Enhancing the Concentration Capability of Nonsupported Electrically Driven Liquid-Phase Microextraction through Programmable Flow Using an All-In-One 3D-Printed Optosensor: A Proof of Concept
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
38917332
PubMed Central
PMC11238157
DOI
10.1021/acs.analchem.4c02139
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
A versatile millifluidic 3D-printed inverted Y-shaped unit (3D-YSU) was prototyped to ameliorate the concentration capability of nonsupported microelectromembrane extraction (μ-EME), exploiting optosensing detection for real-time monitoring of the enriched acceptor phase (AP). Continuous forward-flow and stop-and-go flow modes of the donor phase (DP) were implemented via an automatic programmable-flow system to disrupt the electrical double layer generated at the DP/organic phase (OP) interface while replenishing the potentially depleted layers of analyte in DP. To further improve the enrichment factor (EF), the organic holding section of the OP/AP channel was bifurcated to increase the interfacial contact area between the DP and the OP. Exploiting the synergistic assets of (i) the continuous forward-flow of DP (1050 μL), (ii) the unique 3D-printed cone-shaped pentagon cross-sectional geometry of the OP/AP channel, (iii) the bifurcation of the OP that creates an inverted Y-shape configuration, and (iv) the in situ optosensing of the AP, a ca. 24 EF was obtained for a 20 min extraction using methylene blue (MB) as a model analyte. The 3D-YSU was leveraged for the unsupervised μ-EME and the determination of MB in textile dye and urban wastewater samples, with relative recoveries ≥88%. This is the first work toward analyte preconcentration in μ-EME with in situ optosensing of the resulting extracts using 3D-printed millifluidic platforms.
See more in PubMed
Martins R. O.; de Araújo G. L.; Simas R. C.; Chaves A. R. Electromembrane extraction (EME): Fundamentals and applications. Talanta Open 2023, 7, 100200.10.1016/j.talo.2023.100200. DOI
Li J.; Zhu R.; Shen X.; Huang C. Functional materials and chemicals in electromembrane extraction. TrAC, Trends Anal. Chem. 2022, 150, 116574.10.1016/j.trac.2022.116574. DOI
Shang Q.; Mei H.; Huang C.; Shen X. Fundamentals, operations and applications of electromembrane extraction: An overview of reviews. Microchem. J. 2022, 181, 107751.10.1016/j.microc.2022.107751. DOI
Eie L. V.; Pedersen-Bjergaard S.; Hansen F. A. Electromembrane extraction of polar substances – Status and perspectives. J. Pharm. Biomed. Anal. 2022, 207, 114407.10.1016/j.jpba.2021.114407. PubMed DOI
Hoseininezhad-Namin M. S.; Rahimpour E.; Ozkan S. A.; Jouyban A. An overview on nanostructure-modified supported liquid membranes for the electromembrane extraction method. Anal. Methods 2022, 14 (3), 212–221. 10.1039/D1AY01833G. PubMed DOI
Zhou C.; Dowlatshah S.; Hay A. O.; Schüller M.; Pedersen-Bjergaard S.; Hansen F. A. Generic liquid membranes for electromembrane extraction of bases with low or moderate hydrophilicity. Anal. Chem. 2023, 95 (23), 8982–8989. 10.1021/acs.analchem.3c01052. PubMed DOI PMC
Dowlatshah S.; Hansen F. A.; Zhou C.; Ramos-Payán M.; Halvorsen T. G.; Pedersen-Bjergaard S. Electromembrane extraction of peptides based on hydrogen bond interactions. Anal. Chim. Acta 2023, 1275, 341610.10.1016/j.aca.2023.341610. PubMed DOI
Tabani H.; Dorabadizare F.; Pedersen-Bjergaard S. Gel electro-membrane extraction: An overview on recent strategies for extraction efficiency enhancement. TrAC, Trends Anal. Chem. 2023, 160, 116990.10.1016/j.trac.2023.116990. DOI
Šlampová A.; Kubáň P. Micro-electromembrane extraction through volatile free liquid membrane for the determination of β-lactam antibiotics in biological and environmental samples. Talanta 2023, 252, 123831.10.1016/j.talanta.2022.123831. PubMed DOI
Martín A.; Santigosa E.; Ramos-Payán M. Green strategies using solvent-free biodegradable membranes in microfluidic devices. Liquid phase microextraction and electromembrane extraction. Anal. Chim. Acta 2023, 1274, 341572.10.1016/j.aca.2023.341572. PubMed DOI
Hansen F. A.; Santigosa-Murillo E.; Ramos-Payán M.; Muñoz M.; Leere Øiestad E.; Pedersen-Bjergaard S. Electromembrane extraction using deep eutectic solvents as the liquid membrane. Anal. Chim. Acta 2021, 1143, 109–116. 10.1016/j.aca.2020.11.044. PubMed DOI
Zhou C.; Dowlatshah S.; Hansen F. A.; Pedersen-Bjergaard S. Generic conditions for electromembrane extraction of polar bases. Talanta 2024, 267, 125215.10.1016/j.talanta.2023.125215. PubMed DOI
Dvořák M.; Seip K. F.; Pedersen-Bjergaard S.; Kubáň P. Semi-automated set-up for exhaustive micro-electromembrane extractions of basic drugs from biological fluids. Anal. Chim. Acta 2018, 1005, 34–42. 10.1016/j.aca.2017.11.081. PubMed DOI
Hansen F. A.; Petersen N. J.; Kutter J. P.; Pedersen-Bjergaard S. Electromembrane extraction in microfluidic formats. J. Sep. Sci. 2022, 45 (1), 246–257. 10.1002/jssc.202100603. PubMed DOI
Alidoust M.; Yamini Y.; Baharfar M.; Seidi S.; Rasouli F. Microfluidic-enabled versatile hyphenation of electromembrane extraction and thin film solid phase microextraction. Talanta 2021, 224, 121864.10.1016/j.talanta.2020.121864. PubMed DOI
Zarghampour F.; Yamini Y.; Baharfar M.; Javadian G.; Faraji M. On-chip electromembrane extraction followed by sensitive digital image-based colorimetry for determination of trace amounts of Cr(vi). Anal. Methods 2020, 12 (4), 483–490. 10.1039/C9AY02328C. DOI
Seidi S.; Ranjbar M. H.; Baharfar M.; Shanehsaz M.; Tajik M. A promising design of microfluidic electromembrane extraction coupled with sensitive colorimetric detection for colorless compounds based on quantum dots fluorescence. Talanta 2019, 194, 298–307. 10.1016/j.talanta.2018.10.046. PubMed DOI
Javier Carrasco-Correa E.; Kubáň P.; Cocovi-Solberg D. J.; Miró M. Fully Automated electric-field-driven liquid phase microextraction system with renewable organic membrane as a front end to high performance liquid chromatography. Anal. Chem. 2019, 91 (16), 10808–10815. 10.1021/acs.analchem.9b02453. PubMed DOI
Sahragard A.; Dvořák M.; Carrasco-Correa E. J.; Varanusupakul P.; Kubáň P.; Miró M. Programmable millifluidic platform integrating automatic electromembrane extraction cleanup and in-line electrochemical detection: a proof of concept. ACS Sens. 2022, 7 (10), 3161–3168. 10.1021/acssensors.2c01648. PubMed DOI PMC
Kubáň P.; Boček P. Preconcentration in micro-electromembrane extraction across free liquid membranes. Anal. Chim. Acta 2014, 848, 43–50. 10.1016/j.aca.2014.07.037. PubMed DOI
Petersen N. J.; Foss S. T.; Jensen H.; Hansen S. H.; Skonberg C.; Snakenborg D.; Kutter J. P.; Pedersen-Bjergaard S. On-chip electro membrane extraction with online ultraviolet and mass spectrometric detection. Anal. Chem. 2011, 83 (1), 44–51. 10.1021/ac1027148. PubMed DOI
Zarghampour F.; Yamini Y.; Baharfar M.; Faraji M. Electromembrane extraction of biogenic amines in food samples by a microfluidic-chip system followed by dabsyl derivatization prior to high performance liquid chromatography analysis. J. Chromatogr. A 2018, 1556, 21–28. 10.1016/j.chroma.2018.04.046. PubMed DOI
Roman-Hidalgo C.; Santigosa-Murillo E.; Ramos-Payán M.; Petersen N. J.; Kutter J. P.; Pedersen-Bjergaard S. On-chip electromembrane extraction of acidic drugs. Electrophoresis 2019, 40 (18–19), 2514–2521. 10.1002/elps.201900024. PubMed DOI
Santigosa-Murillo E.; Maspoch S.; Muñoz M.; Ramos-Payán M. An efficient microfluidic device based on electromembrane extraction for the simultaneous extraction of acidic and basic drugs. Anal. Chim. Acta 2021, 1160, 338448.10.1016/j.aca.2021.338448. PubMed DOI
Alidoust M.; Baharfar M.; Manouchehri M.; Yamini Y.; Tajik M.; Seidi S. Emergence of microfluidic devices in sample extraction; an overview of diverse methodologies, principals, and recent advancements. TrAC, Trends Anal. Chem. 2021, 143, 116352.10.1016/j.trac.2021.116352. DOI
Faustino V.; Catarino S. O.; Lima R.; Minas G. Biomedical microfluidic devices by using low-cost fabrication techniques: A review. J. Biomech. 2016, 49 (11), 2280–2292. 10.1016/j.jbiomech.2015.11.031. PubMed DOI
Carrasco-Correa E. J.; Simó-Alfonso E. F.; Herrero-Martínez J. M.; Miró M. The emerging role of 3D printing in the fabrication of detection systems. TrAC, Trends Anal. Chem. 2021, 136, 116177.10.1016/j.trac.2020.116177. DOI
Li F.; Ceballos M. R.; Balavandy S. K.; Fan J.; Khataei M. M.; Yamini Y.; Maya F. 3D Printing in analytical sample preparation. J. Sep. Sci. 2020, 43 (9–10), 1854–1866. 10.1002/jssc.202000035. PubMed DOI
Agrawaal H.; Thompson J. E. Additive manufacturing (3D printing) for analytical chemistry. Talanta Open 2021, 3, 100036.10.1016/j.talo.2021.100036. DOI
Wang L.; Pumera M. Recent advances of 3D printing in analytical chemistry: Focus on microfluidic, separation, and extraction devices. TrAC, Trends Anal. Chem. 2021, 135, 116151.10.1016/j.trac.2020.116151. DOI
Nesterenko P. N. 3D printing in analytical chemistry: current state and future. Pure Appl. Chem. 2020, 92 (8), 1341–1355. 10.1515/pac-2020-0206. DOI
Cardoso R. M.; Kalinke C.; Rocha R. G.; dos Santos P. L.; Rocha D. P.; Oliveira P. R.; Janegitz B. C.; Bonacin J. A.; Richter E. M.; Munoz R. A. A. Additive-manufactured (3D-printed) electrochemical sensors: A critical review. Anal. Chim. Acta 2020, 1118, 73–91. 10.1016/j.aca.2020.03.028. PubMed DOI
Ambrosi A.; Bonanni A. How 3D printing can boost advances in analytical and bioanalytical chemistry. Microchim. Acta 2021, 188, 1–17. 10.1007/s00604-021-04901-2. PubMed DOI
Kołodziej D.; Sobczak Ł.; Goryński K. Innovative, simple, and green: A sample preparation method based on 3D printed polymers. Talanta 2023, 257, 124380.10.1016/j.talanta.2023.124380. PubMed DOI
Cocovi-Solberg D. J.; Worsfold P. J.; Miró M. Opportunities for 3D printed millifluidic platforms incorporating on-line sample handling and separation. TrAC, Trends Anal. Chem. 2018, 108, 13–22. 10.1016/j.trac.2018.08.007. DOI
Aquino Monteiro S.; Scheid C.; Deon M.; Merib J. Fundamentals, recent applications, and perspectives of 3D printing in sample preparation approaches. Microchem. J. 2023, 195, 109385.10.1016/j.microc.2023.109385. DOI
Zhu Q.; Liu C.; Tang S.; Shen W.; Lee H. K. Application of three dimensional-printed devices in extraction technologies. J. Chromatogr. A 2023, 1697, 463987.10.1016/j.chroma.2023.463987. PubMed DOI
Sahragard A.; Dvořák M.; Pagan-Galbarro C.; Carrasco-Correa E. J.; Kubáň P.; Miró M. 3D-printed stereolithographic fluidic devices for automatic nonsupported microelectromembrane extraction and clean-up of wastewater samples. Anal. Chim. Acta 2024, 1297, 342362.10.1016/j.aca.2024.342362. PubMed DOI
Miró M.; Cladera A.; Estela J. M.; Cerdà V. Dual wetting-film multi-syringe flow injection analysis extraction: Application to the simultaneous determination of nitrophenols. Anal. Chim. Acta 2001, 438 (1), 103–116. 10.1016/S0003-2670(00)01356-8. DOI
García-Moll L.; Sixto A.; Carrasco-Correa E. J.; Miró M. 3D-printed chemiluminescence flow cells with customized cross-section geometry for enhanced analytical performance. Talanta 2023, 255, 124211.10.1016/j.talanta.2022.124211. PubMed DOI
Pena-Pereira F.; Wojnowski W.; Tobiszewski M. AGREE—Analytical GREEnness Metric Approach and Software. Anal. Chem. 2020, 92 (14), 10076–10082. 10.1021/acs.analchem.0c01887. PubMed DOI PMC
Ahmadi R.; Kazemi G.; Ramezani A. M.; Safavi A. Shaker-assisted liquid-liquid microextraction of methylene blue using deep eutectic solvent followed by back-extraction and spectrophotometric determination. Microchem. J. 2019, 145, 501–507. 10.1016/j.microc.2018.11.005. DOI
Shojaei S.; Rahmani M.; Khajeh M.; Abbasian A. R. Ultrasound assisted based solid phase extraction for the preconcentration and spectrophotometric determination of malachite green and methylene blue in water samples. Arab. J. Chem. 2023, 16 (8), 104868.10.1016/j.arabjc.2023.104868. DOI
Badiee H.; Zanjanchi M. A.; Zamani A.; Fashi A. Hollow fiber liquid-phase microextraction based on the use of a rotating extraction cell: A green approach for trace determination of rhodamine 6G and methylene blue dyes. Environ. Pollut. 2019, 255, 113287.10.1016/j.envpol.2019.113287. PubMed DOI
Razmara R. S.; Daneshfar A.; Sahrai R. Determination of methylene blue and sunset yellow in wastewater and food samples using salting-out assisted liquid–liquid extraction. J. Ind. Eng. Chem. 2011, 17 (3), 533–536. 10.1016/j.jiec.2010.10.028. DOI
Borwitzky H.; Haefeli W. E.; Burhenne J. Analysis of methylene blue in human urine by capillary electrophoresis. J. Chromatogr. B 2005, 826 (1), 244–251. 10.1016/j.jchromb.2005.09.013. PubMed DOI
Khan M. R.; Khan M. A.; Alothman Z. A.; Alsohaimi I. H.; Naushad M.; Al-Shaalan N. H. Quantitative determination of methylene blue in environmental samples by solid-phase extraction and ultra-performance liquid chromatography-tandem mass spectrometry: a green approach. RSC Adv. 2014, 4 (64), 34037–34044. 10.1039/C4RA03504F. DOI
Memon S.; Memon F. N.; Durmaz F.; Memon N. A.; Memon A. A.; Kara H. Simultaneous determination of some basic dyes using p-tetranitrocalix[4]arene-appended silica-based HPLC column. Anal. Methods 2014, 6 (18), 7318–7323. 10.1039/C4AY01046A. DOI
Petersen N. J.; Pedersen J. S.; Poulsen N. N.; Jensen H.; Skonberg C.; Hansen S. H.; Pedersen-Bjergaard S. On-chip electromembrane extraction for monitoring drug metabolism in real time by electrospray ionization mass spectrometry. Analyst 2012, 137 (14), 3321–3327. 10.1039/c2an35264h. PubMed DOI
Oladoye P. O.; Ajiboye T. O.; Omotola E. O.; Oyewola O. J. Methylene blue dye: Toxicity and potential elimination technology from wastewater. Results Eng. 2022, 16, 100678.10.1016/j.rineng.2022.100678. DOI
Khan I.; Saeed K.; Zekker I.; Zhang B.; Hendi A. H.; Ahmad A.; Ahmad S.; Zada N.; Ahmad H.; Shah L. A.; et al. Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water 2022, 14 (2), 242.10.3390/w14020242. DOI