkland JL, Sun Y (2020). Senescent Cells: Emerging Targets for Human Aging and Age-Related Diseases. Trends Biochem Sci, 45:578-592. PubMed PMC
Farr JN, Xu M, Weivoda MM, Monroe DG, Fraser DG, Onken JL, et al. (2017). Targeting cellular senescence prevents age-related bone loss in mice. Nat Med, 23:1072-1079. PubMed PMC
Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK, Weivoda MM, et al. (2018). Senolytics improve physical function and increase lifespan in old age. Nat Med, 24:1246-1256. PubMed PMC
Justice JN, Nambiar AM, Tchkonia T, LeBrasseur NK, Pascual R, Hashmi SK, et al. (2019). Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study. EBioMedicine, 40:554-563. PubMed PMC
Akbari M, Kirkwood TBL, Bohr VA (2019). Mitochondria in the signaling pathways that control longevity and health span. Ageing Res Rev, 54:100940. PubMed PMC
Amorim JA, Coppotelli G, Rolo AP, Palmeira CM, Ross JM, Sinclair DA (2022). Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat Rev Endocrinol, 18:243-258. PubMed PMC
Maldonado E, Morales-Pison S, Urbina F, Solari A (2023). Aging Hallmarks and the Role of Oxidative Stress. Antioxid Basel Switz, 12:651. PubMed PMC
San-Millán I (2023). The Key Role of Mitochondrial Function in Health and Disease. Antioxidants, 12:782. PubMed PMC
Bhatti JS, Bhatti GK, Reddy PH (2017). Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis, 1863:1066-1077. PubMed PMC
Song T, Song X, Zhu C, Patrick R, Skurla M, Santangelo I, et al. (2021). Mitochondrial dysfunction, oxidative stress, neuroinflammation, and metabolic alterations in the progression of Alzheimer’s disease: A meta-analysis of PubMed PMC
Elfawy HA, Das B (2019). Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: Etiologies and therapeutic strategies. Life Sci, 218:165-184. PubMed
Guo Y, Guan T, Shafiq K, Yu Q, Jiao X, Na D, et al. (2023). Mitochondrial dysfunction in aging. Ageing Res Rev, 88:101955. PubMed
Kökten T, Hansmannel F, Ndiaye NC, Heba A-C, Quilliot D, Dreumont N, et al. (2021). Calorie Restriction as a New Treatment of Inflammatory Diseases. Adv Nutr, 12:1558-1570. PubMed PMC
Afzaal A, Rehman K, Kamal S, Akash MSH (2022). Versatile role of sirtuins in metabolic disorders: From modulation of mitochondrial function to therapeutic interventions. J Biochem Mol Toxicol, 36:e23047. PubMed
Liu Z, Ren Z, Zhang J, Chuang C-C, Kandaswamy E, Zhou T, et al. (2018). Role of ROS and Nutritional Antioxidants in Human Diseases. Front. Physiol. 9:. PubMed PMC
Jiang Q, Yin J, Chen J, Ma X, Wu M, Liu G, et al. (2020). Mitochondria-Targeted Antioxidants: A Step towards Disease Treatment. Oxid Med Cell Longev, 2020:e8837893. PubMed PMC
Yu T, Wang L, Zhang L, Deuster PA (2023). Mitochondrial Fission as a Therapeutic Target for Metabolic Diseases: Insights into Antioxidant Strategies. Antioxidants, 12:1163. PubMed PMC
Stoker ML, Newport E, Hulit JC, West AP, Morten KJ (2019). Impact of pharmacological agents on mitochondrial function: a growing opportunity? Biochem Soc Trans, 47:1757-1772. PubMed PMC
Chen C, Zhou M, Ge Y, Wang X (2020). SIRT1 and aging related signaling pathways. Mech Ageing Dev, 187:111215. PubMed
Behl T, Makkar R, Anwer MK, Hassani R, Khuwaja G, Khalid A, et al. (2023). Mitochondrial Dysfunction: A Cellular and Molecular Hub in Pathology of Metabolic Diseases and Infection. J Clin Med, 12:2882. PubMed PMC
Kolac UK, Donmez Yalcin G, Yalcin A (2023). Chemical inhibition of mitochondrial fission improves insulin signaling and subdues hyperglycemia induced stress in placental trophoblast cells. Mol Biol Rep, 50:493-506. PubMed
Vasamsetti SB, Karnewar S, Kanugula AK, Thatipalli AR, Kumar JM, Kotamraju S (2014). Metformin Inhibits Monocyte-to-Macrophage Differentiation via AMPK-Mediated Inhibition of STAT3 Activation: Potential Role in Atherosclerosis. Diabetes, 64:2028-2041. PubMed
Cho K, Chung JY, Cho SK, Shin H-W, Jang I-J, Park J-W, et al. (2015). Antihyperglycemic mechanism of metformin occurs via the AMPK/LXRα/POMC pathway. Sci Rep, 5:8145. PubMed PMC
Longo VD, Di Tano M, Mattson MP, Guidi N (2021). Intermittent and periodic fasting, longevity and disease. Nat Aging, 1:47-59. PubMed PMC
Longo VD, Anderson RM (2022). Nutrition, longevity and disease: From molecular mechanisms to interventions. Cell, 185:1455-1470. PubMed PMC
Kenyon CJ (2010). The genetics of ageing. Nature, 464:504-512. PubMed
Bartke A (2008). Impact of reduced insulin-like growth factor-1/insulin signaling on aging in mammals: novel findings. Aging Cell, 7:285-290. PubMed
Longo VD, Mitteldorf J, Skulachev VP (2005). Programmed and altruistic ageing. Nat Rev Genet, 6:866-872. PubMed
Johnson SC (2018). Nutrient Sensing, Signaling and Ageing: The Role of IGF-1 and mTOR in Ageing and Age-Related Disease. In: Harris JR, Korolchuk VI, editors Biochem. Cell Biol. Ageing Part Biomed. Sci. Singapore: Springer, 49-97. PubMed
Vitale G, Pellegrino G, Vollery M, Hofland LJ (2019). ROLE of IGF-1 System in the Modulation of Longevity: Controversies and New Insights From a Centenarians’ Perspective. Front Endocrinol. doi: 10.3389/fendo.2019.00027. PubMed DOI PMC
Werner H (2023). The IGF1 Signaling Pathway: From Basic Concepts to Therapeutic Opportunities. Int J Mol Sci, 24:14882. PubMed PMC
Sharples AP, Hughes DC, Deane CS, Saini A, Selman C, Stewart CE (2015). Longevity and skeletal muscle mass: the role of IGF signalling, the sirtuins, dietary restriction and protein intake. Aging Cell, 14:511-523. PubMed PMC
Bartke A, Wright JC, Mattison JA, Ingram DK, Miller RA, Roth GS (2001). Extending the lifespan of long-lived mice. Nature, 414:412-412. PubMed
Flurkey K, Papaconstantinou J, Miller RA, Harrison DE (2001). Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc Natl Acad Sci, 98:6736-6741. PubMed PMC
Blüher M, Kahn BB, Kahn CR (2003). Extended Longevity in Mice Lacking the Insulin Receptor in Adipose Tissue. Science, 299:572-574. PubMed
Taguchi A, Wartschow LM, White MF (2007). Brain IRS2 Signaling Coordinates Life Span and Nutrient Homeostasis. Science, 317:369-372. PubMed
Selman C, Lingard S, Choudhury AI, Batterham RL, Claret M, Clements M, et al. (2008). Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice. FASEB J, 22:807-818. PubMed
Junnila RK, List EO, Berryman DE, Murrey JW, Kopchick JJ (2013). The GH/IGF-1 axis in ageing and longevity. Nat Rev Endocrinol, 9:366-376. PubMed PMC
Lebovitz HE (2001). Insulin resistance: definition and consequences. Exp Clin Endocrinol Diabetes, 109:S135-S148. PubMed
Fazio S, Mercurio V, Tibullo L, Fazio V, Affuso F (2024). Insulin resistance/hyperinsulinemia: an important cardiovascular risk factor that has long been underestimated. Front Cardiovasc Med. doi: 10.3389/fcvm.2024.1380506. PubMed DOI PMC
Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuñiga FA (2018). Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol, 17:122. PubMed PMC
Fazio S, Mercurio V, Fazio V, Ruvolo A, Affuso F (2024). Insulin Resistance/Hyperinsulinemia, Neglected Risk Factor for the Development and Worsening of Heart Failure with Preserved Ejection Fraction. Biomedicines, 12:806. PubMed PMC
Arcidiacono B, Iiritano S, Nocera A, Possidente K, Nevolo MT, Ventura V, et al. (2012). Insulin Resistance and Cancer Risk: An Overview of the Pathogenetic Mechanisms. J Diabetes Res, 2012:e789174. PubMed PMC
Djiogue S, Kamdje AHN, Vecchio L, Kipanyula MJ, Farahna M, Aldebasi Y, et al. (2013). Insulin resistance and cancer: the role of insulin and IGFs. Endocr Relat Cancer, 20:R1-R17. PubMed
Chiefari E, Mirabelli M, La Vignera S, Tanyolaç S, Foti DP, Aversa A, et al. (2021). Insulin Resistance and Cancer: In Search for a Causal Link. Int J Mol Sci, 22:11137. PubMed PMC
Rose DP, Vona-Davis L (2012). The cellular and molecular mechanisms by which insulin influences breast cancer risk and progression. Endocr Relat Cancer, 19:R225-R241. PubMed
Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT (2017). The PI3K Pathway in Human Disease. Cell, 170:605-635. PubMed PMC
Rascio F, Spadaccino F, Rocchetti MT, Castellano G, Stallone G, Netti GS, et al. (2021). The Pathogenic Role of PI3K/AKT Pathway in Cancer Onset and Drug Resistance: An Updated Review. Cancers, 13:3949. PubMed PMC
Pollak M (2008). Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer, 8:915-928. PubMed
Gallagher EJ, LeRoith D (2011). Minireview: IGF, Insulin, and Cancer. Endocrinology, 152:2546-2551. PubMed
Orgel E, Mittelman SD (2013). The Links Between Insulin Resistance, Diabetes, and Cancer. Curr Diab Rep, 13:213-222. PubMed PMC
Van Heemst D, Beekman M, Mooijaart SP, Heijmans BT, Brandt BW, Zwaan BJ, et al. (2005). Reduced insulin/IGF-1 signalling and human longevity. Aging Cell, 4:79-85. PubMed
Saikali Z, Setya H, Singh G, Persad S (2008). Role of IGF-1/IGF-1R in regulation of invasion in DU145 prostate cancer cells. Cancer Cell Int, 8:10. PubMed PMC
Bowers LW, Rossi EL, O’Flanagan CH, deGraffenried LA, Hursting SD (2015). The Role of the Insulin/IGF System in Cancer: Lessons Learned from Clinical Trials and the Energy Balance-Cancer Link. Front Endocrinol. doi: 10.3389/fendo.2015.00077. PubMed DOI PMC
Renehan AG, Zwahlen M, Minder C, O’Dwyer ST, Shalet SM, Egger M (2004). Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. The Lancet, 363:1346-1353. PubMed
Shevah O, Laron Z (2007). Patients with congenital deficiency of IGF-I seem protected from the development of malignancies: A preliminary report. Growth Horm IGF Res, 17:54-57. PubMed
Steuerman R, Shevah O, Laron Z (2011). Congenital IGF1 deficiency tends to confer protection against post-natal development of malignancies. Eur J Endocrinol, 164:485-489. PubMed
Major JM, Laughlin GA, Kritz-Silverstein D, Wingard DL, Barrett-Connor E (2010). Insulin-Like Growth Factor-I and Cancer Mortality in Older Men. J Clin Endocrinol Metab, 95:1054-1059. PubMed PMC
Hankinson SE, Willett WC, Colditz GA, Hunter DJ, Michaud DS, Deroo B, et al. (1998). Circulating concentrations of insulin-like growth factor I and risk of breast cancer. The Lancet, 351:1393-1396. PubMed
Blagosklonny MV (2021). The hyperfunction theory of aging: three common misconceptions. Oncoscience, 8:103-107. PubMed PMC
Gems D (2022). The hyperfunction theory: An emerging paradigm for the biology of aging. Ageing Res Rev, 74:101557. PubMed PMC
Laplante M, Sabatini DM (2012). mTOR Signaling in Growth Control and Disease. Cell, 149:274-293. PubMed PMC
Maklakov AA, Chapman T (2019). Evolution of ageing as a tangle of trade-offs: energy versus function. Proc R Soc B Biol Sci, 286:20191604. PubMed PMC
Johnson SC, Rabinovitch PS, Kaeberlein M (2013). mTOR is a key modulator of ageing and age-related disease. Nature, 493:338-345. PubMed PMC
Saxton RA, Sabatini DM (2017). mTOR Signaling in Growth, Metabolism, and Disease. Cell, 168:960-976. PubMed PMC
Weichhart T (2017). mTOR as Regulator of Lifespan, Aging, and Cellular Senescence: A Mini-Review. Gerontology, 64:127-134. PubMed PMC
Rapaka D, Bitra VR, Challa SR, Adiukwu PC (2022). mTOR signaling as a molecular target for the alleviation of Alzheimer’s disease pathogenesis. Neurochem Int, 155:105311. PubMed
Zong Y, Li H, Liao P, Chen L, Pan Y, Zheng Y, et al. (2024). Mitochondrial dysfunction: mechanisms and advances in therapy. Signal Transduct Target Ther, 9:1-29. PubMed PMC
Kim YC, Guan K-L (2015). mTOR: a pharmacologic target for autophagy regulation. J Clin Invest, 125:25-32. PubMed PMC
Rabanal-Ruiz Y, Otten EG, Korolchuk VI (2017). mTORC1 as the main gateway to autophagy. Essays Biochem, 61:565-584. PubMed PMC
Shindyapina AV, Cho Y, Kaya A, Tyshkovskiy A, Castro JP, Deik A, et al. (2022). Rapamycin treatment during development extends life span and health span of male mice and Daphnia magna. Sci Adv, 8:eabo5482. PubMed PMC
Neff F, Flores-Dominguez D, Ryan DP, Horsch M, Schröder S, Adler T, et al. (2013). Rapamycin extends murine lifespan but has limited effects on aging. J Clin Invest, 123:3272-3291. PubMed PMC
Pérez-Revuelta BI, Hettich MM, Ciociaro A, Rotermund C, Kahle PJ, Krauss S, et al. (2014). Metformin lowers Ser-129 phosphorylated α-synuclein levels via mTOR-dependent protein phosphatase 2A activation. Cell Death Dis, 5:e1209-e1209. PubMed PMC
Nair V, Sreevalsan S, Basha R, Abdelrahim M, Abudayyeh A, Rodrigues Hoffman A, et al. (2014). Mechanism of Metformin-dependent Inhibition of Mammalian Target of Rapamycin (mTOR) and Ras Activity in Pancreatic Cancer: Role of specificity protein (Sp) Transcription Factors*. J Biol Chem, 289:27692-27701. PubMed PMC
Howell JJ, Hellberg K, Turner M, Talbott G, Kolar MJ, Ross DS, et al. (2017). Metformin Inhibits Hepatic mTORC1 Signaling via Dose-Dependent Mechanisms Involving AMPK and the TSC Complex. Cell Metab, 25:463-471. PubMed PMC
Liu M, Wilk SA, Wang A, Zhou L, Wang R-H, Ogawa W, et al. (2010). Resveratrol Inhibits mTOR Signaling by Promoting the Interaction between mTOR and DEPTOR*. J Biol Chem, 285:36387-36394. PubMed PMC
Park D, Jeong H, Lee MN, Koh A, Kwon O, Yang YR, et al. (2016). Resveratrol induces autophagy by directly inhibiting mTOR through ATP competition. Sci Rep, 6:21772. PubMed PMC
Lee DJW, Hodzic Kuerec A, Maier AB (2024). Targeting ageing with rapamycin and its derivatives in humans: a systematic review. Lancet Healthy Longev, 5:e152-e162. PubMed
Hua H, Kong Q, Zhang H, Wang J, Luo T, Jiang Y (2019). Targeting mTOR for cancer therapy. J Hematol OncolJ Hematol Oncol, 12:71. PubMed PMC
Mao B, Zhang Q, Ma L, Zhao D-S, Zhao P, Yan P (2022). Overview of Research into mTOR Inhibitors. Molecules, 27:5295. PubMed PMC
Zaza G, Granata S, Caletti C, Signorini L, Stallone G, Lupo A (2018). mTOR Inhibition Role in Cellular Mechanisms. Transplantation, 102:S3. PubMed
Fraga MF, Esteller M (2007). Epigenetics and aging: the targets and the marks. Trends Genet, 23:413-418. PubMed
Horvath S, Levine AJ (2015). HIV-1 Infection Accelerates Age According to the Epigenetic Clock. J Infect Dis, 212:1563-1573. PubMed PMC
Horvath S, Garagnani P, Bacalini MG, Pirazzini C, Salvioli S, Gentilini D, et al. (2015). Accelerated epigenetic aging in Down syndrome. Aging Cell, 14:491-495. PubMed PMC
Fahy GM, Brooke RT, Watson JP, Good Z, Vasanawala SS, Maecker H, et al. (2019). Reversal of epigenetic aging and immunosenescent trends in humans. Aging Cell, 18:e13028. PubMed PMC
Demidenko O, Barardo D, Budovskii V, Finnemore R, Palmer FR, Kennedy BK, et al. (2021). Rejuvant®, a potential life-extending compound formulation with alpha-ketoglutarate and vitamins, conferred an average 8 year reduction in biological aging, after an average of 7 months of use, in the TruAge DNA methylation test. Aging, 13:24485-24499. PubMed PMC
Grabowska W, Sikora E, Bielak-Zmijewska A (2017). Sirtuins, a promising target in slowing down the ageing process. Biogerontology, 18:447-476. PubMed PMC
Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, et al. (2006). Resveratrol improves health and survival of mice on a high-calorie diet. Nature, 444:337-342. PubMed PMC
Simpson DJ, Olova NN, Chandra T (2021). Cellular reprogramming and epigenetic rejuvenation. Clin Epigenetics, 13:170. PubMed PMC
Singh PB, Zhakupova A (2022). Age reprogramming: cell rejuvenation by partial reprogramming. Development, 149:dev200755. PubMed PMC
Fernández ÁF, Sebti S, Wei Y, Zou Z, Shi M, McMillan KL, et al. (2018). Disruption of the beclin 1-BCL2 autophagy regulatory complex promotes longevity in mice. Nature, 558:136-140. PubMed PMC
Nakamura S, Yoshimori T (2018). Autophagy and Longevity. Moleucles Cells, 41:65-72. PubMed PMC
Wang S, Ge W, Harns C, Meng X, Zhang Y, Ren J (2018). Ablation of toll-like receptor 4 attenuates aging-induced myocardial remodeling and contractile dysfunction through NCoRI-HDAC1-mediated regulation of autophagy. J Mol Cell Cardiol, 119:40-50. PubMed
Bergamini E, Cavallini G, Donati A, Gori Z (2007). The Role of Autophagy in Aging. Ann N Y Acad Sci, 1114:69-78. PubMed
Kocak M, Ezazi Erdi S, Jorba G, Maestro I, Farrés J, Kirkin V, et al. (2022). Targeting autophagy in disease: established and new strategies. Autophagy, 18:473-495. PubMed PMC
Perluigi M, Di Domenico F, Butterfield DA (2015). mTOR signaling in aging and neurodegeneration: At the crossroad between metabolism dysfunction and impairment of autophagy. Neurobiol Dis, 84:39-49. PubMed
Belsky DW, Huffman KM, Pieper CF, Shalev I, Kraus WE (2018). Change in the Rate of Biological Aging in Response to Caloric Restriction: CALERIE Biobank Analysis. J Gerontol Ser A, 73:4-10. PubMed PMC
Kraus WE, Bhapkar M, Huffman KM, Pieper CF, Krupa Das S, Redman LM, et al. (2019). 2 years of calorie restriction and cardiometabolic risk (CALERIE): exploratory outcomes of a multicentre, phase 2, randomised controlled trial. Lancet Diabetes Endocrinol, 7:673-683. PubMed PMC
Stekovic S, Hofer SJ, Tripolt N, Aon MA, Royer P, Pein L, et al. (2019). Alternate Day Fasting Improves Physiological and Molecular Markers of Aging in Healthy, Non-obese Humans. Cell Metab, 30:462-476.e6. PubMed
Rong S, Snetselaar LG, Xu G, Sun Y, Liu B, Wallace RB, et al. (2019). Association of Skipping Breakfast With Cardiovascular and All-Cause Mortality. J Am Coll Cardiol, 73:2025-2032. PubMed
Lowe DA, Wu N, Rohdin-Bibby L, Moore AH, Kelly N, Liu YE, et al. (2020). Effects of Time-Restricted Eating on Weight Loss and Other Metabolic Parameters in Women and Men With Overweight and Obesity: The TREAT Randomized Clinical Trial. J Am Med Assoc Intern Med, 180:1491-1499. PubMed PMC
Smith KJ, Gall SL, McNaughton SA, Blizzard L, Dwyer T, Venn AJ (2010). Skipping breakfast: longitudinal associations with cardiometabolic risk factors in the Childhood Determinants of Adult Health Study123. Am J Clin Nutr, 92:1316-1325. PubMed
Lee TS, Kim JS, Hwang YJ, Park YC (2016). Habit of Eating Breakfast Is Associated with a Lower Risk of Hypertension. J Lifestyle Med, 6:64-67. PubMed PMC
Ballon A, Neuenschwander M, Schlesinger S (2019). Breakfast Skipping Is Associated with Increased Risk of Type 2 Diabetes among Adults: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. J Nutr, 149:106-113. PubMed
Bi H, Gan Y, Yang C, Chen Y, Tong X, Lu Z (2015). Breakfast skipping and the risk of type 2 diabetes: a meta-analysis of observational studies. Public Health Nutr, 18:3013-3019. PubMed PMC
Odegaard AO, Jacobs DR, Steffen LM, Van Horn L, Ludwig DS, Pereira MA (2013). Breakfast frequency and development of metabolic risk. Diabetes Care, 36:3100-3106. PubMed PMC
Uzhova I, Fuster V, Fernández-Ortiz A, Ordovás JM, Sanz J, Fernández-Friera L, et al. (2017). The Importance of Breakfast in Atherosclerosis Disease: Insights From the PESA Study. J Am Coll Cardiol, 70:1833-1842. PubMed
Ma X, Chen Q, Pu Y, Guo M, Jiang Z, Huang W, et al. (2020). Skipping breakfast is associated with overweight and obesity: A systematic review and meta-analysis. Obes Res Clin Pract, 14:1-8. PubMed
Cahill LE, Chiuve SE, Mekary RA, Jensen MK, Flint AJ, Hu FB, et al. (2013). Prospective Study of Breakfast Eating and Incident Coronary Heart Disease in a Cohort of Male US Health Professionals. Circulation, 128:337-343. PubMed PMC
Sharma K, Shah K, Brahmbhatt P, Kandre Y (2018). Skipping breakfast and the risk of coronary artery disease. QJM Int J Med, 111:715-719. PubMed
Bailey CJ, Turner RC (1996). Metformin. N Engl J Med, 334:574-579. PubMed
Rotella CM, Monami M, Mannucci E (2016). Metformin Beyond Diabetes: New Life for an Old Drug. Curr Diabetes Rev, 2:307-315. PubMed
Leone A, Di Gennaro E, Bruzzese F, Avallone A, Budillon A (2014). New Perspective for an Old Antidiabetic Drug: Metformin as Anticancer Agent. In: Zappia V, Panico S, Russo GL, Budillon A, Della Ragione F, editors Adv. Nutr. Cancer. Berlin, Heidelberg: Springer, 355-376. PubMed
Podhorecka M, Ibanez B, Dmoszyńska A (2017). Metformin - its potential anti-cancer and anti-aging effects. Postepy Hig Med Doswiadczalnej Online, 71:170-175. PubMed
Palmer SC, Mavridis D, Nicolucci A, Johnson DW, Tonelli M, Craig JC, et al. (2016). Comparison of Clinical Outcomes and Adverse Events Associated With Glucose-Lowering Drugs in Patients With Type 2 Diabetes: A Meta-analysis. J Am Med Assoc, 316:313-324. PubMed
Schlender L, Martinez YV, Adeniji C, Reeves D, Faller B, Sommerauer C, et al. (2017). Efficacy and safety of metformin in the management of type 2 diabetes mellitus in older adults: a systematic review for the development of recommendations to reduce potentially inappropriate prescribing. BMC Geriatr, 17:227. PubMed PMC
Foretz M, Guigas B, Viollet B (2019). Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nat Rev Endocrinol, 15:569-589. PubMed
Liu B, Fan Z, Edgerton SM, Yang X, Lind SE, Thor AD (2011). Potent anti-proliferative effects of metformin on trastuzumab-resistant breast cancer cells via inhibition of erbB2/IGF-1 receptor interactions. Cell Cycle, 10:2959-2966. PubMed
Moiseeva O, Deschênes-Simard X, St-Germain E, Igelmann S, Huot G, Cadar AE, et al. (2013). Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-κB activation. Aging Cell, 12:489-498. PubMed
Farr SA, Roesler E, Niehoff ML, Roby DA, McKee A, Morley JE (2019). Metformin Improves Learning and Memory in the SAMP8 Mouse Model of Alzheimer’s Disease. J Alzheimers Dis, 68:1699-1710. PubMed
Ou Z, Kong X, Sun X, He X, Zhang L, Gong Z, et al. (2018). Metformin treatment prevents amyloid plaque deposition and memory impairment in APP/PS1 mice. Brain Behav Immun, 69:351-363. PubMed
Ng TP, Feng L, Yap KB, Lee TS, Tan CH, Winblad B (2014). Long-Term Metformin Usage and Cognitive Function among Older Adults with Diabetes. J Alzheimers Dis, 41:61-68. PubMed
Algire C, Amrein L, Zakikhani M, Panasci L, Pollak M (2010). Metformin blocks the stimulative effect of a high-energy diet on colon carcinoma growth in vivo and is associated with reduced expression of fatty acid synthase. Endocr Relat Cancer, 17:351-360. PubMed
Hosono K, Endo H, Takahashi H, Sugiyama M, Uchiyama T, Suzuki K, et al. (2010). Metformin suppresses azoxymethane-induced colorectal aberrant crypt foci by activating AMP-activated protein kinase. Mol Carcinog, 49:662-671. PubMed
Col NF, Ochs L, Springmann V, Aragaki AK, Chlebowski RT (2012). Metformin and breast cancer risk: a meta-analysis and critical literature review. Breast Cancer Res Treat, 135:639-646. PubMed
Tseng C-H (2016). Metformin reduces gastric cancer risk in patients with type 2 diabetes mellitus. Aging, 8:1636-1649. PubMed PMC
Jo JK, Song HK, Heo Y, Kim MJ, Kim YJ (2023). Risk analysis of metformin use in prostate cancer: a national population-based study. Aging Male, 26:2156497. PubMed
Li X, Li T, Liu Z, Gou S, Wang C (2017). The effect of metformin on survival of patients with pancreatic cancer: a meta-analysis. Sci Rep, 7:5825. PubMed PMC
Bartel DP (2004). MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell, 116:281-297. PubMed
Wang Z, Gao J, Xu C (2022). Tackling cellular senescence by targeting miRNAs. Biogerontology, 23:387-400. PubMed
de Lencastre A, Pincus Z, Zhou K, Kato M, Lee SS, Slack FJ (2010). MicroRNAs Both Promote and Antagonize Longevity in PubMed PMC
Grillari J, Hackl M, Grillari-Voglauer R (2010). miR-17-92 cluster: ups and downs in cancer and aging. Biogerontology, 11:501-506. PubMed PMC
Zhu L, Duan W, Yang B, Wang L (2023). Decreased miR-329-3p upregulates Adamts4 and Dnajb1 in mouse hepatic I/R injury in an age-independent manner. Int J Med Sci, 20:1562-1569. PubMed PMC
Liu J, Lin M, Qiao F, Zhang C (2022). Exosomes Derived from lncRNA TCTN2-Modified Mesenchymal Stem Cells Improve Spinal Cord Injury by miR-329-3p/IGF1R Axis. J Mol Neurosci MN, 72:482-495. PubMed
Kim S (2023). LncRNA-miRNA-mRNA regulatory networks in skin aging and therapeutic potentials. Front Physiol, 14:1303151. PubMed PMC
Teteloshvili N, Dekkema G, Boots AM, Heeringa P, Jellema P, de Jong D, et al. (2018). Involvement of MicroRNAs in the Aging-Related Decline of CD28 Expression by Human T Cells. Front Immunol, 9:1400. PubMed PMC
Liang R, Khanna A, Muthusamy S, Li N, Sarojini H, Kopchick JJ, et al. (2011). Post-transcriptional regulation of IGF1R by key microRNAs in long-lived mutant mice. Aging Cell, 10:1080-1088. PubMed PMC
Bonifacio LN, Jarstfer MB (2010). MiRNA Profile Associated with Replicative Senescence, Extended Cell Culture, and Ectopic Telomerase Expression in Human Foreskin Fibroblasts. PLoS ONE, 5:e12519. PubMed PMC
Yen C-Y, Chiu C-M, Fang I-M (2024). MicroRNA expression profiling in tears and blood as predictive biomarkers for anti-VEGF treatment response in wet age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol. doi: 10.1007/s00417-024-06478-x. PubMed DOI
Salehi M, Darroudi M, Musavi M, Momtazi-Borojeni AA (2024). Prediction of Age-Related MicroRNA Signature in Mesenchymal Stem Cells by using Computational Methods. Curr Stem Cell Res Ther. doi: 10.2174/011574888X291147240507072107. PubMed DOI
Mariani JN, Mansky B, Madsen PM, Salinas D, Kesmen D, Huynh NPT, et al. (2024). Repression of developmental transcription factor networks triggers aging-associated gene expression in human glial progenitor cells. Nat Commun, 15:3873. PubMed PMC
ElSharawy A, Keller A, Flachsbart F, Wendschlag A, Jacobs G, Kefer N, et al. (2012). Genome-wide miRNA signatures of human longevity. Aging Cell, 11:607-616. PubMed
Gombar S, Jung HJ, Dong F, Calder B, Atzmon G, Barzilai N, et al. (2012). Comprehensive microRNA profiling in B-cells of human centenarians by massively parallel sequencing. BMC Genomics, 13:353. PubMed PMC
Montano C, Flores-Arenas C, Carpenter S (2024). LncRNAs, nuclear architecture and the immune response. Nucl Austin Tex, 15:2350182. PubMed PMC
Fontemaggi G (2023). Non-coding RNA regulatory networks in post-transcriptional regulation of VEGFA in cancer. IUBMB Life, 75:30-39. PubMed PMC
Khan MI, Alsayed RKME, Choudhry H, Ahmad A (2022). Exosome-Mediated Response to Cancer Therapy: Modulation of Epigenetic Machinery. Int J Mol Sci, 23:6222. PubMed PMC
Ripa R, Dolfi L, Terrigno M, Pandolfini L, Savino A, Arcucci V, et al. (2017). MicroRNA miR-29 controls a compensatory response to limit neuronal iron accumulation during adult life and aging. BMC Biol, 15:9. PubMed PMC
Fenn AM, Smith KM, Lovett-Racke AE, Guerau-de-Arellano M, Whitacre CC, Godbout JP (2013). Increased micro-RNA 29b in the aged brain correlates with the reduction of insulin-like growth factor-1 and fractalkine ligand. Neurobiol Aging, 34:2748-2758. PubMed PMC
Hu C-H, Sui B-D, Du F-Y, Shuai Y, Zheng C-X, Zhao P, et al. (2017). miR-21 deficiency inhibits osteoclast function and prevents bone loss in mice. Sci Rep, 7:43191. PubMed PMC
Yang N, Wang G, Hu C, Shi Y, Liao L, Shi S, et al. (2013). Tumor necrosis factor α suppresses the mesenchymal stem cell osteogenesis promoter miR-21 in estrogen deficiency-induced osteoporosis. J Bone Miner Res Off J Am Soc Bone Miner Res, 28:559-573. PubMed
Zhao W, Dong Y, Wu C, Ma Y, Jin Y, Ji Y (2015). MiR-21 overexpression improves osteoporosis by targeting RECK. Mol Cell Biochem, 405:125-133. PubMed
Davis HM, Pacheco-Costa R, Atkinson EG, Brun LR, Gortazar AR, Harris J, et al. (2017). Disruption of the Cx43/miR21 pathway leads to osteocyte apoptosis and increased osteoclastogenesis with aging. Aging Cell, 16:551-563. PubMed PMC
Rivas DA, Lessard SJ, Rice NP, Lustgarten MS, So K, Goodyear LJ, et al. (2014). Diminished skeletal muscle microRNA expression with aging is associated with attenuated muscle plasticity and inhibition of IGF-1 signaling. FASEB J Off Publ Fed Am Soc Exp Biol, 28:4133-4147. PubMed PMC
Weilner S, Schraml E, Wieser M, Messner P, Schneider K, Wassermann K, et al. (2016). Secreted microvesicular miR-31 inhibits osteogenic differentiation of mesenchymal stem cells. Aging Cell, 15:744-754. PubMed PMC
van Almen GC, Verhesen W, van Leeuwen REW, van de Vrie M, Eurlings C, Schellings MWM, et al. (2011). MicroRNA-18 and microRNA-19 regulate CTGF and TSP-1 expression in age-related heart failure. Aging Cell, 10:769-779. PubMed PMC
Wang X, Guo B, Li Q, Peng J, Yang Z, Wang A, et al. (2013). miR-214 targets ATF4 to inhibit bone formation. Nat Med, 19:93-100. PubMed
Zhao C, Sun W, Zhang P, Ling S, Li Y, Zhao D, et al. (2015). miR-214 promotes osteoclastogenesis by targeting Pten/PI3k/Akt pathway. RNA Biol, 12:343-353. PubMed PMC
Lai P, Song Q, Yang C, Li Z, Liu S, Liu B, et al. (2016). Loss of Rictor with aging in osteoblasts promotes age-related bone loss. Cell Death Dis, 7:e2408-e2408. PubMed PMC
Li C-J, Cheng P, Liang M-K, Chen Y-S, Lu Q, Wang J-Y, et al. (2015). MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation. J Clin Invest, 125:1509-1522. PubMed PMC
Jazbutyte V, Fiedler J, Kneitz S, Galuppo P, Just A, Holzmann A, et al. (2013). MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart. AGE, 35:747-762. PubMed PMC
Gurha P, Wang T, Larimore AH, Sassi Y, Abreu-Goodger C, Ramirez MO, et al. (2013). microRNA-22 Promotes Heart Failure through Coordinate Suppression of PPAR/ERR-Nuclear Hormone Receptor Transcription. PLOS ONE, 8:e75882. PubMed PMC
Gupta SK, Foinquinos A, Thum S, Remke J, Zimmer K, Bauters C, et al. (2016). Preclinical Development of a MicroRNA-Based Therapy for Elderly Patients With Myocardial Infarction. J Am Coll Cardiol, 68:1557-1571. PubMed
Sharma V, Khurana S, Kubben N, Abdelmohsen K, Oberdoerffer P, Gorospe M, et al. (2015). A BRCA1-interacting lncRNA regulates homologous recombination. EMBO Rep, 16:1520-1534. PubMed PMC
Lee S, Kopp F, Chang T-C, Sataluri A, Chen B, Sivakumar S, et al. (2016). Noncoding RNA PubMed PMC
Schmitt AM, Garcia JT, Hung T, Flynn RA, Shen Y, Qu K, et al. (2016). An inducible long noncoding RNA amplifies DNA damage signaling. Nat Genet, 48:1370-1376. PubMed PMC
Zhang A, Zhou N, Huang J, Liu Q, Fukuda K, Ma D, et al. (2013). The human long non-coding RNA-RoR is a p53 repressor in response to DNA damage. Cell Res, 23:340-350. PubMed PMC
Hung T, Wang Y, Lin MF, Koegel AK, Kotake Y, Grant GD, et al. (2011). Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet, 43:621-629. PubMed PMC
Feldstein O, Nizri T, Doniger T, Jacob J, Rechavi G, Ginsberg D (2013). The long non-coding RNA ERIC is regulated by E2F and modulates the cellular response to DNA damage. Mol Cancer, 12:131. PubMed PMC
Tripathi V, Shen Z, Chakraborty A, Giri S, Freier SM, Wu X, et al. (2013). Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet, 9:e1003368. PubMed PMC
Wan G, Mathur R, Hu X, Liu Y, Zhang X, Peng G, et al. (2013). Long non-coding RNA ANRIL (CDKN2B-AS) is induced by the ATM-E2F1 signaling pathway. Cell Signal, 25:1086-1095. PubMed PMC
Abdelmohsen K, Panda A, Kang M-J, Xu J, Selimyan R, Yoon J-H, et al. (2013). Senescence-associated lncRNAs: senescence-associated long noncoding RNAs. Aging Cell, 12:890-900. PubMed PMC
Porro A, Feuerhahn S, Lingner J (2014). TERRA-reinforced association of LSD1 with MRE11 promotes processing of uncapped telomeres. Cell Rep, 6:765-776. PubMed
Wu C-L, Wang Y, Jin B, Chen H, Xie B-S, Mao Z-B (2015). Senescence-associated Long Non-coding RNA (SALNR) Delays Oncogene-induced Senescence through NF90 Regulation. J Biol Chem, 290:30175-30192. PubMed PMC
Meier I, Fellini L, Jakovcevski M, Schachner M, Morellini F (2010). Expression of the snoRNA host gene gas5 in the hippocampus is upregulated by age and psychogenic stress and correlates with reduced novelty-induced behavior in C57BL/6 mice. Hippocampus, 20:1027-1036. PubMed
Yoon J-H, Abdelmohsen K, Kim J, Yang X, Martindale JL, Tominaga-Yamanaka K, et al. (2013). Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination. Nat Commun, 4:2939. PubMed PMC
Van Der Schueren C, Decruyenaere P, Avila Cobos F, Bult J, Deleu J, Dipalo LL, et al. (2024). Subpar reporting of pre-analytical variables in RNA-focused blood plasma studies. Mol Oncol. doi: 10.1002/1878-0261.13647. PubMed DOI
Sharma H, Yadav V, D’Souza-Schorey C, Go DB, Senapati S, Chang H-C (2023). A Scalable High-Throughput Isoelectric Fractionation Platform for Extracellular Nanocarriers: Comprehensive and Bias-Free Isolation of Ribonucleoproteins from Plasma, Urine, and Saliva. ACS Nano, 17:9388-9404. PubMed PMC
Xiao P, Shi Z, Liu C, Hagen DE (2023). Characteristics of circulating small noncoding RNAs in plasma and serum during human aging. Aging Med Milton NSW, 6:35-48. PubMed PMC
Mokhberian N, Bolandi Z, Eftekhary M, Hashemi SM, Jajarmi V, Sharifi K, et al. (2020). Inhibition of miR-34a reduces cellular senescence in human adipose tissue-derived mesenchymal stem cells through the activation of SIRT1. Life Sci, 257:118055. PubMed
Banerjee J, Roy S, Dhas Y, Mishra N (2020). Senescence-associated miR-34a and miR-126 in middle-aged Indians with type 2 diabetes. Clin Exp Med, 20:149-158. PubMed
Tang X, Leng M, Tang W, Cai Z, Yang L, Wang L, et al. (2024). The Roles of Exosome-Derived microRNAs in Cardiac Fibrosis. Mol Basel Switz, 29:1199. PubMed PMC
Yang M, Li T, Guo S, Song K, Gong C, Huang N, et al. (2024). CVD phenotyping in oncologic disorders: cardio-miRNAs as a potential target to improve individual outcomes in revers cardio-oncology. J Transl Med, 22:50. PubMed PMC
Chow LLC, Mead B (2023). Extracellular vesicles as a potential therapeutic for age-related macular degeneration. Neural Regen Res, 18:1876-1880. PubMed PMC
Heo J-I, Ryu J (2024). Exosomal noncoding RNA: A potential therapy for retinal vascular diseases. Mol Ther Nucleic Acids, 35:102128. PubMed PMC
Liang B, He X, Zhao Y-X, Zhang X-X, Gu N (2020). Advances in Exosomes Derived from Different Cell Sources and Cardiovascular Diseases. BioMed Res Int, 2020:e7298687. PubMed PMC
Shan X, Zhang C, Mai C, Hu X, Cheng N, Chen W, et al. (2021). The Biogenesis, Biological Functions, andApplications of Macrophage-Derived Exosomes. Front. Mol. Biosci. 8:. PubMed PMC
Peng M, Sun R, Hong Y, Wang J, Xie Y, Zhang X, et al. (2022). Extracellular vesicles carrying proinflammatory factors may spread atherosclerosis to remote locations. Cell Mol Life Sci, 79:430. PubMed PMC
Ozansoy M, Mikati H, Velioglu HA, Yulug B (2023). Exosomes: A missing link between chronic systemic inflammation and Alzheimer’s disease? Biomed Pharmacother, 159:114161. PubMed
Li Y, Tan J, Miao Y, Zhang Q (2021). MicroRNA in extracellular vesicles regulates inflammation through macrophages under hypoxia. Cell Death Discov, 7:1-12. PubMed PMC
Luo Q, Guo D, Liu G, Chen G, Hang M, Jin M (2017). Exosomes from MiR-126-Overexpressing Adscs Are Therapeutic in Relieving Acute Myocardial Ischaemic Injury. Cell Physiol Biochem, 44:2105-2116. PubMed
Wang S, Dong J, Li L, Wu R, Xu L, Ren Y, et al. (2022). Exosomes derived from miR-129-5p modified bone marrow mesenchymal stem cells represses ventricular remolding of mice with myocardial infarction. J Tissue Eng Regen Med, 16:177-187. PubMed
Sun X, Liu Y, Wang J, Zhang M, Wang M (2022). Cardioprotection of M2 macrophages-derived exosomal microRNA-24-3p/Tnfsf10 axis against myocardial injury after sepsis. Mol Immunol, 141:309-317. PubMed
Charles CJ, Li RR, Yeung T, Mazlan SMI, Lai RC, de Kleijn DPV, et al. (2020). Systemic Mesenchymal Stem Cell-Derived Exosomes Reduce Myocardial Infarct Size: Characterization With MRI in a Porcine Model. Front. Cardiovasc. Med. 7:. PubMed PMC
Song Y, Wang B, Zhu X, Hu J, Sun J, Xuan J, et al. (2021). Human umbilical cord blood-derived MSCs exosome attenuate myocardial injury by inhibiting ferroptosis in acute myocardial infarction mice. Cell Biol Toxicol, 37:51-64. PubMed
Emanueli C, Shearn AIU, Angelini GD, Sahoo S (2015). Exosomes and exosomal miRNAs in cardiovascular protection and repair. Vascul Pharmacol, 71:24-30. PubMed PMC
Adamiak M, Sahoo S (2018). Exosomes in Myocardial Repair: Advances and Challenges in the Development of Next-Generation Therapeutics. Mol Ther, 26:1635-1643. PubMed PMC
Bellin G, Gardin C, Ferroni L, Chachques JC, Rogante M, Mitrečić D, et al. (2019). Exosome in Cardiovascular Diseases: A Complex World Full of Hope. Cells, 8:166. PubMed PMC
Ludwig A-K, Giebel B (2012). Exosomes: Small vesicles participating in intercellular communication. Int J Biochem Cell Biol, 44:11-15. PubMed
Kadota T, Fujita Y, Yoshioka Y, Araya J, Kuwano K, Ochiya T (2018). Emerging role of extracellular vesicles as a senescence-associated secretory phenotype: Insights into the pathophysiology of lung diseases. Mol Aspects Med, 60:92-103. PubMed
Takasugi M (2018). Emerging roles of extracellular vesicles in cellular senescence and aging. Aging Cell, 17:e12734. PubMed PMC
Anakor E, Le Gall L, Dumonceaux J, Duddy WJ, Duguez S (2021). Exosomes in Ageing and Motor Neurone Disease: Biogenesis, Uptake Mechanisms, Modifications in Disease and Uses in the Development of Biomarkers and Therapeutics. Cells, 10:2930. PubMed PMC
Liu Q, Piao H, Wang Y, Zheng D, Wang W (2021). Circulating exosomes in cardiovascular disease: Novel carriers of biological information. Biomed Pharmacother, 135:111148. PubMed
Nikdoust F, Pazoki M, Mohammadtaghizadeh M, Aghaali MK, Amrovani M (2022). Exosomes: Potential Player in Endothelial Dysfunction in Cardiovascular Disease. Cardiovasc Toxicol, 22:225-235. PubMed PMC
Xu Y, Wan W, Zeng H, Xiang Z, Li M, Yao Y, et al. (2023). Exosomes and their derivatives as biomarkers and therapeutic delivery agents for cardiovascular diseases: Situations and challenges. J Transl Intern Med, 11:341-354. PubMed PMC
Chen X, Luo Y, Zhu Q, Zhang J, Huang H, Kan Y, et al. (2024). Small extracellular vesicles from young plasma reverse age-related functional declines by improving mitochondrial energy metabolism. Nat Aging, 1-25. PubMed PMC